Archivo de la etiqueta: independientes

Álgebra Lineal I: Eigenvalores y eigenvectores de transformaciones y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya establecimos los fundamentos para hablar de determinantes. Dimos su definición para el caso de vectores y el caso de matrices/transformaciones lineales. Enunciamos y demostramos varias de sus propiedades. Luego dedicamos toda una entrada a ver formas de calcularlos. Finalmente, vimos que nos pueden ayudar para entender mucho mejor a los sistemas de ecuaciones lineales. Entender bien estos conceptos te será de gran utilidad en tu formación matemática.

Además, los determinantes son un paso natural en uno de nuestros objetivos del curso: entender por qué las matrices simétricas reales son diagonalizables. Recuerda que una matriz $A$ en $M_n(F)$ es diagonalizable si existe una matriz diagonal $D$ y una matriz invertible $P$, ambas en $M_n(F)$, de modo que $$A=P^{-1}DP.$$

Lo que haremos en esta entrada es hablar de esos valores que aparecen en la matriz diagonal $D$ en el caso de que $A$ sea diagonalizable. Resulta que estos valores están relacionados con una pregunta muy natural en términos de lo que le hace la matriz a ciertos vectores. Y mejor aún, como veremos, hay un método para encontrar estos valores por medio de un determinante. Vamos poco a poco.

Eigenvalores y eigenvectores para transformaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$ y sea $T:V\to V$ una transformación lineal. Para fijar ideas, pensemos en $\mathbb{R}^n$ por el momento. A veces, $T$ simplemente la cambia la magnitud a un vector, sin cambiarle la dirección. Es decir, hay algunos vectores para los cuales $T$ se comporta simplemente como la multiplicación por un escalar. En símbolos, hay vectores $v$ tales que existe un valor $\lambda$ tal que $T(v)=\lambda v$.

Por supuesto, al vector $0$ siempre le pasa esto, pues como $T$ es lineal, se tiene que $T(0)=0=\lambda\cdot 0$ para cualquier escalar $\lambda$. Resulta que cuando se estudian estos vectores y escalares especiales, lo más conveniente es quitar al vector $0$ de la discusión. Estas ideas llevan a la siguiente definición.

Definición. Un eigenvalor de una transformación lineal $T:V\to V$ es un escalar $\lambda$ tal que $\lambda \text{id} – T$ no es invertible. En otras palabras, $\lambda$ es un escalar tal que existe un vector no cero en el kernel de $\lambda \text{id} – T$. A un vector $v\neq 0$ en $V$ tal que $$(\lambda \text{id} – T)v=0,$$ se le conoce como un eigenvector de $T$.

En otras palabras, $v$ es un eigenvector correspondiente a $T$ si $v$ no es cero y $T(v)=\lambda v$. A los eigenvalores y eigenvectores de $T$ también se les conoce en la bibliografía como valores propios y vectores propios de $T$.

Observa que si al conjunto de eigenvectores para un eigenvalor $\lambda$ le agregamos el vector $0$, entonces obtenemos el kernel de una transformación lineal, que sabemos que es un subespacio vectorial.

Veamos un par de ejemplos para que queden más claras las ideas.

Ejemplo 1. Consideremos a la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$

Observa que
\begin{align*}
T(1,0,0)&=(-2,0,0)\\
&=-2(1,0,0),
\end{align*}

que
\begin{align*}
T(-19,-5,1)&=((-2)(-19)+15(-5)+18,3(-5)+10, 1)\\
&=(28+75-18,-15+10,1)\\
&=(-19,-5,1),
\end{align*}

y que

\begin{align*}
T(3,1,0)&=(-6+15,3,0)\\
&=(9,3,0)\\
&=3(3,1,0).
\end{align*}

Estas igualdades muestran que $(1,0,0)$ es un eigenvector de $T$ con eigenvalor $-2$, que $(-19,-5,1)$ es un eigenvector de $T$ con eigenvalor $1$ y $(3,1,0)$ es un eigenvector de $T$ con eigenvalor $3$.

$\triangle$

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}[x]$ de polinomios con coeficientes reales. Tomemos la transformación lineal $T$ que manda a un polinomio a su segunda derivada. ¿Quiénes son los eigenvalores y eigenvectores de $T$?

