Archivo de la etiqueta: dimensión finita

Álgebra Lineal I: Forma matricial de una transformación lineal

Introducción

Durante la primera unidad de este curso vimos que las transformaciones lineales $T:F^n \to F^m$ pueden ser descritas por medio de matrices $A\in M_{m,n}(F)$. Nuestro objetivo ahora es extender este resultado para describir transformaciones lineales $T:V\to W$ entre espacios vectoriales de dimensión finita $V$ y $W$. Es decir, para cada una de estas transformaciones, queremos ver cómo se ven en forma matricial.

Sin embargo, a diferencia de lo que sucedía antes, la descripción en esta forma no será única. Para construir una matriz que represente a una transformación lineal, necesitaremos fijar bases para $V$ y $W$. Distintas bases nos darán distintas matrices.

Para esta entrada todos los espacios vectoriales que usemos son de dimensión finita sobre el campo $F$. Usaremos los resultados de la entrada pasada, en la que estudiamos qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los generadores y a las bases.

Un paréntesis técnico de isomorfismos

Quizás a estas alturas ya te hayas dado cuenta de que, en cierto sentido, los espacios vectoriales con la misma dimensión se parecen mucho entre sí. Por ejemplo, los espacios vectoriales $\mathbb{R}^4$, $M_2(\mathbb{R}) $ y $\mathbb{R}_3[x]$ pueden pensarse «como el mismo» si identificamos a cada vector $(a,b,c,d)$ con la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o bien con el polinomio $a+bx+cx^2+dx^3$. Esta identificación es biyectiva y «respeta las operaciones».

Con esta motivación, veamos una definición formal.

Definición. Decimos que una transformación lineal $T:V\to W$ es un isomorfismo de espacios vectoriales si es biyectiva. Lo denotamos como $V\simeq_{T} W$, que se lee «$V$ isomorfo a $W$ mediante $T$».

Problema. Sea $T:V\to W$ un isomorfismo de espacios vectoriales. Prueba que su inversa $T^{-1}:W\to V$ es un isomorfismo de espacios vectoriales.

Demostración. La transformación $T^{-1}$ es biyectiva, pues es invertible de inversa $T$, así que sólo hace falta checar que $T^{-1}$ es lineal. Tomemos $w_1$, $w_2$ en $W$, y $c$ en el campo. Como $T$ es suprayectiva, podemos tomar $v_1=T^{-1}(w_1)$ y $v_2=T^{-1}(w_2)$. Entonces $T(v_1)=w_1$ y $T(v_2)=w_2$, así
\begin{align*}
T^{-1}(w_1+cw_2)&=T^{-1}(T(v_1)+cT(v_2))\\
&=T^{-1}(T(v_1+cv_2))\\
&=v_1+cv_2
\end{align*}

En la segunda igualdad estamos usando que $T$ es lineal. De esta forma, concluimos que $T^{-1}$ es lineal también.

$\square$

Formalicemos ahora sí nuestra intuición de que «todos los espacios vectoriales de la misma dimensión finta $n$ sobre un mismo campo se comportan igual». En términos matemáticos, decimos que «es posible clasificar los espacios vectoriales de dimensión finita distintos de $\{0\}$, salvo isomorfismos». Para mostrar esto, veremos que para cada entero positivo $n$ todos los espacios vectoriales de dimensión $n$ son isomorfos a $F^n$. El siguiente resultado da el isomorfismo de manera explícita.

Teorema. Sea $n$ un entero positivo y sea $V$ un espacio vectorial de dimensión finita sobre $F$. Si $B={e_1,\dots,e_n}$ es una base de $V$, entonces la transformación $i_B:F^n\to V$ definida por $$i_B(x_1,\dots,x_n)=x_1e_1+x_2e_2+\dots+x_ne_n$$ es un isomorfismo de espacios vectoriales.

