Archivo de la etiqueta: lineal

Álgebra Lineal I: Forma matricial de una transformación lineal

Por Ayax Calderón

Introducción

Durante la primera unidad de este curso vimos que las transformaciones lineales $T:F^n \to F^m$ pueden ser descritas por medio de matrices $A\in M_{m,n}(F)$. Nuestro objetivo ahora es extender este resultado para describir transformaciones lineales $T:V\to W$ entre espacios vectoriales de dimensión finita $V$ y $W$. Es decir, para cada una de estas transformaciones, queremos ver cómo se ven en forma matricial.

Sin embargo, a diferencia de lo que sucedía antes, la descripción en esta forma no será única. Para construir una matriz que represente a una transformación lineal, necesitaremos fijar bases para $V$ y $W$. Distintas bases nos darán distintas matrices.

Para esta entrada todos los espacios vectoriales que usemos son de dimensión finita sobre el campo $F$. Usaremos los resultados de la entrada pasada, en la que estudiamos qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los generadores y a las bases.

Un paréntesis técnico de isomorfismos

Quizás a estas alturas ya te hayas dado cuenta de que, en cierto sentido, los espacios vectoriales con la misma dimensión se parecen mucho entre sí. Por ejemplo, los espacios vectoriales $\mathbb{R}^4$, $M_2(\mathbb{R}) $ y $\mathbb{R}_3[x]$ pueden pensarse «como el mismo» si identificamos a cada vector $(a,b,c,d)$ con la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o bien con el polinomio $a+bx+cx^2+dx^3$. Esta identificación es biyectiva y «respeta las operaciones».

Con esta motivación, veamos una definición formal.

Definición. Decimos que una transformación lineal $T:V\to W$ es un isomorfismo de espacios vectoriales si es biyectiva. Lo denotamos como $V\simeq_{T} W$, que se lee «$V$ isomorfo a $W$ mediante $T$».

Problema. Sea $T:V\to W$ un isomorfismo de espacios vectoriales. Prueba que su inversa $T^{-1}:W\to V$ es un isomorfismo de espacios vectoriales.

Demostración. La transformación $T^{-1}$ es biyectiva, pues es invertible de inversa $T$, así que sólo hace falta checar que $T^{-1}$ es lineal. Tomemos $w_1$, $w_2$ en $W$, y $c$ en el campo. Como $T$ es suprayectiva, podemos tomar $v_1=T^{-1}(w_1)$ y $v_2=T^{-1}(w_2)$. Entonces $T(v_1)=w_1$ y $T(v_2)=w_2$, así
\begin{align*}
T^{-1}(w_1+cw_2)&=T^{-1}(T(v_1)+cT(v_2))\\
&=T^{-1}(T(v_1+cv_2))\\
&=v_1+cv_2
\end{align*}

En la segunda igualdad estamos usando que $T$ es lineal. De esta forma, concluimos que $T^{-1}$ es lineal también.

$\square$

Formalicemos ahora sí nuestra intuición de que «todos los espacios vectoriales de la misma dimensión finta $n$ sobre un mismo campo se comportan igual». En términos matemáticos, decimos que «es posible clasificar los espacios vectoriales de dimensión finita distintos de $\{0\}$, salvo isomorfismos». Para mostrar esto, veremos que para cada entero positivo $n$ todos los espacios vectoriales de dimensión $n$ son isomorfos a $F^n$. El siguiente resultado da el isomorfismo de manera explícita.

Teorema. Sea $n$ un entero positivo y sea $V$ un espacio vectorial de dimensión finita sobre $F$. Si $B={e_1,\dots,e_n}$ es una base de $V$, entonces la transformación $i_B:F^n\to V$ definida por $$i_B(x_1,\dots,x_n)=x_1e_1+x_2e_2+\dots+x_ne_n$$ es un isomorfismo de espacios vectoriales.

La verificación de los detalles de este teorema queda como tarea moral. Como sugerencia, recuerda que una base $B$ de $V$ te permite expresar a cada vector de $V$ (de aquí saldrá la suprayectividad) de manera única (de aquí saldrá la inyectividad) como combinación lineal de elementos de $B$.

Corolario. Si $T:V\to W$ es un isomorfismo de espacios vectoriales, entonces $\dim V=\dim W$.

Bases ordenadas

Sea $V$ un espacio vectorial de dimensión finita $n$. Una base ordenada de $V$ es simplemente una base para la cual nos importa en qué orden están sus elementos. La escribimos con notación de paréntesis en vez de llaves, es decir, en vez de poner $B=\{v_1,\ldots,v_n\}$, ponemos $B=(v_1,\ldots,v_n)$ para hacer énfasis en el orden.

Ejemplo 1. El conjunto $\{(1,2),(3,4)\}$ es una base de $\mathbb{R}^2$. De aquí, podemos obtener dos bases ordenadas, $B=((1,2),(3,4))$ y $B’=((3,4),(1,2))$. Aunque tienen a los mismos elementos, las pensamos como bases ordenadas diferentes pues sus elementos aparecen en diferente orden.

Del mismo modo, las bases $B=(1,x,x^2,x^3)$ y $B’=(x^3,x^2,x,1)$ son la misma base de $\mathbb{R}_2[x]$, pero son distintas como bases ordenadas.

$\triangle$

Por las discusión en la sección anterior, la elección de una base ordenada en un espacio vectorial $V$ de dimensión $n$ nos permite identificar $V$ con $F^{n}$. Es decir, dada una base $B$, podemos «ponerle coordenadas» a los elementos de $V$. Dependiendo de la base ordenada escogida, es posible que obtengamos diferentes coordenadas.

Ejemplo 2. Consideremos el espacio vectorial $M_2(\mathbb{R})$. Se puede verificar que cada uno de los siguientes conjuntos ordenados son una base:

\begin{align*}
B&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B’&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B»&=\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)
\end{align*}

Como cada uno de ellos es una base, entonces podemos escribir a la matriz $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ como combinación lineal de elementos de cada uno de $B$, $B’$ o $B»$.

Si lo hacemos para $B$, tendríamos (en orden), a los coeficientes $1,2,3,4$, así que las coordenadas de $A$ en la base ordenada $B$ serían $(1,2,3,4)$.

Si lo hacemos para $B’$, tendríamos (en orden), a los coeficientes $1,3,2,4$, así que las coordenadas de $A$ en la base ordenada $B’$ serían $(1,3,2,4)$. Aunque $B$ y $B’$ tengan los mismos elementos, las coordenadas difieren pues como bases ordenadas $B$ y $B’$ son distintas.

Si lo hacemos para $B»$, tendríamos (en orden), a los coeficientes $1,1,1,1$, así que las coordenadas de $A$ en la base ordenada $B»$ serían $(1,1,1,1)$. Aquí obtenemos coordenadas muy distintas pues $B$ y $B»$ ni siquiera tienen a los mismos elementos.

$\triangle$

La forma matricial de una transformación lineal

Consideremos ahora espacios vectoriales $V$ y $W$ de dimensiones $n$ y $m$ respectivamente. Supongamos que tenemos una transformación lineal $T:V\to W$. Escogemos bases ordenadas $B_V=(v_1,\dots, v_n)$ y $B_W=(w_1,\dots,w_m)$ de $V$ y $W$ respectivamente. Ten cuidado, aquí $(v_1,\dots, v_n)$ no es un vector de $F^n$, sino una colección ordenada de vectores de $V$.

Por el teorema de caracterización de espacios vectoriales de dimensión finita, tenemos los isomorfismos $$i_{B_{V}}:F^n\to V,$$ $$i_{B_{W}}:F^m\to W.$$

¿Cómo podemos usar todas estas transformaciones para construir una transformación $F^n\to F^m$? La idea es usar el inverso de $i_{B_W}$ y componer todo.

Así, consideramos $\psi_T$ como la composición de las transformaciones $i_{B_{V}}, T, i_{B_{W}}^{-1}$, es decir, $$\psi_T:F^n\to F^m,$$ está dada por $$\psi_T=i_{B_W}^{-1}\circ T\circ i_{B_{V}}.$$

De esta forma, $\psi_T$ es una transformación lineal entre $F^n$ y $F^m$. ¡Este tipo de transformaciones ya las conocemos! Sabemos que $\psi_T$ se describe de manera única por medio de una matriz $A\in M_{m,n}(F).$ Esta es, por definición, la matriz asociada a $T$ con respecto a las bases $B_V$ y $B_W$ o bien la forma matricial de $T$. Dicha matriz depende fuertemente de las dos bases, así que la denotaremos como $\text{Mat}_{B_W,B_V}(T)$ . Por el momento sólo pongamos mucha atención en el orden en el que escribimos las bases en los subíndices. Es importante más adelante veremos que resulta útil escribirlo así.

Cuando $T:V\to V$ va de un espacio vectorial a sí mismo y usamos sólo una base $B$, simplificamos la notación a $\text{Mat}_B(T)$.

Evaluar $T$ usando su forma matricial

La construcción anterior parece muy complicada, pero en realidad es muy natural. Lo que está sucediendo es lo siguiente. Ya sabemos que toda transformación lineal entre $F^n$ y $F^m$ está dada por matrices. Podemos extender esto a una descripción de transformaciones lineales entre $V$ y $W$ identificando $V$ con $F^n$ y $W$ con $F^m$ vía la elección de bases en $V$ y $W$.

