Archivo de la etiqueta: proyecciones

Álgebra Superior I: Introducción a funciones

Introducción

En esta entrada empezaremos a estudiar un tipo de relación muy específica, que son las funciones. Este concepto es fundamental en casi todas las áreas de las matemáticas, y aprender su uso será fundamental a partir de ahora.

La importancia de las funciones

Antes de empezar a hablar de las funciones, es importante que desde ahora entiendas que el concepto de la función es un concepto casi omnipresente en la tarea de estudiar las matemáticas. Para tener idea de la profundidad de esto, observa los siguientes ejemplos:

  • La base del cálculo son las funciones en una variable.
  • La base del cálculo en varias variables son las funciones de distintas variables.
  • En análisis se estudian las funciones entre espacios numéricos.
  • En probabilidad, se trabaja con las funciones entre espacios de probabilidad.
  • Las secuencias numéricas son funciones.
  • En álgebra moderna, el concepto de grupo es un tipo de función.
  • En topología muchas veces se estudian familias de funciones.

Los ejemplos podrían seguir y seguir, y es que nosotros al estudiar las matemáticas, es muy importante entender que la mayor parte de estudiarla será el analizar funciones.

La primera noción que daremos de lo que son las funciones son unas máquinas que reciben una entrada y devuelven una salida.

Un ejemplo de esto es una función que toma de entrada cualquier número entero y devuelve el número multiplicado por dos. Para traducir cómo escribiremos esto, recordemos que al principio hemos dicho que las funciones van a ser relaciones, entonces la forma en que definirimos esta función será con una pareja ordenada $(x,y)$. Como tenemos la idea de que las funciones son máquinas que reciben una entrada y arrojan una salida, entonces diremos que $x$ es la variable de entrada y $y$ la de salida. De manera que podemos representar a la función que toma cualquier número entero y devuelve el número multiplicado por dos, es de la siguiente manera: $$f = \{(x,y) \in \mathbb{Z}^2: y = 2x\} $$ En donde al mencionar que $y=2x$, estamos diciendo que la salida es dos veces la entrada.

Algunos de los elementos que pertenecen a la función son $$\{(0,0),(1,2),(-1,-2),(5,10),(-7,-14), \dots\}.$$

Cuando hablemos de funciones habrán dos cosas importantes que tendrá que cumplir la relación:

  • Deberemos de usar todo el dominio para crear la relación. Esto quiere decir que si estamos hablando de una función entre números enteros, entonces no importa de qué número entero estemos hablando, siempre podrá tener su correspondencia según la función. En nuestro ejemplo, nota que dijimos que la función toma “cualquier número entero”, no estamos diciendo que solo toma algunos números enteros.
  • Cada elemento del dominio tendrá uno y solo un correspondiente del contradominio. Esto quiere decir que si $(x,y)$ pertenecen a la función, entonces no existe otra pareja distinta $(x,w)$ en la función. En nuestro ejemplo, nota que las parejas son de la forma $(x,2x)$, y esto implica que cada elemento del dominio solo aparece una vez, si no fuera así, habría dos elementos $(x,2x),(x,w)$ en la función en donde $2x \neq w$, lo cual es imposible, puesto que los elementos del contradominio son los elementos del dominio multiplicados por $2$, es decir $w = 2x$, generando una contradicción.

Estas serán las propiedades que le pediremos a una relación para ser función.

Definición. Sea $f$ una relación entre dos conjuntos $X,Y$. Diremos que $f$ es una función si cumple las siguientes propiedades:

  • $Dom(f) = X$
  • Si $(x,y) \in f$ y $(x,w) \in f$, entonces $y=w$.

Esta última propiedad quiere decir que solo existe una pareja que tenga a $x$ en el lugar de los elementos del dominio.

Como hemos dicho antes, una función será una correspondencia entre elementos de $X$ con elementos de $Y$ de manera que a cada elemento de $X$ le corresponderá uno y únicamente un elemento del contradominio.