La verificación de los detalles de este teorema queda como tarea moral. Como sugerencia, recuerda que una base $B$ de $V$ te permite expresar a cada vector de $V$ (de aquí saldrá la suprayectividad) de manera única (de aquí saldrá la inyectividad) como combinación lineal de elementos de $B$.

Corolario. Si $T:V\to W$ es un isomorfismo de espacios vectoriales, entonces $\dim V=\dim W$.

Bases ordenadas

Sea $V$ un espacio vectorial de dimensión finita $n$. Una base ordenada de $V$ es simplemente una base para la cual nos importa en qué orden están sus elementos. La escribimos con notación de paréntesis en vez de llaves, es decir, en vez de poner $B=\{v_1,\ldots,v_n\}$, ponemos $B=(v_1,\ldots,v_n)$ para hacer énfasis en el orden.

Ejemplo. El conjunto $\{(1,2),(3,4)\}$ es una base de $\mathbb{R}^2$. De aquí, podemos obtener dos bases ordenadas, $B=((1,2),(3,4))$ y $B’=((3,4),(1,2))$. Aunque tienen a los mismos elementos, las pensamos como bases ordenadas diferentes pues sus elementos aparecen en diferente orden.

Del mismo modo, las bases $B=(1,x,x^2,x^3)$ y $B’=(x^3,x^2,x,1)$ son la misma base de $\mathbb{R}_2[x]$, pero son distintas como bases ordenadas.

$\square$

Por las discusión en la sección anterior, la elección de una base ordenada en un espacio vectorial $V$ de dimensión $n$ nos permite identificar $V$ con $F^{n}$. Es decir, dada una base $B$, podemos «ponerle coordenadas» a los elementos de $V$. Dependiendo de la base ordenada escogida, es posible que obtengamos diferentes coordenadas.

Ejemplo. Consideremos el espacio vectorial $M_2(\mathbb{R})$. Se puede verificar que cada uno de los siguientes conjuntos ordenados son una base:

\begin{align*}
B&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B’&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B»&=\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)
\end{align*}

Como cada uno de ellos es una base, entonces podemos escribir a la matriz $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ como combinación lineal de elementos de cada uno de $B$, $B’$ o $B»$.

Si lo hacemos para $B$, tendríamos (en orden), a los coeficientes $1,2,3,4$, así que las coordenadas de $A$ en la base ordenada $B$ serían $(1,2,3,4)$.

Si lo hacemos para $B’$, tendríamos (en orden), a los coeficientes $1,3,2,4$, así que las coordenadas de $A$ en la base ordenada $B’$ serían $(1,3,2,4)$. Aunque $B$ y $B’$ tengan los mismos elementos, las coordenadas difieren pues como bases ordenadas $B$ y $B’$ son distintas.

Si lo hacemos para $B»$, tendríamos (en orden), a los coeficientes $1,1,1,1$, así que las coordenadas de $A$ en la base ordenada $B»$ serían $(1,1,1,1)$. Aquí obtenemos coordenadas muy distintas pues $B$ y $B»$ ni siquiera tienen a los mismos elementos.

$\square$

La forma matricial de una transformación lineal

Consideremos ahora espacios vectoriales $V$ y $W$ de dimensiones $n$ y $m$ respectivamente. Supongamos que tenemos una transformación lineal $T:V\to W$. Escogemos bases ordenadas $B_V=(v_1,\dots, v_n)$ y $B_W=(w_1,\dots,w_m)$ de $V$ y $W$ respectivamente. Ten cuidado, aquí $(v_1,\dots, v_n)$ no es un vector de $F^n$, sino una colección ordenada de vectores de $V$.

Por el teorema de caracterización de espacios vectoriales de dimensión finita, tenemos los isomorfismos $$i_{B_{V}}:F^n\to V,$$ $$i_{B_{W}}:F^m\to W.$$

¿Cómo podemos usar todas estas transformaciones para construir una transformación $F^n\to F^m$? La idea es usar el inverso de $i_{B_W}$ y componer todo.