Notemos que si definimos $A:=\text{Mat}_{B_{W},B_{V}}(T)$, entonces tenemos que

$i_{B_{W}}(Ax)=T(i_{B_{V}}(x))$ … (1)

Esta igualdad nos va a ayudar a decir quién es $T$ en términos de las entradas de la matriz $A$. Sea $\{e_1,\dots,e_n\}$ la base canónica de $F^n$ y $\{f_1,\dots,f_m\}$ la base canónica de $F^m$. Si$ A=[a_{ij}]$, entonces por definición $Ae_i=a_{1i}f_1+\dots+a_{mi}f_{m}$, así para $x=e_i$ se tiene

$i_{B_{W}}(Ax)=i_{B_{W}}(a_{1i}f_1+\dots + a_{mi}f_m) = a_{1i}w_1+\dots + a_{mi}w_m.$

Por otro lado, $i_{B_{V}}(e_i)=v_i$, de manera que la relación (1) es equivalente a la relación

$T(v_i)=a_{1i}w_1+\dots + a_{mi}w_m$

Aquí empieza a haber mucha notación, pero no hay que perderse. Hasta ahora lo que tenemos es que «podemos saber cuánto vale la transformación $T$ en cada elemento de la base de $V$ en términos de la matriz $A$». ¡Este es un paso importante, pues en la entrada anterior vimos que basta saber qué le hace una transformación a los elementos de la base para saber qué le hace a cualquier vector! Resumimos lo obtenido hasta ahora.

Proposición. Sea $T:V\to W$ una transformación lineal y sean $B_V=\{v_1,\dots v_n\}, B_W=\{w_1,\dots,w_m\}$ bases en $V$ y $W$, respectivamente. Escribamos $\text{Mat}_{B_W,B_V}(T)=[a_{ij}]$. Entonces para toda $1\leq i\leq n$ se tiene $$T(v_i)=\displaystyle\sum_{j=1}^m a_{ji}w_j.$$

Así, si tenemos la matriz $A$ que representa a $T$ en las bases $B_V$ y $B_W$ y un vector arbitrario $v$ en $V$, para saber quién es $T(V)$ basta:

  • Usar la proposición anterior para saber quién es $T(v_i)$ para cada $v_i$ en la base $B_V$.
  • Expresar a $v$ en términos de la base $B_V$ como, digamos, $v=c_1v_1+\ldots+c_nv_n$.
  • Usar que $T$ es lineal para concluir que $T(v)=c_1T(v_1)+\ldots+c_nT(v_n)$ y usar los valores de $T(v_i)$ encontrados en el primer inciso.

Forma matricial de composiciones de transformaciones lineales

Para finalizar esta entrada queremos entender la relación entre la composición $S\circ T$ de transformaciones lineales y las matrices asociadas de $T$ y $S$. En otras palabras, sean $T:V\to W$ y $S:W\to U$ transformaciones lineales fijas y supongamos que $m=dimV$, $n=dimW$, $p=dimU$. También fijemos las bases $B_U, B_V, B_W$ en $U,V,W$, respectivamente. Para simplificar las cosas escribamos

$\mathcal{A}=\text{Mat}_{B_U,B_W}(S)$ y $\mathcal{B}=\text{Mat}_{B_W,B_V}(T)$

Con respecto a las bases $B_U,B_V,B_W$ se tienen los isomorfismos $i_{B_U}, i_{B_V}, i_{B_W}$ definidos como lo hicimos anteriormente en esta misma entrada del blog, y por definición de $\mathcal{A}, \mathcal{B}$ se tiene

$i_{B_W}(\mathcal{B}x)=T(i_{B_V}(x))$ con $x\in F^m$,

$i_{B_U}(\mathcal{A}y)=S(i_{B_W}(y))$ con $y\in F^n$.

Aplicando $S$ en la primera relación y después usando la segunda relación, se tiene para $x\in F^m$

$(S\circ T)(i_{B_V}(x))=S(i_{B_W}(\mathcal{B}x))=i_{B_U}(\mathcal{A} \mathcal{B}x)$.

Esta última relación y la definición de $\text{Mat}_{B_U,B_V}(S\circ T)$ nos muestra que

$\text{Mat}_{B_U,B_V}(S\circ T)=\mathcal{A} \cdot \mathcal{B}$.

En otras palabras, la composición de transformaciones lineales se reduce a multiplicar sus matrices asociadas o de manera más formal

Teorema. Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales entre espacios vectoriales de dimensión finita y sean $B_U, B_V, B_W$ bases de $U,V,W$, respectivamente. Entonces

$\text{Mat}_{B_U,B_V}(S\circ T)=\text{Mat}_{B_U,B_W}(S)\cdot \text{Mat}_{B_W,B_V}(T).$

Cuando tenemos transformaciones lineales de un espacio vectorial $V$ a sí mismo, y usamos la misma base $B$, el resultado anterior se puede escribir de una manera más sencilla.

Corolario. Sean $T_1,T_2:V\to V$ transformaciones lineales en un espacio vectorial de dimensión finita $V$, y sea $B$ una base de $V$. Entonces

$\text{Mat}_{B}(T_1\circ T_2)=\text{Mat}_{B}(T_1)\cdot \text{Mat}_{B}(T_2)$.

Más adelante…

En esta entrada comenzamos con una transformación lineal $T:V\to W$ y bases ordenadas de de $V$ y $W$ para representar a $T$ como una matriz. Así mismo, vimos cómo tras una elección de base podemos pensar a cualquier vector en términos de sus «coordenadas», usando a los coeficientes que permiten expresarlo (de manera única) como combinación lineal de elementos de la base. Las matrices y coordenadas que así obtenemos nos ayudarán mucho. Sin embargo, será fundamental entender qué es lo que sucede con estas representaciones cuando elegimos bases diferentes, y cómo podemos cambiar de ciertas coordenadas o matrices a otras cuando hacemos un cambio de base. Esto es lo que estudiaremos en las siguientes entradas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la relación «son isomorfos» para espacios vectoriales es una relación de equivalencia.
  • Muestra que la transformación $i_B$ dada en el teorema de clasificación de espacios vectoriales de dimensión finita en efecto es un isomorfismo.
  • Asegúrate de entender el último corolario.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transformaciones lineales en bases, conjuntos independientes y generadores

Por Leonardo Ignacio Martínez Sandoval

Introducción

El objetivo de esta entrada es entender qué efecto tienen las transformaciones lineales en bases, en conjuntos linealmente independientes y en conjuntos generadores. En la siguiente lista recordamos brevemente estas nociones:

  • Una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ es una función que «abre sumas» (es decir $T(x+y)=T(x)+T(y)$) y «saca escalares» (es decir $T(cx)=cT(x)$). Recuerda que es necesario que $V$ y $W$ estén sobre el mismo campo, cosa que asumiremos cuando hablemos de transformaciones lineales.
  • Un conjunto de vectores $\{v_1,\ldots, v_n\}$ en $V$ es linealmente independiente si la única combinación lineal de ellos que da $0$ es la trivial, osea en la que todos los coeficientes son $0$.
  • Si cualquier vector de un espacio vectorial $V$ puede escribirse como combinación lineal de un conjunto de vectores $S=\{v_1,\ldots,v_n\}$, entonces decimos que $S$ genera a $V$.
  • Un conjunto de vectores en $V$ es base si es linealmente independiente y genera a $V$.

La idea de esta entrada es entender lo siguiente:

  • ¿Cuándo las imágenes de linealmente independientes/generadores/bases son linealmente independientes/generadores/bases tras aplicar una transformación lineal?
  • ¿Cómo saber si una transformación lineal es inyectiva?
  • ¿Cómo el efecto de transformaciones lineales en bases nos permite determinar exactamente qué le hacen al resto de los vectores?

Exploración

Tomemos espacios vectoriales $V$, $W$ y una transformación lineal $T:V\to W$. Si comenzamos con un conjunto $S=\{v_1,\ldots,v_n\}$ de vectores en $V$ que es linealmente independiente (o generador, o base) en $V$, ¿cuándo sucede que $T(S)=\{T(v_1),\ldots,T(v_n)\}$ es linealmente independiente (o generador, o base, respectivamente) en $W$?

Esto definitivamente no sucede siempre. La tranformación $Z:\mathbb{R}^3\to \mathbb{R}[x]$ que manda a todo vector $(x,y,z)$ al polinomio $0$ es una transformación lineal. Sin embargo, a la base canónica $\{e_1,e_2,e_3\}$ la manda al conjunto $\{0,0,0\}=\{0\}$, que no es un conjunto ni linealmente independiente, ni generador de los polinomios con coeficientes reales.

De esta forma, tenemos que pedirle más a la transformación $T$ para que preserve las propiedades mencionadas.

Intuitivamente, si la imagen de $T$ no cubre a todo $W$, entonces los vectores de la forma $T(v)$ con $v$ en $V$ no deberían de poder generar a $W$. Así, para que $T$ mande generadores a generadores, tiene que pasar que «$T$ pase por todo $W$». Esta noción queda capturada formalmente al pedir que $T$ sea suprayectiva.

Del mismo modo, también intuitivamente si «$T$ manda elementos distintos al mismo elemento», entonces perderemos familias linealmente independientes al aplicarla. Así, para preservar conjuntos linealmente independientes, necesitamos que vectores distintos vayan a valores distintos. En términos formales, necesitamos que $T$ sea inyectiva.

Resultados principales de transformaciones lineales en bases, generadores y linealmente independientes

El primer resultado es que los requisitos que descubrimos intuitivamente en la sección pasada son suficientes.