Ejemplos de funciones

Algunos ejemplos de funciones son:

  • La función identidad. Esta función de un conjunto $X$ en sí mismo, es el conjunto $$\{(x,y) \in X^2:x=y\}.$$ Y son las parejas de la forma $(x,x)$.
  • Si $X = \{1,2,3\}, Y=\{a,b\}$, entonces $\{(1,a),(2,a),(3,b)\}$ es una función.
  • La función que corresponde a cada persona de la tierra con su cumpleaños, es una función.
  • La función proyección. Supongamos que tenemos dos conjuntos $X,Y$, la proyección es la función entre el producto cartesiano $X \times Y$ y el conjunto $X$ que asocia cada pareja ordenada $(x,y)$ con el primer elemento de la pareja $x$. Esto quiere decir que la función “se olvida” del elemento $y$. De esta forma, $f$ toma elementos del producto $X \times Y$ y su contradominio es el conjunto $X$ que manda cada pareja ordenada a su proyección sobre la primer entrada, esto quiere decir que $f((x,y)) = x$. Así, observa que los elementos de esta función son de la forma $((x,y),x).$ Esta es una función que se utiliza en áreas como la geometría analítica, cuando se tiene el plano cartesiano y se define la proyección de un vector sobre algún eje o incluso sobre la dirección de otro vector.

Un ejemplo de una relación que no es función es la función entre $X = \{1,2,3\}$ y $Y=\{a,b\}$, donde la relación es $\{(1,a),(2,a),(1,b)\}$. Esto es por dos razones: Se utiliza más de una vez el elemento del dominio $1$, aparecen las parejas $(1,a),(1,b)$, pero no es cierto que $a=b$, además nota que no se utiliza el elemento $3$ del dominio, por lo que se rompen las dos condiciones que pedimos para que fuera función.

Más sobre funciones

Al momento de estar hablando de una función $f$ entre dos conjuntos $X$ y $Y$ , es común hacer uso de la notación $f:X \rightarrow Y$ que se lee como “$f$ es una función que va de $X$ a $Y$”. Y si $x \in X$, al único elemento $y$ tal que $(x,y) \in f$, lo podremos denotar por $f(x)$ de manera que las parejas serán de la forma $(x,f(x))$.

A continuación definiremos algunos conceptos que usaremos al hablar de funciones.

Definición. Diremos que dos funciones $f: X \rightarrow Y$ y $g: W \rightarrow Z$ son iguales si las relaciones son la misma, es decir si $X=W$ y $Y=Z$ y para cada elemento $x \in X$, $f(x)=g(x)$.

Esto nos quiere decir que si dos funciones son iguales, entonces mandan a todo elemento $x$ al mismo elemento en el contradominio.

Con esto, hemos cubierto la noción de las funciones. Lo importante que recuerdes ahora es que las funciones son un tipo de relación que usan todo el contradominio y que mandan cualquier elemento del dominio a uno y solamente un elemento del contradominio. Verás que conforme avances en distintas ramas de la matemática, serán muy importante saber qué son las funciones.

Tarea moral

  1. Demuestra que la relación “ser menor o igual” en los números enteros no es una función.
  2. Dado cualquier conjunto $X$ no vacío, ¿Cuál es la única función que es relación de equivalencia?
  3. Demuestra que no existe ninguna función $f:X \rightarrow \emptyset$
  4. Sean $f: \mathbb{Z} \rightarrow \mathbb{Z}$ y $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Definamos $f(x) = x ^2$ y $g(x) = (x+1)(x-1)+1$. Demuestra que $f=g$.

Más adelante…

Hasta ahora hemos hablado únicamente de la definición de las funciones y cuándo dos funciones son iguales. En las siguiente entrada platicaremos acerca de las funciones inyectivas, suprayectivas y biyectivas. Que si recuerdas los términos, alguna vez definimos los dos primeros en el contexto de relaciones. Volveremos a explorar estos términos pero ahora desde el punto de vista de las funciones.

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de órdenes parciales y relaciones de equivalencia
  • Siguiente entrada del curso: Funciones inyectivas, suprayectivas y biyectivas

Álgebra Lineal I: Problemas de bases ortogonales, Fourier y proceso de Gram-Schmidt

Introducción

Durante las últimas clases hemos visto problemas y teoremas que nos demuestran que las bases ortogonales son extremadamente útiles en la práctica, ya que podemos calcular fácilmente varias propiedades una vez que tengamos a nuestra disposición una base ortogonal del espacio que nos interesa. Veamos más problemas de bases ortogonales y otros resultados que nos permitirán reforzar estas ideas.