Así, consideramos $\psi_T$ como la composición de las transformaciones $i_{B_{V}}, T, i_{B_{W}}^{-1}$, es decir, $$\psi_T:F^n\to F^m,$$ está dada por $$\psi_T=i_{B_W}^{-1}\circ T\circ i_{B_{V}}.$$

De esta forma, $\psi_T$ es una transformación lineal entre $F^n$ y $F^m$. ¡Este tipo de transformaciones ya las conocemos! Sabemos que $\psi_T$ se describe de manera única por medio de una matriz $A\in M_{m,n}(F).$ Esta es, por definición, la matriz asociada a $T$ con respecto a las bases $B_V$ y $B_W$ o bien la forma matricial de $T$. Dicha matriz depende fuertemente de las dos bases, así que la denotaremos como $\text{Mat}_{B_W,B_V}(T)$ . Por el momento sólo pongamos mucha atención en el orden en el que escribimos las bases en los subíndices. Es importante más adelante veremos que resulta útil escribirlo así.

Cuando $T:V\to V$ va de un espacio vectorial a sí mismo y usamos sólo una base $B$, simplificamos la notación a $\text{Mat}_B(T)$.

Evaluar $T$ usando su forma matricial

La construcción anterior parece muy complicada, pero en realidad es muy natural. Lo que está sucediendo es lo siguiente. Ya sabemos que toda transformación lineal entre $F^n$ y $F^m$ está dada por matrices. Podemos extender esto a una descripción de transformaciones lineales entre $V$ y $W$ identificando $V$ con $F^n$ y $W$ con $F^m$ vía la elección de bases en $V$ y $W$.

Notemos que si definimos $A:=\text{Mat}_{B_{W},B_{V}}(T)$, entonces tenemos que

$i_{B_{W}}(Ax)=T(i_{B_{V}}(x))$ … (1)

Esta igualdad nos va a ayudar a decir quién es $T$ en términos de las entradas de la matriz $A$. Sea $\{e_1,\dots,e_n\}$ la base canónica de $F^n$ y $\{f_1,\dots,f_m\}$ la base canónica de $F^m$. Si$ A=[a_{ij}]$, entonces por definición $Ae_i=a_{1i}f_1+\dots+a_{mi}f_{m}$, así para $x=e_i$ se tiene

$i_{B_{W}}(Ax)=i_{B_{W}}(a_{1i}f_1+\dots + a_{mi}f_m) = a_{1i}w_1+\dots + a_{mi}w_m.$

Por otro lado, $i_{B_{V}}(e_i)=v_i$, de manera que la relación (1) es equivalente a la relación

$T(v_i)=a_{1i}w_1+\dots + a_{mi}w_m$

Aquí empieza a haber mucha notación, pero no hay que perderse. Hasta ahora lo que tenemos es que «podemos saber cuánto vale la transformación $T$ en cada elemento de la base de $V$ en términos de la matriz $A$». ¡Este es un paso importante, pues en la entrada anterior vimos que basta saber qué le hace una transformación a los elementos de la base para saber qué le hace a cualquier vector! Resumimos lo obtenido hasta ahora.

Proposición. Sea $T:V\to W$ una transformación lineal y sean $B_V=\{v_1,\dots v_n\}, B_W=\{w_1,\dots,w_m\}$ bases en $V$ y $W$, respectivamente. Escribamos $\text{Mat}_{B_W,B_V}(T)=[a_{ij}]$. Entonces para toda $1\leq i\leq n$ se tiene $$T(v_i)=\displaystyle\sum_{j=1}^m a_{ji}w_j.$$

Así, si tenemos la matriz $A$ que representa a $T$ en las bases $B_V$ y $B_W$ y un vector arbitrario $v$ en $V$, para saber quién es $T(V)$ basta:

  • Usar la proposición anterior para saber quién es $T(v_i)$ para cada $v_i$ en la base $B_V$.
  • Expresar a $v$ en términos de la base $B_V$ como, digamos, $v=c_1v_1+\ldots+c_nv_n$.
  • Usar que $T$ es lineal para concluir que $T(v)=c_1T(v_1)+\ldots+c_nT(v_n)$ y usar los valores de $T(v_i)$ encontrados en el primer inciso.