Teorema. Sea $T:V\to W$ una transformación lineal y $S=\{v_1,\ldots,v_n\}$ un conjunto de vectores de $V$. Entonces:

  • Si $T$ es inyectiva y $S$ es linealmente independiente, entonces $T(S)$ es linealmente independiente.
  • Cuando $T$ es suprayectiva y $S$ es generador, entonces $T(S)$ es generador.
  • Si $T$ es biyectiva y $S$ es base, entonces $T(S)$ es base.

Demostración. Comencemos suponiendo que $T$ es inyectiva y $S$ es linealmente independiente. Entonces $T(v_1),\ldots,T(v_n)$ son todos distintos. Tomemos una combinación lineal de elementos de $T(S)$ igual a cero, es decir, $$a_1T(v_1)+a_2T(v_2)+\ldots+a_nT(v_n)=0.$$ Debemos mostrar que todos los coeficientes son iguales a cero. Como $T$ es transformación lineal, podemos juntar las sumas y productos escalares como sigue: $$T(a_1v_1+a_2v_2+\ldots+a_nv_n)=0=T(0).$$

Como $T$ es inyectiva, esto implica que $$a_1v_1+a_2v_2+\ldots+a_nv_n=0,$$ pero como $S$ es linealmente independiente, concluimos que $$a_1=\ldots=a_n=0.$$ Así, $T(S)$ es linealmente independiente.

Supongamos ahora que $T$ es suprayectiva y $S$ es generador. Tomemos un $w\in W$. Como $T$ es suprayectiva, existe $v\in V$ tal que $T(v)=w$ y como $S$ es generador, existen $a_1,\ldots,a_n$ tales que $$a_1v_1+\ldots+a_nv_n=v.$$ Aplicando $T$ en ambos lados, abriendo las sumas y sacando escalares obtenemos que $$a_1T(v_1)+\ldots+a_nT(v_n)=T(v)=w.$$ Así, todo elemento de $W$ se puede escribir como combinación lineal de elementos de $T(S)$, como queríamos.

Finalmente, supongamos que $T$ es biyectiva y $S$ es base. Como $T$ es inyectiva y $S$ linealmente independiente, entonces $T(S)$ es linealmente independiente. Como $T$ es suprayectiva y $S$ generador, entonces $T(S)$ es generador. Así, $T(S)$ es base.

$\square$

Una consecuencia fudamental del resultado anterior es que si $V$ y $W$ son espacios de dimensión finita y existe una transformación lineal inyectiva $T:V\to W$, entonces $\dim(V)\leq \dim(W)$. En efecto, si $B$ es base de $V$ y $T$ es inyectiva, entonces $T(B)$ es linealmente independiente en $W$ y sabemos que $W$ tiene a lo más $\dim(W)$ vectores linealmente independientes, así que $\dim(V)=|B|=|T(B)|\leq \dim(W)$. De manera similar, si existe una transformación lineal $T:V\to W$ suprayectiva, entonces $\dim(V)\geq \dim(W)$. Demuestra esto. ¿Qué pasa con las dimensiones si existe una transformación lineal biyectiva entre $V$ y $W$?

¿Cuándo una transformación lineal es inyectiva?

El teorema anterior también sugiere que es importante saber cuándo una transformación lineal es inyectiva, suprayectiva o ambas. Resulta que en el caso de la inyectividad hay un criterio que nos ayuda.

Proposición. Sean $V$ y $W$ espacios vectoriales. Una transformación lineal $T:V\to W$ es inyectiva y si sólo si el único vector $v$ de $V$ tal que $T(v)=0$ es el vector $v=0$. En otras palabras $T$ es inyectiva si y sólo si $\ker(T)=\{0\}$.

Demostración. Sean $V$ y $W$ espacios vectoriales y $T:V\to W$ una transformación lineal. Recordemos que sabemos que $T(0)=0$.

Si $T$ es inyectiva y $T(x)=0$, entonces $T(x)=T(0)$ y por inyectividad $x=0$, de modo que $x$ es el único vector que va a $0$ bajo $T$.

Si el único vector que bajo $T$ va a $0$ es el $0$ y tenemos que $T(x)=T(y)$, entonces usando que $T$ es lineal tenemos que $0=T(y)-T(x)=T(y-x)$. Así, por hipótesis $y-x=0$, es decir, $x=y$. Con esto queda mostrado que $T$ es inyectiva.

$\square$

Transformaciones lineales en bases dan toda la información

Conociendo los valores de una transformación lineal en algunos vectores, es posible determinar el valor de la transformación en otros vectores que son combinación lineal de los primeros. Considera el siguiente ejemplo.

Problema. La transformación lineal $T:M_2(\mathbb{R})\to\mathbb{R}^2$ cumple que $T\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}=(1,0)$, $T\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}=(0,-1)$, $T\begin{pmatrix}
0 & 0\\
1 & 1
\end{pmatrix}=(-1,0)$ y $T\begin{pmatrix}
1 & 0\\
1 & 0
\end{pmatrix}=(0,1)$. Determina el valor de $T\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$.

Intenta resolver el problema por tu cuenta antes de ver la solución. Para ello, intenta poner a la matriz $\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$ como combinación lineal de las otras matrices y usar que $T$ es lineal.

Solución. Sean $A$, $B$, $C$ y $D$ las matrices de las cuales conocemos cuánto vale $T$ en ellas y $E$ la matriz con puros $3$’s. Queremos determinar el valor de $T(E)$. Notemos que $E=\frac{3}{2}(A+B+C+D)$. Como $T$ es transformación lineal, tenemos que

\begin{align*}
T(E)&=\frac{3}{2}(T(A)+T(B)+T(C)+T(D))\\
&=\frac{3}{2}((1,0)+(0,-1)+(-1,0)+(0,1))\\
&=(0,0).
\end{align*}

$\square$

En este problema lo que sirvió para encontrar el valor de $T(E)$ fue poner a la matriz $E$ como combinación lineal de las matrices $A,B,C,D$. De hecho, para cualquier matriz que sea combinación lineal de las matrices $A,B,C,D$, pudiéramos haber hecho lo mismo.

A partir de esta observación, podemos intuir que al conocer el efecto de transformaciones lineales en bases, podemos saber qué le hacen a cada elemento del espacio vectorial. El siguiente teorema enuncia esto de manera formal y dice un poco más.

Teorema. Sean $V$, $W$ espacios vectoriales, $B=\{v_1,v_2,\ldots,v_n\}$ una base de $V$ y $w_1,w_2,\ldots, w_n$ vectores cualesquiera de $W$. Entonces, existe una y sólo una transformación lineal $T:V\to W$ tal que $$T(v_1)=w_1,\quad T(v_2)=w_2, \quad \ldots, \quad T(v_n)=w_n.$$

Demostración. Probemos primero la parte de existencia. Como $B$ es base, cualquier vector $v$ de $V$ se puede escribir como $$a_1v_1+a_2v_2+\ldots+a_nv_n.$$ Construyamos la función $T:V\to W$ tal que $$T(v)=a_1w_1+a_2w_2+\ldots+a_nw_n.$$

Como para cada $i=1,\ldots,n$ tenemos que la combinación lineal de $v_i$ en términos de $B$ es $v_i=1\cdot v_i$, tenemos que $T(v_i)=1\cdot w_i=w_i$, que es una de las cosas que queremos. La otra que queremos es que $T$ sea lineal. Mostremos esto. Si $$v=a_1v_1+a_2v_2+\ldots+a_nv_n$$ y $$w=b_1v_1+b_2v_2+\ldots+b_nv_n,$$ entonces $$v+w=(a_1+b_1)v_1+
(a_2+b_2)v_2+\ldots+ (a_n+b_n)v_n,$$ y por definición $$T(v+w)=(a_1+b_1)w_1+ (a_2+b_2)w_2+\ldots+ (a_n+b_n)w_n.$$ Notemos que el lado derecho es igual a $T(v)+T(w)$, de modo que $T$ abre sumas. De manera similar se puede mostrar que $T$ saca escalares.

Esbocemos ahora la demostración de la unicidad. Supongamos que $T$ y $T’$ son transformaciones lineales de $V$ a $W$ tales que $T(v_i)=T'(v_i)=w_i$ para toda $i=1,\ldots,n$. Tenemos que mostrar que $T(v)=T'(v)$ para toda $v$. Para ello procedemos como en el problema antes de este teorema: escribimos a $v$ como combinación lineal de elementos de $B$. Esto se puede hacer de una única forma. El valor de $T(v)$ a su vez depende únicamente de $w_1,\ldots,w_n$ y de la los coeficientes en combinación lineal. El de $T'(v)$ también. Por lo tanto son iguales.

$\square$

Una consecuencia del teorema anterior, en la que no es necesario enunciar a las imágenes de la base, es la siguiente.

Corolario. Sean $V$ y $W$ espacios vectoriales, $B$ una base de $V$, y $T$ y $T’$ transformaciones lineales de $V$ a $W$. Si $T(v)=T'(v)$ para toda $v\in B$, entonces $T(v)=T'(v)$ para toda $v\in V$.