Problemas resueltos de bases ortogonales y proyecciones

Para continuar con este tema, veremos que las bases ortogonales nos permiten encontrar de manera sencilla la proyección de un vector sobre un subespacio. Primero, recordemos que si $V=W\oplus W_2$, para todo $v\in V$ podemos definir su proyección en $W$, que denotamos $\pi_W(v)$, como el único elemento en $W$ tal que $v-\pi_W(v) \in W_2$.

Debido a las discusiones sobre bases ortogonales, no es difícil ver que si $\langle w,u \rangle =0$ para todo $w\in W$, entonces $u\in W_2$. Como consecuencia de esto, tenemos el siguiente resultado:

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\cdots,v_n$ una base ortogonal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \frac{\langle v,v_i \rangle}{\norm{v_i}^2} v_i .$

Demostración. Escribimos $v$ como $v=\pi_W(v)+u$ con $u\in W_2$. Por la observación previa al teorema, $\langle u,v_i \rangle =0$ para todo $i$. Además existen $a_1,\cdots,a_n$ tales que $\pi_W(v)=a_1 v_1+\cdots+a_n v_n$. Entonces

\begin{align*}
0 &= \langle u,v_i \rangle =\langle v,v_i \rangle – \langle \pi_W(v),v_i \rangle \\
&= \langle v,v_i \rangle – \sum_{j=1}^n a_j \langle v_j,v_i \rangle \\
&= \langle v,v_i \rangle – a_i \langle v_i,v_i \rangle,
\end{align*}

porque $v_1,\cdots,v_n$ es una base ortogonal. Por lo tanto, para todo $i$, obtenemos

$a_i=\frac{\langle v,v_i \rangle}{\norm{v_i}^2}.$

$\square$

Distancia de un vector a un subespacio y desigualdad de Bessel

En la clase de ayer, vimos la definición de distancia entre dos vectores. También se puede definir la distancia entre un vector y un subconjunto como la distancia entre el vector y el vector “más cercano” del subconjunto, en símbolos:

$d(v,W)=\min_{x\in W} \norm{x-v}.$

Dado que $x\in W$, $x-\pi_W(v) \in W$, y por definición de proyección $v-\pi_W(v) \in W_2$, entonces

\begin{align*}
\norm{x-v}^2 &=\norm{(x-\pi_W(v))+(\pi_W(v)-v)}^2 \\
&= \norm{x-\pi_W(v)}^2+2\langle x-\pi_W(v),\pi_W(v)-v \rangle+\norm{\pi_W(v)-v}^2 \\
&= \norm{x-\pi_W(v)}^2+\norm{\pi_W(v)-v}^2\\
&\geq \norm{\pi_W(v)-v}^2.
\end{align*}

Y dado que la proyección pertenece a $W$, la desigualdad anterior muestra que la proyección es precisamente el vector en $W$ con el que $v$ alcanza la distancia a $W$. En conclusión, $$d(v,W)=\norm{\pi_W(v)-v}.$$

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\ldots,v_n$ una base ortonormal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \langle v,v_i \rangle v_i,$

y

\begin{align*}
d(v,W)^2&=\norm{v-\sum_{i=1}^n \langle v,v_i \rangle v_i }^2\\
&=\norm{v}^2-\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

En particular

$\sum_{i=1}^n \langle v,v_i \rangle^2\leq \norm{v}^2.$

A esta última desigualdad se le conoce como desigualdad de Bessel.

Demostración. Por el teorema anterior y dado que $v_1,\cdots,v_n$ es una base ortonormal, obtenemos la primera ecuación. Ahora, por Pitágoras,

$d(v,W)^2=\norm{v-\pi_W(v)}^2=\norm{v}^2-\norm{\pi_W(v)}^2.$

Por otro lado, tenemos que

\begin{align*}
\norm{\pi_W(v)}^2 &=\norm{\sum_{i=1}^n \langle v,v_i \rangle v_i}^2 \\
&= \sum_{i,j=1}^n \langle \langle v,v_i \rangle v_i, \langle v,v_j \rangle v_j \rangle \\
&= \sum_{i,j=1}^n \langle v,v_i \rangle \langle v,v_j \rangle \langle v_i,v_j \rangle \\
&=\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

Por lo tanto, se cumple la igualdad de la distancia. Finalmente como $d(v,W)^2 \geq 0$, inmediatamente tenemos la desigualdad de Bessel.