Forma matricial de composiciones de transformaciones lineales

Para finalizar esta entrada queremos entender la relación entre la composición $S\circ T$ de transformaciones lineales y las matrices asociadas de $T$ y $S$. En otras palabras, sean $T:V\to W$ y $S:W\to U$ transformaciones lineales fijas y supongamos que $m=dimV$, $n=dimW$, $p=dimU$. También fijemos las bases $B_U, B_V, B_W$ en $U,V,W$, respectivamente. Para simplificar las cosas escribamos

$\mathcal{A}=\text{Mat}_{B_U,B_W}(S)$ y $\mathcal{B}=\text{Mat}_{B_W,B_V}(T)$

Con respecto a las bases $B_U,B_V,B_W$ se tienen los isomorfismos $i_{B_U}, i_{B_V}, i_{B_W}$ definidos como lo hicimos anteriormente en esta misma entrada del blog, y por definición de $\mathcal{A}, \mathcal{B}$ se tiene

$i_{B_W}(\mathcal{B}x)=T(i_{B_V}(x))$ con $x\in F^m$,

$i_{B_U}(\mathcal{A}y)=S(i_{B_W}(y))$ con $y\in F^n$.

Aplicando $S$ en la primera relación y después usando la segunda relación, se tiene para $x\in F^m$

$(S\circ T)(i_{B_V}(x))=S(i_{B_W}(\mathcal{B}x))=i_{B_U}(\mathcal{A} \mathcal{B}x)$.

Esta última relación y la definición de $\text{Mat}_{B_U,B_V}(S\circ T)$ nos muestra que

$\text{Mat}_{B_U,B_V}(S\circ T)=\mathcal{A} \cdot \mathcal{B}$.

En otras palabras, la composición de transformaciones lineales se reduce a multiplicar sus matrices asociadas o de manera más formal

Teorema. Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales entre espacios vectoriales de dimensión finita y sean $B_U, B_V, B_W$ bases de $U,V,W$, respectivamente. Entonces

$\text{Mat}_{B_U,B_V}(S\circ T)=\text{Mat}_{B_U,B_W}(S)\cdot \text{Mat}_{B_W,B_V}(T).$

Cuando tenemos transformaciones lineales de un espacio vectorial $V$ a sí mismo, y usamos la misma base $B$, el resultado anterior se puede escribir de una manera más sencilla.

Corolario. Sean $T_1,T_2:V\to V$ transformaciones lineales en un espacio vectorial de dimensión finita $V$, y sea $B$ una base de $V$. Entonces

$\text{Mat}_{B}(T_1\circ T_2)=\text{Mat}_{B}(T_1)\cdot \text{Mat}_{B}(T_2)$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la relación «son isomorfos» para espacios vectoriales es una relación de equivalencia.
  • Muestra que la transformación $i_B$ dada en el teorema de clasificación de espacios vectoriales de dimensión finita en efecto es un isomorfismo.
  • Asegúrate de entender el último corolario.

Más adelante…

En esta entrada comenzamos con una transformación lineal $T:V\to W$ y bases ordenadas de de $V$ y $W$ para representar a $T$ como una matriz. Así mismo, vimos cómo tras una elección de base podemos pensar a cualquier vector en términos de sus «coordenadas», usando a los coeficientes que permiten expresarlo (de manera única) como combinación lineal de elementos de la base. Las matrices y coordenadas que así obtenemos nos ayudarán mucho. Sin embargo, será fundamental entender qué es lo que sucede con estas representaciones cuando elegimos bases diferentes, y cómo podemos cambiar de ciertas coordenadas o matrices a otras cuando hacemos un cambio de base. Esto es lo que estudiaremos en las siguientes entradas.

Entradas relacionadas