Más adelante…

Las propiedades que demostramos en esta entrada se usan con tanta frecuencia que muchas veces se aplican sin siquiera detenerse a argumentar por qué son válidas. Por esta razón, es importante que te familiarices con ellas. Otra ventaja de conocerlas a profundidad es que muchas veces ayudan a dar demostraciones sencillas o elegantes para algunos problemas. Finalmente, los hechos que aquí mostramos los usaremos prácticamente sin demostración en las siguientes entradas, en donde desarrollaremos la teoría de la forma matricial de transformaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra qué le hace al vector $(7,3)$ una transformación lineal $T:\mathbb{R}^2\to \mathbb{R}$ tal que $T(2,1)=20$ y $T(7,2)=5$.
  • Determina si las matrices $A,B,C,D$ del problema de la entrada son una base para $M_2(\mathbb{R})$. Si no son una base, ¿cuál es la dimensión del subespacio que generan?
  • En el último teorema se afirma que la función que construimos saca escalares. Muestra esto.
  • De ese mismo teorema, escribe los detalles de que dicha función es única.
  • Demuestra el corolario enunciado en la entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Proyecciones, simetrías y subespacios estables

Por Blanca Radillo

Introducción

Anteriormente introdujimos el concepto de transformaciones lineales entre dos espacios vectoriales. Vimos diversas propiedades que toda transformación lineal debe satisfacer. Finalmente, se presentaron las definiciones de kernel e imagen. Lo que haremos ahora es hablar de algunos tipos especiales de transformaciones lineales: las proyecciones y las simetrías. Para ello, aprovecharemos lo que ya estudiamos de suma y suma directas de subespacios.

Además, hablaremos del concepto de subespacios estables. Intuitivamente, un subespacio es estable para una transformación lineal si al aplicarla en elementos del subespacio, «no nos salimos del subespacio».

Proyecciones

Hablemos de una clase fundamental de transformaciones lineales: las proyecciones sobre subespacios. Para ellas, se comienza expresando a un espacio vectorial como una suma directa $V=W_1\oplus W_2$. Recuerda que, a grandes rasgos, esto quiere decir que cada vector $v$ de $V$ se puede expresar de manera única como $v=w_1+w_2$, donde $w_1$ está en $W_1$ y $w_2$ está en $W_2$.

Definición. Sea $V$ un espacio vectorial y sean $W_1$ y $W_2$ dos subespacios de $V$ tales que $V=W_1\oplus W_2$. La proyección sobre $W_1$ es la función $\pi_1:V\rightarrow W_1$ definido como: para cada $v\in V$, se tiene que $\pi_1(v)$ es el único vector en $W_1$ tal que $v-\pi_1(v)$ está en $W_2$.

De manera similar podemos definir la proyección sobre $W_2$, llamada $\pi_2:V\rightarrow W_2$.

Hay otra forma de decir esto. Dado que $V=W_1\oplus W_2$, para todo $v\in V$ existen únicos vectores $v_1\in W_1$ y $v_2\in W_2$ tales que $v=v_1+v_2$. Entonces $\pi_1(v)=v_1$ y $\pi_2(v)=v_2$.

Ejemplo. Sea $V=\mathbb{R}^2$, y sean $W_1=\{(a,0): a\in\mathbb{R}\}$ y $W_2=\{(0,b):b\in\mathbb{R}\}$. Sabemos que $W_1$ y $W_2$ son subespacios y que $V=W_1\oplus W_2$. Entonces, si $(a,b)\in V$, se tiene que $\pi_1((a,b))=(a,0)$ y $\pi_2((a,b))=(0,b)$.

$\triangle$

Cuando hablamos de una proyección $\pi$ de un espacio vectorial $V$, sin indicar el subespacio, de manera implícita nos referimos a una función para la cual existe una descomposición $V=W_1\oplus W_2$ tal que $\pi$ es la proyección sobre $W_1$.

Problema. Muestra que la transformación lineal $\pi:M_2(\mathbb{R})\to M_2(\mathbb{R})$ tal que $$\pi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + b & 0 \\ c & 0 \end{pmatrix}$$ es una proyección.

Solución. Para resolver el problema, tenemos que mostrar que se puede escribir $M_2(\mathbb{R})=W_1\oplus W_2$, de modo que $\pi$ sea una proyección sobre $W_1$.

Proponemos $$W_1=\left\{\begin{pmatrix} r & 0 \\ s & 0\end{pmatrix}: r,s, \in \mathbb{R}\right\}$$ y $W_2$ como $$W_2=\left\{\begin{pmatrix} -r & r \\ 0 & s\end{pmatrix}: r,s, \in \mathbb{R}\right\}.$$

Si una matriz está simultánteamente en $W_1$ y $W_2$, es sencillo mostrar que únicamente puede ser la matriz cero, es decir $O_2$. Esto lo puedes verificar por tu cuenta. Además, cualquier matriz en $M_2(\mathbb{R})$ se puede escribir como suma de elementos en $W_1$ y $W_2$ como sigue: $$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a +b & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} -b & b \\ 0 & d \end{pmatrix}.$$

Justo $\pi$ es la primer matriz. Esto muestra que $\pi$ es una proyección, pues es la proyección sobre $W_1$ en la descomposición $V=W_1\oplus W_2$.

$\square$

Aún no hemos mostrado que las proyecciones son transformaciones lineales. Hacemos esto a continuación.

Proposición. Sean $V$ un espacio vectorial, $W_1$ un subespacio vectorial de $V$ y $\pi:V\to W_1$ una proyección de $V$ sobre $W_1$. Entonces $\pi$ es una transformación lineal.

Demostración. Si $v,v’ \in V$ entonces $v+v’\in V$ y por definición de proyección tenemos que $\pi(v+v’)$ es el único vector en $W_{1}$ tal que:

$$(v+v’)-\pi(v+v’)\in W_{2},$$ por otra parte como $\pi(v)$ es el únco vector en $W_{1}$ tal que $v-\pi(v)\in W_{2}$ y $\pi(v’)$ es el único vector en $W_{1}$ tal que $v’-\pi(v’)\in W_{2}$ entonces $v-\pi(v)+v’-\pi(v’)\in W_{2}$ ya que $W_{2}$ es subespacio de $V$, es decir que $$(v+v’)-(\pi(v)+\pi(v’))\in W_{2}$$ y debido a que $\pi(v)+\pi(v’)\in W_{1}$, entonces tenemos la situación en la que existe un vector $\pi(v)+\pi(v’)\in W_{1}$ tal que $$(v+v’)-(\pi(v)+\pi(v’))\in W_{2},$$ pero $\pi(v+v’)$ es el único vector en $W_{1}$ tal que $(v+v’)-\pi(v+v’)\in W_{2}$, esto implica que $$\pi(v+v’)=\pi(v)+\pi(v’).$$ Así concluimos que $\pi$ abre sumas.

Para comprobar que $\pi$ saca escalares consideremos cualquier $v\in V$ y cualquier $c\in F$, tenemos que $cv\in V$ (pues $V$ es espacio vectorial), por definición de proyección tenemos que $\pi(cv)$ es el único vector en $W_{1}$ tal que $$cv-\pi(cv)\in W_{2},$$ por otra parte $\pi(v)$ es el único vector de $W_{1}$ tal que $v-\pi(v)\in W_{2}$ entonces $c(v-\pi(v))=cv-c\pi(v)\in W_{2}$. Como $c\pi(v)\in W_{1}$ tal que $cv-c\pi(v)\in W_{2}$ entonces $$\pi(cv)=c\pi(v)$$ debido a la unicidad de $\pi(cv)$, por lo que $\pi$ saca escalares. Como $\pi$ abre sumas y saca escalares concluimos que $\pi$ es una transformación lineal.

$\square$

Finalmente, notemos que $\pi(v)=v$ para todo $v\in W_1$ pero $\pi(v)=0$ si $v\in W_2$.

Simetrías

Una segunda clase importante de trasnformaciones lineales son las simetrías.

Definición. Sea una descomposición $V=W_1\oplus W_2$, con $W_1, W_2$ dos subespacios de $V$. Decimos que $s:V\rightarrow V$ es una simetría con respecto a $W_1$ a lo largo de $W_2$ si para todo $v\in V$, escrito como $v=v_1+v_2$ con $v_1\in W_1$ y $v_2 \in W_2$, tenemos que $$s(v)=v_1-v_2.$$

Al igual que con las proyecciones, no es dificil ver que las simetrías son transformaciones lineales.

Proposición. Sea $s:V\rightarrow V$ una simetría con respecto a $W_1$ a lo largo de $W_2$. Entonces, $s$ es una transformación lineal.

Demostración. Sean $v,v’ \in V$. Sean $v_1,v’_1\in W_1$ y $v_2,v’_2 \in W_2$ tales que $v=v_1+v_2$ y $v’=v’_1+v’_2$. Eso implica que $v+v’=(v_1+v’_1)+(v_2+v’_2)$ con $v_1+v’_1 \in W_1$ y $v_2+v’_2 \in W_2$. Entonces
$$s(v)+s(v’)=(v_1-v_2)+(v’_1-v’_2) =(v_1+v’_1)-(v_2+v’_2)= s(v+v’).$$
Ahora sea $a\in F$, entonces $as(v)=a(v_1-v_2)=av_1-av_2=s(av_1+av_2)=s(av)$. Por lo tanto, $s$ es una transformación lineal.

$\square$

Notemos que si $v\in W_1$, entonces $s(v)=v-0=v$, y si $v\in W_2$, entonces $s(v)=0-v=-v$.

Subespacios estables

Observemos que las proyecciones y las simetrías satisfacen que $\pi(W_1)=W_1$ y $s(W_1)=W_1$. Esta es una propiedad muy linda, pero en general, si $T:V\rightarrow V$ es una transformación lineal cualquiera y $W$ un subespacio de $V$, no siempre tenemos que $T(W)=W$, o ni siquiera que $T(W)\subset W$. Es decir, aunque tomemos un vector $w$ en $W$, puede pasar que $T(w)$ ya «esté fuera» de $W$.

Los subespacios $W$ que sí satisfacen esta última propiedad son cruciales en el estudio de este curso, y por ello, merecen un nombre especial.