$\square$

Veamos ahora dos problemas más en los que usamos la teoría de bases ortonormales.

Aplicación del proceso de Gram-Schmidt

Primero, veremos un ejemplo más del uso del proceso de Gram-Schmidt.

Problema. Consideremos $V$ como el espacio vectorial de polinomios en $[0,1]$ de grado a lo más $2$, con producto interior definido por $$\langle p,q \rangle =\int_0^1 xp(x)q(x) dx.$$

Aplica el algoritmo de Gram-Schmidt a los vectores $1,x,x^2$.

Solución. Es fácil ver que ese sí es un producto interior en $V$ (tarea moral). Nombremos $v_1=1, v_2=x, v_3=x^2$. Entonces

$$e_1=\frac{v_1}{\norm{v_1}}=\sqrt{2}v_1=\sqrt{2},$$

ya que $$\norm{v_1}^2=\int_0^1 x \, dx=\frac{1}{2}.$$

Sea $z_2=v_2-\langle v_2,e_1 \rangle e_1$. Calculando, $$\langle v_2,e_1 \rangle=\int_0^1 \sqrt{2}x^2 dx=\frac{\sqrt{2}}{3}.$$ Entonces $z_2=x-\frac{\sqrt{2}}{3}\sqrt{2}=x-\frac{2}{3}.$ Esto implica que

$e_2=\frac{z_2}{\norm{z_2}}=6\left(x-\frac{2}{3}\right)=6x-4.$

Finalmente, sea $z_3=v_3-\langle v_3,e_1\rangle e_1 -\langle v_3,e_2 \rangle e_2$. Haciendo los cálculos obtenemos que

$z_3=x^2-\left(\frac{\sqrt{2}}{4}\right)\sqrt{2}-\left(\frac{1}{5}\right)(6x-4)$

$z_3=x^2-\frac{6}{5}x+\frac{3}{10}.$

Por lo tanto

$e_3=\frac{z_3}{\norm{z_3}}=10\sqrt{6}(x^2-\frac{6}{5}x+\frac{3}{10}).$

$\square$

El teorema de Plancherel y una fórmula con $\pi$

Finalmente, en este ejemplo, usaremos técnicas de la descomposición de Fourier para solucionar un problema bonito de series.

Problema. Consideremos la función $2\pi-$periódica $f:\mathbb{R}\rightarrow \mathbb{R}$ definida como $f(0)=f(\pi)=0,$ $f(x)=-1-\frac{x}{\pi}$ en el intervalo $(-\pi,0)$, y $f(x)=1-\frac{x}{\pi}$ en el intervalo $(0,\pi)$.

Problemas de bases ortogonales: Aplicando el teorema de Plancherel para una fórmula que involucra a pi.
Gráfica de la función $f$.

Usa el teorema de Plancherel para deducir las identidades de Euler

\begin{align*}
\sum_{n=1}^\infty \frac{1}{n^2} &= \frac{\pi^2}{6},\\
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} & = \frac{\pi^2}{8}.
\end{align*}

Solución. Notemos que no sólo es $2\pi-$periódica, también es una función impar, es decir, $f(-x)=-f(x)$. Por lo visto en la clase del miércoles pasado tenemos que calcular

$a_0(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$

$a_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(kx) dx,$

$b_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)sen(kx) dx.$

Para no hacer más larga esta entrada, la obtención de los coeficientes de Fourier se los dejaremos como un buen ejercicio de cálculo. Para hacer las integrales hay que separar la integral en cada uno de los intervalos $[-\pi,0]$ y $[0,\pi]$ y en cada uno de ellos usar integración por partes.

El resultado es que para todo $k\geq 1$, $$a_0=0, a_k=0, b_k=\frac{2}{k\pi}.$$

Entonces por el teorema de Plancherel,

\begin{align*}
\sum_{k=1}^\infty \frac{4}{k^2\pi^2} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \\
&= \frac{1}{\pi} \left( \int_{-\pi}^0 \left(1+\frac{x}{\pi}\right)^2 dx + \int_0^\pi \left(1-\frac{x}{\pi}\right)^2 dx \right) \\
&= \frac{2}{3},
\end{align*}

teniendo que $$\sum_{k=1}^\infty \frac{1}{k^2} =\frac{2}{3}\frac{\pi^2}{4}=\frac{\pi^2}{6}.$$

Ahora para obtener la otra identidad de Euler, notemos que

\begin{align*}
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} &= \sum_{n=1}^\infty \frac{1}{n^2} – \sum_{n=1}^\infty \frac{1}{(2n)^2} \\
&= \frac{\pi^2}{6}-\frac{\pi^2}{4\cdot6}= \frac{\pi^2}{8}.
\end{align*}

$\square$

Entradas relacionadas

Álgebra Lineal I: Proyecciones, simetrías y subespacios estables

Introducción

Anteriormente introdujimos el concepto de transformaciones lineales entre dos espacios vectoriales. Vimos diversas propiedades que toda transformación lineal debe satisfacer. Finalmente, se presentaron las definiciones de kernel e imagen. Lo que haremos ahora es hablar de algunos tipos especiales de transformaciones lineales: las proyecciones y las simetrías. Para ello, aprovecharemos lo que ya estudiamos de suma y suma directas de subespacios.

Además, hablaremos del concepto de subespacios estables. Intuitivamente, un subespacio es estable para una transformación lineal si al aplicarla en elementos del subespacio, “no nos salimos del subespacio”.

Proyecciones

Hablemos de una clase fundamental de transformaciones lineales: las proyecciones sobre subespacios. Para ellas, se comienza expresando a un espacio vectorial como una suma directa $V=W_1\oplus W_2$. Recuerda que, a grandes rasgos, esto quiere decir que cada vector $v$ de $V$ se puede expresar de manera única como $v=w_1+w_2$, donde $w_1$ está en $W_1$ y $w_2$ está en $W_2$.

Definición. Sea $V$ un espacio vectorial y sean $W_1$ y $W_2$ dos subespacios de $V$ tales que $V=W_1\oplus W_2$. La proyección sobre $W_1$ es la función $\pi_1:V\rightarrow W_1$ definido como: para cada $v\in V$, se tiene que $\pi_1(v)$ es el único vector en $W_1$ tal que $v-\pi_1(v)$ está en $W_2$.

De manera similar podemos definir la proyección sobre $W_2$, llamada $\pi_2:V\rightarrow W_2$.

Hay otra forma de decir esto. Dado que $V=W_1\oplus W_2$, para todo $v\in V$ existen únicos vectores $v_1\in W_1$ y $v_2\in W_2$ tales que $v=v_1+v_2$. Entonces $\pi_1(v)=v_1$ y $\pi_2(v)=v_2$.

Ejemplo. Sea $V=\mathbb{R}^2$, y sean $W_1=\{(a,0): a\in\mathbb{R}\}$ y $W_2=\{(0,b):b\in\mathbb{R}\}$. Sabemos que $W_1$ y $W_2$ son subespacios y que $V=W_1\oplus W_2$. Entonces, si $(a,b)\in V$, se tiene que $\pi_1((a,b))=(a,0)$ y $\pi_2((a,b))=(0,b)$.

$\square$

Cuando hablamos de una proyección $\pi$ de un espacio vectorial $V$, sin indicar el subespacio, de manera implícita nos referimos a una función para la cual existe una descomposición $V=W_1\oplus W_2$ tal que $\pi$ es la proyección sobre $W_1$.

Problema. Muestra que la transformación lineal $\pi:M_2(\mathbb{R})\to M_2(\mathbb{R})$ tal que $$\pi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + b & 0 \\ c & 0 \end{pmatrix}$$ es una proyección.

Solución. Para resolver el problema, tenemos que mostrar que se puede escribir $M_2(\mathbb{R})=W_1\oplus W_2$, de modo que $\pi$ sea una proyección sobre $W_1$.