Definición. Sea $V$ un espacio vectorial y $T:V\rightarrow V$ una transformación lineal. Si $W$ es un subespacio de $V$ tal que $T(W)\subset W$, decimos que $W$ es un subespacio estable bajo $T$.

En otras palabras, $W$ es estable bajo $T$ si para todo $v$ en $W$ se tiene que $T(v)$ también está en $W$. Un ejemplo trivial es la transformación identidad con cualquier subespacio $W$. Otro ejemplo trivial es que $V$ y $\{0\}$ son dos subespacios estables bajo cualquier transformación lineal $T:V\rightarrow V$. Otros ejemplos son los ya mencionados: las proyecciones y las simetrías.

En el siguiente ejemplo encontraremos todos los subespacios estables para una cierta transformación.

Ejemplo. Consideremos el mapeo $T:\mathbb{R}^2\rightarrow \mathbb{R}^2$ con $T(x,y)=(y,-x)$. Claramente $T$ es lineal. Sea $W$ un subespacio estable de $\mathbb{R}^2$ bajo $T$. Supongamos que $W$ no es ni $\mathbb{R}^2$, ni el subespacio trivial $\{ (0,0) \}$.

Veremos que no hay ningún otro subespacio estable. Procedamos por contradicción. Suponiendo que hay otro subespacio estable $W$, su dimensión tendría que ser exactamente $1$. Eso implica que $W$ está generado por un vector no cero, digamos $v=(x,y)$. Es decir, cada $w\in W$ lo podemos escribir como $w=av$ donde $a$ es un escalar. En particular $v\in W$.

Como $W$ es estable bajo $T$, entonces $T(v)\in W$, esto es $T(v)=cv$ para algún $c$. Así,
\begin{align*}
(y,-x)&=T((x,y))\\&=T(v)\\&=cv\\&=c(x,y)\\&=(cx,cy).
\end{align*} Igualando ambos extremos, obtenemos que$y=cx$ y $-x=cy$, lo cual implica que $(c^2+1)x=0$. Como $c$ es real, esto implica $x=0$ y por lo tanto $y=0$. Concluimos que $v=(0,0)$, lo cual es una contradicción.

Esto demuestra que los únicos subespacios estables bajo $T$ son $\mathbb{R}^2$ y $\{(0,0)\}$.

$\square$

El siguiente problema estudia un problema inverso. En ella se encuentran todas las transformaciones lineales que dejan fijas «todas las rectas por el vector $0$».

Problema. Sea $V$ un espacio vectorial y $T:V\rightarrow V$ una transformación lineal tal que, para todo $v\in V$, se tiene que $\text{span}(v)$ es un subespacio estable bajo $T$. Entonces existe un escalar $c\in F$ tal que $T(x)=cx$ para todo $x\in V$.

Demostración. Sea $x\in V$ un vector distinto de $0$. Si $L=\text{span}(x)$, tenemos que $T(L)\subset L$ por hipótesis. En particular $T(x)\in L$ y por lo tanto existe $c_x$ tal que $T(x)=c_x x$. Queremos probar que esa constante realmente no depende de $x$.

Sea $y\in V$. Hay dos opciones: $x,y$ son linealmente independientes o no. Supongamos primero que $x,y$ son linealmente independientes. Entonces $x+y \neq 0$ y la igualdad $T(x+y)=T(x)+T(y)$ puede ser escrita como $c_{x+y} (x+y)=c_x x+c_y y$, esto es equivalente a $(c_{x+y}-c_x)x+(c_{x+y}-c_y) y=0.$ Por independencia lineal, $c_{x+y}-c_x=c_{x+y}-c_y=0$ y por lo tanto. $c_x=c_{x+y}=c_y$.

Ahora si $x,y$ no son linealmente independientes, es porque $y=0$ (en cuyo caso cualquier $c_y$ funciona, en particular $c_x$) o bien porque $y=ax$ para algún escalar $a$ no cero. Entonces la igualdad $T(y)=T(ax)=aT(x)$ puede ser escrita como $c_y y=ac_x x=c_x y$, y esto implica que $c_y=c_x$.

En cualquier caso, hemos mostrado que para todo $y\in V$, se tiene que $c_x=c_y$. Definiendo $c=c_x$, se satisface la afirmación de la proposición.

$\square$

Las imágenes y kernels son estables

Otros ejemplos importantes de subespacios estables son las imágenes y los kernels. Esto únicamente funciona para cuando tenemos una transformación lineal de un espacio vectorial a sí mismo.

Proposición. Sea $T:V\to V$ una transformación lineal. Entonces $\ker(T)$ e $\Ima(T)$ son subespacios estables bajo $T$.

Demostración. En la entrada anterior ya vimos que $\ker(T)$ e $\Ima(T)$ son subespacios de $V$. Veamos que son estables bajo $T$.

Tomemos $v\in \ker(T)$. Tenemos que mostrar que $T(v)\in \ker(T)$. Pero esto es cierto pues $$T(T(v))=T(0)=0.$$ Así $T(\ker(T))\subset \ker(T)$ y por lo tanto $\ker(T)$ es estable bajo $T$.

Ahora tomemos $v\in \Ima(T)$. De manera inmediata, $T(v)\in \Ima(T)$. Así, $\Ima(T)$ es estable bajo $T$.

$\square$

Más adelante…

Las proyecciones y simetrías son dos ejemplos de transformaciones lineales que tienen propiedades específicas. Más adelante, cuando hablemos de geometría de espacios vectoriales y del proceso de Gram-Schmidt, veremos que las proyecciones satisfacen propiedades interesantes en términos de ciertas distancias.

La teoría de subespacios estables es muy útil a la hora de construir bases de subespacios vectoriales de manera inductiva. De hecho, los resultados en esta dirección son uno de los ingredientes que usaremos en la demostración del teorema estelar del curso: el teorema espectral.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $Y$ es el subespacio $Y=\{(0,r,0): r\in \mathbb{R}\}$ de $\mathbb{R}^3$. Argumenta por qué la transformación $\pi:\mathbb{R}^3\to Y$ dada por $\pi(x,y,z)=(0,y,0)$ es una proyección sobre $Y$. Para ello tendrás que encontrar un subespacio $W$ de $\mathbb{R}^3$ tal que $\mathbb{R}^3=Y\oplus W$ y con el cual $\pi(x,y,z)$ satisface la definición.
  • Sea $X$ el subespacio $X=\{(r,0,0): r\in \mathbb{R} \}$. ¿Es posible ver a la transformación $T:\mathbb{R}^3 \to X$ dada por $T(x,y,z)=(x+y+z,0,0)$ como una proyección sobre $X$? Si tu respuesta es sí, tendrás que dar un espacio $W$ bajo el cual se satisfaga la definición. Si tu respuesta es no, tendrás que mostrar que ningún subespacio $W$ funciona.
  • En el ejemplo de la sección de subespacios estables, ¿qué sucede si trabajamos en $\mathbb{C}^2$ en vez de en $\mathbb{R}^2$? ¿Quienes serían todos los subespacios estables?
  • Sea $B=\{v_1,v_2,\ldots,v_n\}$ una base para un espacio vectorial $V$ sobre un campo $F$. Sea $V_i$ el espacio vectorial generado por $v_i$, es decir, el conjunto de vectores de la forma $cv_i$ con $c\in F$. Como $B$ es base, cada vector $v\in V$ puede escribirse de la forma $$a_1v_1+a_2v_2+\ldots+a_nv_n$$ de manera única. Muestra que para toda $i\in\{1,2,\ldots,n\}$ la función $\pi_i(v)=a_iv_i$ es una proyección sobre $V_i$.
  • Para cada entero $n$, muestra que $\mathbb{R}_n[x]$ es un subespacio de $\mathbb{R}[x]$ que es estable bajo la transformación lineal $T$ que manda a cada polinomio $p(x)$ a su derivada $T(p(x))=p'(x)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas pasadas ya platicamos de espacios vectoriales y de subespacios. También desarrollamos teoría de dimensión para espacios vectoriales de dimensión finita. Para ello, hablamos de conjuntos generadores, de independientes y de bases. Esto nos ayuda a entender a los espacios vectoriales «uno por uno». Lo que queremos entender ahora es cómo interactúan los espacios vectoriales entre sí. Para ello, hablaremos de transformaciones lineales entre espacios vectoriales.

Ya platicamos un poco de transformaciones lineales cuando estudiamos $F^n$ a detalle. En esa parte del curso, vimos cómo cualquier matriz en $M_{m,n}(F)$ se podía ver como una transformación lineal de $F^n$ a $F^m$ y viceversa. Retomaremos varias de estas ideas, pues son fundamentales para esta unidad y las siguientes.

La idea de esta entrada es:

  • Dar la intuición y definición de transformaciones lineales en general.
  • Probar propiedades básicas de las transformaciones lineales.
  • Dar varios ejemplos de transformaciones lineales.
  • Dar las definiciones de kernel (o núcleo) y de imagen para una transformación lineal.
  • Ver un ejemplo que abarque ambas definiciones.
  • Finalmente, probar que el kernel y la imagen son subespacios vectoriales.

A grandes rasgos, las transformaciones lineales se pueden pensar como «funciones bonitas» entre espacios vectoriales que «preservan las operaciones de suma y multiplicación por escalar».

Definición de transformaciones lineales

Definición. Para $V$ y $W$ espacios vectoriales sobre un campo $F$, una transformación lineal entre $V$ y $W$ es una función $T:V\to W$ tal que:

  • Para todo $v_1$ y $v_2$ en $V$ se tiene que $T(v_1+v_2)=T(v_1)+T(v_2)$. Esto informalmente se le conoce como que «$T$ abre sumas».
  • Para todo $v$ en $V$ y $c$ en el campo $F$ se tiene que $T(cv)=cT(v)$. A esto se le conoce como que «$T$ saca escalares».