Proponemos $$W_1=\left\{\begin{pmatrix} r & 0 \\ s & 0\end{pmatrix}: r,s, \in \mathbb{R}\right\}$$ y $W_2$ como $$W_2=\left\{\begin{pmatrix} -r & r \\ 0 & s\end{pmatrix}: r,s, \in \mathbb{R}\right\}.$$

Si una matriz está simultánteamente en $W_1$ y $W_2$, es sencillo mostrar que únicamente puede ser la matriz cero, es decir $O_2$. Esto lo puedes verificar por tu cuenta. Además, cualquier matriz en $M_2(\mathbb{R})$ se puede escribir como suma de elementos en $W_1$ y $W_2$ como sigue: $$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a +b & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} -b & b \\ 0 & d \end{pmatrix}.$$

Justo $\pi$ es la primer matriz. Esto muestra que $\pi$ es una proyección, pues es la proyección sobre $W_1$ en la descomposición $V=W_1\oplus W_2$.

$\square$

Aún no hemos mostrado que las proyecciones son transformaciones lineales. Hacemos esto a continuación.

Proposición. Sea $V$ un espacio vectorial y $W_1$ y un subespacio de $V$. Sea $\pi:V\to W_1$ una proyección de $V$ sobre $W_1$. Entonces $\pi$ es una transformación lineal.

Demostración. Sean $v,v’ \in V$. Sean $w=\pi(v)$ y $w’=\pi(v’)$, ambos en $W_1$. Por definición, tenemos $v-w,v’-w’ \in W_2$. Como $W_1, W_2$ son subespacios vectoriales, $w+w’\in W_1$ y $$(v+v’)-(w+w’)=(v-w)+(v’-w’)\in W_2,$$ deducimos que $\pi(v+v’)=w+w’=\pi(v)+\pi(v’).$

Ahora sea $c\in F$. Notemos que $cw=c\pi(v)$. También dado que $v=w+(v-w)$, tenemos que $cv=cw+c(v-w)$. Por propiedades de subespacios vectoriales, $cw\in W_1$ y $c(v-w)\in W_2$. Esto implica que $\pi(cv)=cw$. Entonces, $\pi(cv)=cw=c\pi(v)$. Por lo tanto, las proyecciones son transformaciones lineales.

$\square$

Finalmente, notemos que $\pi(v)=v$ para todo $v\in W_1$ pero $\pi(v)=0$ si $v\in W_2$.

Simetrías

Una segunda clase importante de trasnformaciones lineales son las simetrías.

Definición. Sea una descomposición $V=W_1\oplus W_2$, con $W_1, W_2$ dos subespacios de $V$. Decimos que $s:V\rightarrow V$ es una simetría con respecto a $W_1$ a lo largo de $W_2$ si para todo $v\in V$, escrito como $v=v_1+v_2$ con $v_1\in W_1$ y $v_2 \in W_2$, tenemos que $$s(v)=v_1-v_2.$$

Al igual que con las proyecciones, no es dificil ver que las simetrías son transformaciones lineales.

Proposición. Sea $s:V\rightarrow V$ una simetría con respecto a $W_1$ a lo largo de $W_2$. Entonces, $s$ es una transformación lineal.

Demostración. Sean $v,v’ \in V$. Sean $v_1,v’_1\in W_1$ y $v_2,v’_2 \in W_2$ tales que $v=v_1+v_2$ y $v’=v’_1+v’_2$. Eso implica que $v+v’=(v_1+v’_1)+(v_2+v’_2)$ con $v_1+v’_1 \in W_1$ y $v_2+v’_2 \in W_2$. Entonces
$$s(v)+s(v’)=(v_1-v_2)+(v’_1-v’_2) =(v_1+v’_1)-(v_2+v’_2)= s(v+v’).$$
Ahora sea $a\in F$, entonces $as(v)=a(v_1-v_2)=av_1-av_2=s(av_1+av_2)=s(av)$. Por lo tanto, $s$ es una transformación lineal.

$\square$

Notemos que si $v\in W_1$, entonces $s(v)=v-0=v$, y si $v\in W_2$, entonces $s(v)=0-v=-v$.

Subespacios estables

Observemos que las proyecciones y las simetrías satisfacen que $\pi(W_1)=W_1$ y $s(W_1)=W_1$. Esta es una propiedad muy linda, pero en general, si $T:V\rightarrow V$ es una transformación lineal cualquiera y $W$ un subespacio de $V$, no siempre tenemos que $T(W)=W$, o ni siquiera que $T(W)\subset W$. Es decir, aunque tomemos un vector $w$ en $W$, puede pasar que $T(w)$ ya “esté fuera” de $W$.

Los subespacios $W$ que sí satisfacen esta última propiedad son cruciales en el estudio de este curso, y por ello, merecen un nombre especial.