En la primer condición la suma de la izquierda (dentro del paréntesis) es «la suma de $V$» y la suma de la derecha es «la suma de $W$». De manera similar, en la segunda condición el producto por escalar de la izquierda (dentro del paréntesis) es el de $V$ y el de la derecha es el de $W$.

En lo que resta de esta entrada, supondremos que los espacios vectoriales son sobre un mismo campo $F$.

Ejemplos de tranformaciones lineales

Ejemplo 1. La función $T:\mathbb{R}^2 \to \mathbb{R}$ dada por $T(x,y)=x+y+1$ no es una transformación lineal. De hecho falla en ambas condiciones. Falla en abrir sumas pues, por ejemplo, $T(1,1)=3$, $T(2,2)=5$, pero $(1,1)+(2,2)=(3,3)$ y $$T(3,3)=7\neq 5 = T(1,1)+T(2,2.)$$ También falla en sacar escalares pues, por ejemplo $$T(4,2)=7\neq 8 = 2T(2,1).$$

$\triangle$

Ejemplo 2. La función $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x,y,z)=(2x,2y,2z)$ es una transformación lineal.

Para convencernos de que esto es cierto, notemos que si $v=(x,y,z)$ entonces la transformación está dada por $T(v)=2v$. Ahora, tomemos dos vectores $v_1$ y $v_2$ en $V$, y un real $c$. Tenemos por la asociatividad y conmutatividad de multiplicar por escalares en $\mathbb{R}^3$ que: \begin{align*}T(v_1+v_2)&=2(v_1+v_2)\\&=2v_1+2v_2\\&=T(v_1)+T(v_2),\end{align*} y que $$T(cv_1)=2(cv_1)=c(2v_1)=cT(v_1).$$ Esto muestra que $T$ es transformación lineal.

$\triangle$

Ejemplo 3. De hecho, para cualquier espacio vectorial $V$ sobre el campo $F$ y $c$ un escalar de $F$, la función $T:V\to V$ dada por $T(v)=cv$ es una transformación lineal. El argumento es similar.

$\triangle$

Recuerda que $F_n[x]$ es el espacio vectorial de polinomios con coeficientes en $F$ y grado a lo más $n$. Recuerda también que hemos visto muchos tipos de espacios vectoriales, los $F^n$, los de polinomios, los de matrices, etc. Entre cualesquiera de ellos se pueden tener transformaciones lineales. La única condición es que sean espacios vectoriales sobre el mismo campo $F$.

Ejemplo 4. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $x^2+(a-b)x+ab$ no es una transformación lineal. Esto lo podemos verificar viendo que falla la parte de sacar escalares. Por un lado $$2(T(1,1))=2(x^2+1)=2x^2+2,$$ mientras que por otro lado $$T(2,2)=x^2+4,$$ así que $2(T(1,1))\neq T(2,2)$, de modo que $T$ no saca escalares.

$\triangle$

En cambio, si tomamos la función que manda al vector $(a,b)$ al polinomio $ax^2+(a-b)x+a+b$, puedes verificar por tu cuenta que sí es una transformación lineal.

Ejemplo 5. La función $T:M_{2,3}(\mathbb{R})\to \mathbb{R}^3$ que manda a la matriz $$M=\begin{pmatrix}
a & b & c\\
d & e & f
\end{pmatrix}$$ al vector $$T(M):= (a-d, b-e, c-f)$$ es una transfomación lineal.

Veamos que $T$ abre sumas. Tomemos dos matrices $M_1=\begin{pmatrix}
a_1 & b_1 & c_1\\
d_1 & e_1 & f_1
\end{pmatrix}$ y $M_2=\begin{pmatrix}
a_2 & b_2 & c_2\\
d_2 & e_2 & f_2
\end{pmatrix}.$ Por un lado \begin{align*}T(M_1)&=(a_1-d_1,b_1-e_1,c_1-f_1)\\T(M_2)&=(a_2-d_2,b_2-e_2,c_2-f_2),\end{align*} de modo que sumando los vectores y reacomodando tenemos que $$T(M_1)+T(M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$

Por otro lado, si primero sumamos las matrices, obtenemos la matriz $$M_1+M_2=\begin{pmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2\\
d_1+d_2 & e_1+e_2 & f_1+f_2
\end{pmatrix}.$$

Así, $$T(M_1+M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$ Esto muestra que $T(M_1+M_2)=T(M_1)+T(M_2)$, es decir, que $T$ abre sumas. Con un argumento parecido se puede mostrar que saca escalares.

$\triangle$

Ejemplo 6. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $T(a,b)=(a+b)x^2+(a-b)x+b$ es una transformación lineal.

$\triangle$

Recuerda que $C[0,1]$ es el espacio vectorial de funciones $f:[0,1]\to \mathbb{R}$ continuas.

Ejemplo 7. La función $T:C[0,1]\to \mathbb{R}$ que manda a la función $f$ al real $$T(f):=\int_0^1 f(x)\, dx$$ es una transformación lineal. En efecto, para dos funciones $f$ y $g$ continuas en el $[0,1]$ y un real $c$ se tiene por definición de suma de funciones, de multiplicación por escalar y de propiedades de la integral que \begin{align*}\int_0^1 (f+g)(x)\, dx&=\int_0^1 f(x)+g(x)\, dx\\&=\int_0^1 f(x) \, dx+\int_0^1 g(x)\, dx\end{align*} y que \begin{align*}\int_0^1 (cf)(x)\, dx &= \int_0^1 cf(x)\, dx \\&=c \int_0^1 f(x)\, dx.\end{align*}

En otras palabras, $T(f+g)=T(f)+T(g)$ y $T(cf)=cT(f)$.

$\triangle$

Propiedades básicas de transformaciones lineales

La definición de «transformación lineal» pide dos cosas por separado: abrir sumar y sacar escalares. Es bueno tenerlas por separado para referirnos a ellas individualmente. Sin embargo, la siguiente proposición nos ayuda a probar de manera más práctica que $T$ es una transformación lineal.

Proposición (verificación abreviada). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo $F$. $T:V\to W$ es una transformación lineal si y sólo si para todo $v_1,v_2$ en $V$ y $c$ en $F$ se tiene que $$T(cv_1+v_2)=cT(v_1)+T(v_2).$$

Demostración. En efecto, si $T$ es transformación lineal, entonces $T(cv_1)=cT(v_1)$ porque $T$ saca escalares y así \begin{align*}T(cv_1+v_2)&=T(cv_1)+T(v_2)\\&=cT(v_1)+T(v_2).\end{align*} Por otro lado, si se cumple $T(cv_1+v_2)=cT(v_1)+T(v_2)$ para todos $v_1$ y $v_2$ vectores en $V$ y $c$ escalar en $F$, entonces con $v_2=0$ recuperamos que $T$ saca escalares y con $c=1$ recuperamos que $T$ abre sumas.

$\square$

Las transformaciones lineales mandan al cero de un espacio vectorial al cero del otro.

Proposición (cero va a cero). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(0)=0$.

Demostración. El truco es encontrar $T(0+0)$ de dos formas distintas. Por un lado, como $0+0=0$, tenemos que $T(0+0)=T(0)$. Por otro lado, como $T$ abre sumas, tenemos que $T(0+0)=T(0)+T(0)$. Así, tenemos que $$T(0)+T(0)=T(0).$$ Restando $T(0)$ de ambos lados obtenemos $T(0)=0$.

$\square$

De hecho, hay otra forma de probar la proposición anterior usando que $T$ saca escalares: $T(0)=T(0\cdot 0)=0T(0)=0$. Piensa en por qué cada una de estas igualdades se vale y por qué adentro del paréntesis que hay dos ceros, uno de ellos es vector y el otro escalar.

Las transformaciones lineales también «respetan» inversos aditivos.

Proposición (inversos aditivos van a inversos aditivos). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(-v)=-T(v)$.

La demostración es sencilla y la puedes pensar por tu cuenta.

El haber enunciado estas proposiciones nos puede ayudar para decir, de golpe, que algunas funciones no son transformaciones lineales: si una función falla en tener alguna de las propiedades anteriores, entonces no es transformación lineal.

Ejemplo 1. Sea $V$ el espacio vectorial $\mathbb{R}^2$ y $W$ el espacio vectorial de matrices de $2\times 2$ con entradas complejas, pero visto como espacio vectorial sobre $\mathbb{R}$ (sólo se permite usar reales para la multiplicación escalar).

La transformación $T:V\to W$ que manda al vector real $(a,b)$ a la matriz de entradas complejas $T(a,b)=\begin{pmatrix}
a+ib & a-ib \\
a-ib & 1+abi\end{pmatrix}$ no es una transformación lineal pues manda al $(0,0)$ a la matriz $\begin{pmatrix}
0 & 0 \\
0 & 1\end{pmatrix},$ la cual no es la matriz $0$.

$\triangle$

Sin embargo, una pequeña advertencia. Es posible que $T$ sí mande el $0$ al $0$, pero que de cualquier forma no sea una transformación lineal, debido a que falle por otras razones.

Ejemplo 2. La transformación $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(x+y+z,xy+yz+zx,xyz)$$ cumple que $T(0,0,0)=(0,0,0)$, pero no es una transformación lineal pues no saca escalares. Por ejemplo, $$T(3,3,3)=(9,27,27)\neq 3(3,3,1)= 3T(1,1,1).$$

$\triangle$

Kernel e imagen de una transformación lineal

Tomemos $T:V\to W$ una transformación lineal. Hay dos conjuntos muy importantes relacionados con $T$.