Definición. Sea $V$ un espacio vectorial y $T:V\rightarrow V$ una transformación lineal. Si $W$ es un subespacio de $V$ tal que $T(W)\subset W$, decimos que $W$ es un subespacio estable bajo $T$.

En otras palabras, $W$ es estable bajo $T$ si para todo $v$ en $W$ se tiene que $T(v)$ también está en $W$. Un ejemplo trivial es la transformación identidad con cualquier subespacio $W$. Otro ejemplo trivial es que $V$ y $\{0\}$ son dos subespacios estables bajo cualquier transformación lineal $T:V\rightarrow V$. Otros ejemplos son los ya mencionados: las proyecciones y las simetrías.

En el siguiente ejemplo encontraremos todos los subespacios estables para una cierta transformación.

Ejemplo. Consideremos el mapeo $T:\mathbb{R}^2\rightarrow \mathbb{R}^2$ con $T(x,y)=(y,-x)$. Claramente $T$ es lineal. Sea $W$ un subespacio estable de $\mathbb{R}^2$ bajo $T$. Supongamos que $W$ no es ni $\mathbb{R}^2$, ni el subespacio trivial $\{ (0,0) \}$.

Veremos que no hay ningún otro subespacio estable. Procedamos por contradicción. Suponiendo que hay otro subespacio estable $W$, su dimensión tendría que ser exactamente $1$. Eso implica que $W$ está generado por un vector no cero, digamos $v=(x,y)$. Es decir, cada $w\in W$ lo podemos escribir como $w=av$ donde $a$ es un escalar. En particular $v\in W$.

Como $W$ es estable bajo $T$, entonces $T(v)\in W$, esto es $T(v)=cv$ para algún $c$. Así,
\begin{align*}
(y,-x)&=T((x,y))\\&=T(v)\\&=cv\\&=c(x,y)\\&=(cx,cy).
\end{align*} Igualando ambos extremos, obtenemos que$y=cx$ y $-x=cy$, lo cual implica que $(c^2+1)x=0$. Como $c$ es real, esto implica $x=0$ y por lo tanto $y=0$. Concluimos que $v=(0,0)$, lo cual es una contradicción.

Esto demuestra que los únicos subespacios estables bajo $T$ son $\mathbb{R}^2$ y $\{(0,0)\}$.

$\square$

El siguiente problema estudia un problema inverso. En ella se encuentran todas las transformaciones lineales que dejan fijas “todas las rectas por el vector $0$”.

Problema. Sea $V$ un espacio vectorial y $T:V\rightarrow V$ una transformación lineal tal que, para todo $v\in V$, se tiene que $\text{span}(v)$ es un subespacio estable bajo $T$. Entonces existe un escalar $c\in F$ tal que $T(x)=cx$ para todo $x\in V$.

Demostración. Sea $x\in V$ un vector distinto de $0$. Si $L=\text{span}(x)$, tenemos que $T(L)\subset L$ por hipótesis. En particular $T(x)\in L$ y por lo tanto existe $c_x$ tal que $T(x)=c_x x$. Queremos probar que esa constante realmente no depende de $x$.

Sea $y\in V$. Hay dos opciones: $x,y$ son linealmente independientes o no. Supongamos primero que $x,y$ son linealmente independientes. Entonces $x+y \neq 0$ y la igualdad $T(x+y)=T(x)+T(y)$ puede ser escrita como $c_{x+y} (x+y)=c_x x+c_y y$, esto es equivalente a $(c_{x+y}-c_x)x+(c_{x+y}-c_y) y=0.$ Por independencia lineal, $c_{x+y}-c_x=c_{x+y}-c_y=0$ y por lo tanto. $c_x=c_{x+y}=c_y$.

Ahora si $x,y$ no son linealmente independientes, es porque $y=0$ (en cuyo caso cualquier $c_y$ funciona, en particular $c_x$) o bien porque $y=ax$ para algún escalar $a$ no cero. Entonces la igualdad $T(y)=T(ax)=aT(x)$ puede ser escrita como $c_y y=ac_x x=c_x y$, y esto implica que $c_y=c_x$.

En cualquier caso, hemos mostrado que para todo $y\in V$, se tiene que $c_x=c_y$. Definiendo $c=c_x$, se satisface la afirmación de la proposición.