El kernel (o núcleo) de $T$ es el conjunto de vectores en $V$ que se van al vector $0$ de $W$ cuando les aplicamos $T$. En símbolos, $$\ker(T)=\{v\in V: T(v)=0\}.$$

La imagen de $T$ son los vectores en $W$ que se pueden escribir de la forma $T(v)$ para algún $v$ en $V$, es decir, es la imagen en el sentido clásico de teoría de conjuntos o de cálculo. En símbolos, $$\Ima(T)=\{T(v): v\in V\}.$$

Haciendo énfasis de nuevo: $\ker(T)$ es un subconjunto de vectores de $V$ e $\Ima(T)$ es un subconjunto de vectores de $W$. Veamos un ejemplo que nos ayudará a repasar varios de los conceptos clave de esta entrada.

Problema. Consideremos la transformación $T:M_2(\mathbb{R})\to M_{2,3}(\mathbb{R})$ dada por $$T\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}a & b \\ c & d \end{pmatrix} \begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}.$$

Muestra que $T$ es una transformación lineal y determina $\ker(T)$ e $\Ima(T)$.

Intenta resolver este problema por tu cuenta antes de seguir.

Solución. Sean $A$ y $B$ matrices de $2\times 2$ con entradas reales y $r$ un real. Nombremos $C=\begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}$. Por propiedades de producto de matrices, tenemos que \begin{align*}T(rA+B)&=(rA+B)C \\ &=r(AC)+BC\\ &=rT(A)+T(B),\end{align*} así que por la proposición de verificación abreviada, tenemos que $T$ es una transformación lineal.

Ahora, tomemos una matriz $A=\begin{pmatrix}
a & b \\
c & d \end{pmatrix}$ y notemos al hacer la multiplicación de manera explícita, obtenemos que $T(A)$ es la matriz $$\begin{pmatrix}
a+b & a+b & a+b\\
c+d & c+d & c+d \end{pmatrix}.$$

Determinemos quién es $\Ima(T)$. Para que una matriz $M:=\begin{pmatrix}
e & f & g\\
h & i & j \end{pmatrix}$ esté en la imagen de $T$, se tiene que cumplir que $e=f=g$ y que $h=i=j$.

Y viceversa, si $e=f=g$ y $h=i=j$, entonces $M$ está en la imagen de $T$ pues, por ejemplo $$T\begin{pmatrix}
e & 0\\
h & 0 \end{pmatrix}=\begin{pmatrix}
e & e & e\\
h & h & h\end{pmatrix}=M.$$

Esto muestra que $$\Ima (T) = \left\{\begin{pmatrix}
e & e & e\\
h & h & h \end{pmatrix}: e,h \in \mathbb{R}\right\}.$$

Ahora determinemos quién es $\ker(T)$. Para que $A$ esté en el kernel de $T$, necesitamos que todas las entradas de $T(A)$ sean $0$. Para esto es suficiente y necesario que $a+b=0$ y que $c+d=0$, o dicho de otra forma, que $A$ sea de la forma $A=\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}$. Así, concluimos que $$\ker(T)=\left\{\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}: a,c \in \mathbb{R}\right\}.$$

$\square$

Con esto ya terminamos lo que pide el problema. Sin embargo, hagamos una observación clave. En el problema anterior, $\ker(T)$ e $\Ima(T)$ no solamente son subconjuntos de $M_2(\mathbb{R})$ y de $M_{2,3}(\mathbb{R})$ respectivamente, sino que además son subespacios. Esto no es casualidad.

Los kernels e imágenes de transformaciones lineales son subespacios

Teorema. Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $\ker(T)$ es un subespacio de $V$ e $\Ima(T)$ es un subespacio de $W$.

Demostración. Demostraremos primero que $\ker(T)$ es un subespacio de $V$. Para ello basta con tomar $v_1,v_2$ en $\ker(T)$ y $c$ en el campo $F$ y mostrar que $cv_1+v_2$ también está en $\ker(T)$, es decir, que también sucede que $T(cv_1+v_2)=0$. Esto se debe a la siguiente cadena de igualdades, que justificamos abajo \begin{align*}
T(cv_1+v_2)&=T(cv_1)+T(v_2)\\
&=cT(v_1)+T(v_2)\\
&=c\cdot 0 + 0 \\
&= 0.
\end{align*}

La primera igualdad se debe a que $T$ abre sumas. La segunda a que $T$ saca escalares. La tercera a que $v_1$ y $v_2$ están en el kernel de $T$ y por lo tanto sabemos que $T(v_1)=T(v_2)=0$. La última es simplemente hacer la operación. Con esto mostramos que $\ker(T)$ es un subespacio de $V$.

Ahora, veremos que $\Ima(T)$ es un subespacio de $W$. Tomemos $w_1$ y $w_2$ en $\Ima(T)$, y un escalar $c$ en el campo $F$. De nuevo, basta mostrar que $cw_1+w_2$ está en $\Ima(T)$. Como $w_1$ y $w_2$ están en la imagen de $T$, esto quiere decir que existen vectores $v_1$ y $v_2$ en $V$ tales que $T(v_1)=w_1$ y $T(v_2)=w_2$. Notemos que entonces:
\begin{align*}
cw_1+w_2&=cT(v_1)+T(v_2)\\
&=T(cv_1)+T(v_2)\\
&=T(cv_1+v_2).
\end{align*}

La segunda y tercera igualdad vienen de que $T$ saca escalares y abre sumas respectivamente. Esta cadena de igualdades muestra que podemos poner a $cw_1+w_2$ como imagen de alguien en $V$ bajo $T$, es decir, que $cw_1+w_2$ pertenece a $\Ima(T)$. Esto es lo que queríamos mostrar.

$\square$

Más adelante…

En esta entrada definimos los conceptos de transformación lineal, de imagen y de kernel. También vimos que la imagen y kernel de transformaciones lineales son subespacios. Más adelante veremos que $\ker(T)$ e $\Ima(T)$ están de hecho relacionados más profundamente.

Por ahora, nota que en el ejemplo antes del teorema tenemos que $\begin{pmatrix}
1 & 1 & 1\\
0 & 0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 & 0\\
1 & 1 & 1 \end{pmatrix}$ forman una base de $\Ima(T)$ pues son linealmente independientes y todo elemento en la imagen es combinación lineal de estas matrices. Además, nota que de manera similar $\begin{pmatrix}
1 & -1 \\
0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 \\
1 & -1 \end{pmatrix}$ forman una base de $\ker(T)$.

Esto nos dice que $\dim(\Ima(T))=2$ y que $\dim(\ker(T))=2$. Si sumamos ambos, nos da la dimensión de $M_2(\mathbb{R})$. ¿Será casualidad?

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que las transformaciones lineales que se pusieron como ejemplo en efecto abren sumas y sacan escalares.
  • Asegúrate de entender los detalles de la prueba de la proposición de la verificación abreviada. Úsala para mostrar que la función que manda al vector $(a,b,c)$ a la matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$ es una transformación lineal de $\mathbb{R}^3$ a $M_3(\mathbb{R})$.
  • Muestra la proposición de que inversos aditivos van a inversos aditivos.
  • Determina el kernel y la imagen de las transformaciones lineales $T:V\to W$ que se dieron como ejemplo.
  • Para cada kernel e imagen que encuentres, convéncete de que son subespacios. Determina si tienen dimensión finita y, en ese caso, determina la dimensión. Para estos casos, ¿cómo están relacionados $\dim(\Ima(T)),\dim(\ker(T)),\dim(V)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

El lema de intercambio de Steinitz

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada platicaré de un lema muy útil en álgebra lineal, sobre todo cuando se están definiendo las nociones de base y de dimensión para espacios vectoriales de dimensión finita. Se trata del lema de intercambio de Steinitz.

Supondré que el lector ya sabe un poco de álgebra lineal, pero muy poquito. Basta con saber la definición de espacio vectorial. Lo demás lo definiremos sobre el camino.

El nombre del lema es en honor al matemático alemán Ernst Steinitz. Sin embargo, personalmente a mi me gusta pensarlo como el lema del «regalo de vectores», por razones que ahorita platicaremos. El enunciado es el siguiente:

Teorema (Lema de intercambio de Steinitz). Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

En pocas palabras, «cualquier conjunto linealmente independiente tiene a lo mucho tantos elementos como cualquier conjunto generador y, además, cualquier generador le puede regalar vectores al linealmente independiente para volverlo generador».

De manera esquemática, está pasando lo siguiente:

Diagrama del lema de intercambio de Steinitz
Diagrama del lema de intercambio de Steinitz

Lo que haremos es hablar de las definiciones necesarias para entender el lema, hablar de la intuición detrás, dar un par de ejemplos y luego dar la demostración. La presentación está ligeramente basada en el libro de álgebra lineal de Titu Andreescu.

Definiciones e intuición

Sea $V$ un espacio vectorial sobre un campo $F$.

Si tenemos vectores $v_1,\ldots,v_n$ de $V$ y escalares $a_1,\ldots,a_n$ en $F$, podemos considerar al vector formado por multiplicar los vectores por los escalares correspondientes y sumarlos todos, es decir al vector $v$ dado por la expresión $a_1v_1+\cdots+a_nv_n$ . En este caso, decimos que $v$ es una combinación lineal de $v_1,\ldots,v_n$, o a veces que $v_1,\ldots,v_n$ generan a $v$.