$\square$

Las imágenes y kernels son estables

Otros ejemplos importantes de subespacios estables son las imágenes y los kernels. Esto únicamente funciona para cuando tenemos una transformación lineal de un espacio vectorial a sí mismo.

Proposición. Sea $T:V\to V$ una transformación lineal. Entonces $\ker(T)$ e $\Ima(T)$ son subespacios estables bajo $T$.

Demostración. En la entrada anterior ya vimos que $\ker(T)$ e $\Ima(T)$ son subespacios de $V$. Veamos que son estables bajo $T$.

Tomemos $v\in \ker(T)$. Tenemos que mostrar que $T(v)\in \ker(T)$. Pero esto es cierto pues $$T(T(v))=T(0)=0.$$ Así $T(\ker(T))\subset \ker(T)$ y por lo tanto $\ker(T)$ es estable bajo $T$.

Ahora tomemos $v\in \Ima(T)$. De manera inmediata, $T(v)\in \Ima(T)$. Así, $\Ima(T)$ es estable bajo $T$.

$\square$

Tarea moral

  • Sea $Y$ es el subespacio $Y=\{(0,r,0): r\in \mathbb{R}\}$ de $\mathbb{R}^3$. Argumenta por qué la transformación $\pi:\mathbb{R}^3\to Y$ dada por $\pi(x,y,z)=(0,y,0)$ es una proyección sobre $Y$. Para ello tendrás que encontrar un subespacio $W$ de $\mathbb{R}^3$ tal que $\mathbb{R}^3=Y\oplus W$ y con el cual $\pi(x,y,z)$ satisface la definición.
  • Sea $X$ el subespacio $X=\{(r,0,0): r\in \mathbb{R} \}$. ¿Es posible ver a la transformación $T:\mathbb{R}^3 \to X$ dada por $T(x,y,z)=(x+y+z,0,0)$ como una proyección sobre $X$? Si tu respuesta es sí, tendrás que dar un espacio $W$ bajo el cual se satisfaga la definición. Si tu respuesta es no, tendrás que mostrar que ningún subespacio $W$ funciona.
  • En el ejemplo de la sección de subespacios estables, ¿qué sucede si trabajamos en $\mathbb{C}^2$ en vez de en $\mathbb{R}^2$? ¿Quienes serían todos los subespacios estables?
  • Sea $B=\{v_1,v_2,\ldots,v_n\}$ una base para un espacio vectorial $V$ sobre un campo $F$. Sea $V_i$ el espacio vectorial generado por $v_i$, es decir, el conjunto de vectores de la forma $cv_i$ con $c\in F$. Como $B$ es base, cada vector $v\in V$ puede escribirse de la forma $$a_1v_1+a_2v_2+\ldots+a_nv_n$$ de manera única. Muestra que para toda $i\in\{1,2,\ldots,n\}$ la función $\pi_i(v)=a_iv_i$ es una proyección sobre $V_i$.
  • Para cada entero $n$, muestra que $\mathbb{R}_n[x]$ es un subespacio de $\mathbb{R}[x]$ que es estable bajo la transformación lineal $T$ que manda a cada polinomio $p(x)$ a su derivada $T(p(x))=p'(x)$.

Más adelante…

Las proyecciones y simetrías son dos ejemplos de transformaciones lineales que tienen propiedades específicas. Más adelante, cuando hablemos de geometría de espacios vectoriales y del proceso de Gram-Schmidt, veremos que las proyecciones satisfacen propiedades interesantes en términos de ciertas distancias.

La teoría de subespacios estables es muy útil a la hora de construir bases de subespacios vectoriales de manera inductiva. De hecho, los resultados en esta dirección son uno de los ingredientes que usaremos en la demostración del teorema estelar del curso: el teorema espectral.

Entradas relacionadas

Hacer una figura

HeuristicasOtra herramienta muy importante para resolver problemas es poder plantear el problema de forma visual. Los seres humanos llevamos muchísimas generaciones viendo, mucho más de lo que llevamos platicando y por tanto hay algunos conocimientos que se facilitan utilizando la vista.

Veremos algunos ejemplos de problemas en los cuales hacer una figura es útil y en algunos casos necesario.

Ir a los videos…