Un conjunto $S=\{v_1,v_2,\ldots,v_n\}$ de vectores de $V$ es generador si para cualquier $v$ de $V$ existen escalares $a_1,\ldots,a_n$ en $F$ para los cuales $v=a_1v_1+\cdots+a_nv_n$. Dicho de otra forma, «$S$ es generador si cualquier vector del espacio vectorial es combinación lineal de vectores de $S$».

De esta definición es fácil ver que si $S$ es un conjunto generador y $T$ es un conjunto que contiene a $S$ (es decir, $T\supset S$), entonces $T$ también es generador: simplemente para cualquier $v$ usamos la combinación lineal que tenemos en $S$ y al resto de los vectores (los de $T\setminus S$) les ponemos coeficientes cero.

Un conjunto $L=\{w_1,w_2,\ldots,w_m\}$ de vectores de $V$ es linealmente independiente si la única combinación lineal de vectores de $L$ que da $0$ es aquella en la que todos los escalares son $0$. Dicho de otra forma, «$L$ es linealmente independiente si $a_1w_1+\ldots+a_mw_m=0$ implica que $a_1=a_2=\ldots=a_m=0$.»

Con los conjuntos linealmente independientes pasa lo contrario a lo de los generadores. Si $L$ es un conjunto linealmente independiente y $M$ está contenido en $L$ (es decir, ahora $M\subset L$), entonces $M$ es linealmente independiente. Esto sucede pues cualquier combinación lineal de $M$ también es una combinación lineal de $L$. Como no hay ninguna combinación lineal no trivial de elementos de $L$ que sea igual a cero, entonces tampoco la hay para $M$.

Los párrafos anteriores dejan la idea de que «los conjuntos generadores tienen que ser grandes» y que «los conjuntos linealmente independientes tienen que ser chiquitos». El lema de intercambio de Steinitz es una manera en la que podemos formalizar esta intuición.

Como los conjuntos generadores son «grandes», entonces son bien buena onda y bien generosos. Tienen muchos elementos. Como los conjuntos linealmente independientes son «chiquitos», entonces necesitan elementos. Lo que dice el lema de intercambio de Steinitz es que si tenemos a un generador $S$ y a un linealmente independiente $L$, entonces $S$ tiene más elementos y que puede regalar al linealmente independiente $L$ algunos elementos $T$ para que ahora $L\cup T$ tenga tantos elementos como tenía $S$ y además se vuelva generador. Una cosa importante es que no cualquier subconjunto $T$ funciona. Este tiene que estar bien elegido.

Ejemplo concreto del lema de intercamio de Steinitz

Veamos un ejemplo muy concreto. Supongamos que nuestro espacio vectorial es $\mathbb{R}^3$, osea, los vectores con $3$ entradas reales. Tomemos a los siguientes conjuntos de vectores:

  • $L=\{(1,2,3), (0,3,0)\}$
  • $S=\{(0,1,0), (1,0,0), (0,0,-1), (2,4,6)\}$

Por un lado, el conjunto $L$ es linealmente idependiente. Una combinación lineal $a(1,2,3)+b(0,3,0)=(0,0,0)$ implica de manera directa que $a=0$ (por la primer o tercer coordenadas) y de ahí $b=0$ (por la segunda coordenada).

Por otro lado, el conjunto $S$ es generador, pues con $(0,0,-1)$ podemos obtener a $(0,0,1)$ como combinación lineal, de modo que $S$ genera a los tres de la base canónica y por tanto genera a todo $\mathbb{R}^3$.

Notemos que en efecto $L$ tiene menos elementos que $S$. Además, el lema de intercambio de Steinitz garantiza que $S$ puede pasarle $|S|-|L|=4-2=2$ elementos a $L$ para volverlo generador. Pero hay que ser cuidadosos. Si le regala los elementos $(0,1,0)$ y $(2,4,6)$, entonces no funciona (se puede verificar que este conjunto no genera a $\mathbb{R}^3$). Pero si le regala, por ejemplo, los elementos $(1,0,0)$ y $(0,0,-1)$ entonces ahora sí generará (se puede argumentar viendo que entonces ahora genera a los tres de la base canónica).

Demostración del lema de intercambio de Steinitz

Pasemos ahora a la demostración del lema de Steinitz. Lo demostraremos por inducción en la cantidad de elementos que tiene $L$, el linealmente independiente. Si $|L|=m=0$, entonces claramente $m=0\leq n$, y además $S$ le puede pasar $n-0=n$ elementos (todos) a $L$ y volverlo generador.

Supongamos entonces que es cierta la siguiente afirmación.

Hipótesis inductiva Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

Para el paso inductivo, tomemos $L=\{w_1,w_2,\ldots,w_m,w_{m+1}\}$ un linealmente independiente de $V$ y $S=\{v_1,v_2,\ldots,v_n\}$ un generador de $V$. Aplicándole la hipótesis inductiva al linealmente independiente $L’=L\setminus \{w_{m+1}\}=\{w_1,\ldots,w_m\}$ y al generador $S$, tenemos que:

  • $m\leq n$
  • Se puede tomar un subconjunto $T’=\{s_1,s_2,\ldots,s_{n-m}\}$ de $S$ tal que $L’\cup T’= \{w_1,w_2,\ldots,w_m,s_1,\ldots,s_{n-m}\}$ sea generador de $V$.

Como $L’\cup T’$ es generador, entonces podemos poner a $w_{m+1}$ como combinación lineal de elementos de $L’\cup T’$, es decir, existen $a_1,\ldots, a_m, b_1,\ldots,b_{n-m}$ tales que $$w_{m+1}=a_1w_1+\ldots+a_mw_m+b_1s_1+\ldots+b_{n-m}s_{n-m}.$$

Ya sabemos que $m\leq n$. Si $m=n$, la combinación lineal anterior no tendría ningún $s_i$, y entonces sería una combinación lineal no trivial para los elementos de $L$, lo cual es una contradicción pues $L$ es linealmente independiente. Entonces $m\neq n$ y $m\leq n$, así que $m+1\leq n$, que era el primer punto que queríamos probar.

También, como $L$ es linealmente independiente, no se vale que todos los $b_i$ sean iguales a cero. Sin perder generalidad, podemos suponer que $b_1\neq 0$. Así, $s_1$ se puede despejar como combinación lineal en términos de $w_1,\ldots,w_n,w_{n+1}, s_2,\ldots,s_{n-m}$ y por lo tanto $L\cup (T’\setminus \{s_1\})$ genera lo mismo que $L’\cup T’$, que era todo $V$. Así, $T:=T’\setminus \{s_1\}$ es el subconjunto de $S$ de tamaño $n-(m+1)$ tal que $L\cup T$ es generador. Esto termina la prueba del lema.

Algunas aplicaciones

El lema de intercambio de Steinitz se puede utilizar para probar varias afirmaciones con respecto a bases de un espacio vectorial de dimensión finita.

Un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos. Una base de un espacio vectorial es un conjunto que sea simultáneamente generador y linealmente independiente.

Las siguientes afirmaciones se siguen directamente del lema de Steinitz.

  1. Todas las bases de un espacio vectorial finito tienen la misma cantidad de elementos.
  2. En un espacio vectorial de dimensión $d$:
    • Todo conjunto linealmente independiente tiene a lo más $d$ elementos.
    • Todo conjunto generador tiene al menos $d$ elementos.
  3. Si $S$ es un conjunto con $n$ vectores de un espacio vectorial de dimensión $n$, entonces las siguientes tres afirmaciones son equivalentes:
    • El conjunto $S$ es base.
    • $S$ es linealmente independiente.
    • $S$ es generador.

Como primer ejemplo, haremos (1). Tomemos $B_1$ y $B_2$ bases de un espacio vectorial de dimensión finita $B$. Pensando a $B_1$ como linealmente independiente y a $B_2$ como generador, tenemos $|B_1|\leq |B_2|$. Pensando a $B_2$ como linealmente independiente y a $B_1$ como generador, tenemos $|B_2|\leq |B_1|$. Así, $|B_1|=|B_2|$.

Como segundo ejemplo, haremos una parte de (3). Suponiendo que $S$ es un conjunto de $n$ vectores de un espacio vectorial de dimensión $n$, veremos que su independencia lineal implica $S$ es base. Sea $B$ una base de $V$. Por el lema de Steinitz, podemos pasar $|B|-|S|=n-n=0$ elementos de $B$ a $S$ para volverlo generador. Es decir, $S$ ya es generador. Como además es linealmente independiente, entonces es base.

El resto de las demostraciones son igual de sencillas, como puedes verificar.

Más adelante…

El lema de Steinitz es la herramienta clave para definir dar la definición de dimensión de espacios vectoriales en el caso de dimensión finita. Lo usaremos una y otra vez. Por esta razón, es muy recomendable repasar su demostración y entender a profundidad qué dice.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Replica por tu cuenta la demostración del lema de Steinitz hasta que te sientas cómodo con los argumentos.
  • En el ejemplo que se dio de la aplicación del lema de Steinitz, ¿cuáles son todas las posibilidades de $2$ elementos que se pueden pasar para que $L$ se convierta en generador?
  • Usa el lema de Steinitz para demostrar el resto de consecuencias que mencionamos.
  • ¿Qué te dice el lema de Steinitz cuando $L$ y $S$ son inicialmente del mismo tamaño?
  • Muestra que en el lema de Steinitz la hipótesis de que $L$ sea finito no es necesaria, es decir, que incluso sin esta hipótesis se pueden mostrar todas las conclusiones.

Entradas relacionadas

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»