Para que $p$ sea un eigenvector con eigenvalor $\lambda$, tiene que suceder que $$p»=T(p)=\lambda p.$$

Como $p$ no es el vector cero, tiene un cierto grado. Si $\lambda \neq 0$, entonces la igualdad anterior no puede suceder, pues si $p$ es de grado mayor o igual a $2$, entonces el grado de $p»$ es menor al de $\lambda p$, y si el grado de $p$ es $0$ ó $1$, su segunda derivada es $0$, y no puede pasar $\lambda p = 0$. Así, el único eigenvalor que puede tener $T$ es $\lambda = 0$. Observa que sí es válido que los eigenvalores sean cero (los eigenvectores no).

Cuando $\lambda = 0$, tiene que pasar que $p»$ sea $0\cdot p$, es decir, el polinomio cero. Los únicos polinomios tales que su derivada es cero son los constantes y los lineales. Pero el polinomio cero por definición no es eigenvector.

Así, la respuesta final es que el único eigenvalor de $T$ es $0$, y sus eigenvectores correspondientes son los polinomios constantes distintos de cero, y los polinomios lineales.

$\triangle$

Eigenvalores y eigenvectores para matrices

Tenemos una definición similar para matrices. Sea $A$ una matriz en $M_n(F)$.

Definición. Un escalar $\lambda$ en $F$ es un eigenvalor de $A$ si la matriz $\lambda I_n – A$ no es invertible. En otras palabras, si existe un vector no cero $X$ en $F^n$ tal que $AX=\lambda X$. A un tal vector $X$ se le conoce como un eigenvector correspondiente al eigenvalor $\lambda$.

En otras palabras, los eigenvalores y eigenvectores de $A$ son exactamente los eigenvalores y eigenvectores de la transformación $T_A:\mathbb{F}^n\to \mathbb{F}^n$ dada por $T_A(v)=Av$.

Además, si elegimos cualquier base $B$ de un espacio de dimensión finita $V$ y $A$ es la matriz de $T$ con respecto a la base $B$, entonces para cualquier escalar $\lambda$ se tiene que $\lambda I_n – A$ es la matriz de $\lambda \text{id} – T$ con respecto a esta misma base. De aquí se deduce que los eigenvalores de $T$ son los mismos que los eigenvalores de $A$. Dos matrices que representan a $T$ difieren sólo en un cambio de base, así que obtenemos el siguiente resultado fundamental.

Proposición. Si $A$ es una matriz en $M_n(F)$ y $P$ es una matriz invertible, entonces $A$ y $P^{-1}AP$ tienen los mismos eigenvalores. En otras palabras, matrices similares tienen los mismos eigenvalores.

En el primer ejemplo tomamos la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ tal que $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$ Su matriz en la base canónica de $\mathbb{R}^3$ es $$A=\begin{pmatrix} -2 & 15 & 18\\ 0 & 3 & 10\\ 0 & 0 & 1 \end{pmatrix}.$$ En el ejemplo vimos que los eigenvalores eran $-2$, $1$ y $3$, que precisamente conciden con las entradas en la diagonal de $A$. Esto no es casualidad. El siguiente resultado muestra esto, y es una primer evidencia de la importancia de los determinantes para encontrar los eigenvalores de una matriz.

Proposición. Si $A$ es una matriz triangular (superior o inferior) en $M_n(F)$, entonces sus eigenvalores son exactamente las entradas en su diagonal principal.

Demostración. Haremos el caso para cuando $A$ es triangular superior. El otro caso queda de tarea moral.

Queremos encontrar los valores $\lambda$ para los cuales la matriz $\lambda I_n – A$ no sea invertible. La matriz $A$ es triangular superior, así que la matriz $\lambda I_n – A$ también, pues las entradas de $A$ se vuelven negativas, y luego sólo se altera la diagonal principal.

Si las entradas diagonales de $A$ son $a_{11},\ldots,a_{nn}$, entonces las entradas diagonales de $\lambda I_n -A$ son $$\lambda – a_{11},\ldots,\lambda-a_{nn}.$$

La matriz $\lambda I_n – A$ no es invertible si y sólo si su determinante es igual a cero. Como es una matriz triangular superior, su determinante es el producto de sus entradas diagonales, es decir, $$\det(\lambda I_n – A) = (\lambda – a_{11})\cdot\ldots\cdot(\lambda – a_{nn}).$$

Este producto es $0$ si y sólo si $\lambda$ es igual a alguna entrada $a_{ii}$. De esta forma, los únicos eigenvalores de $A$ son las entradas en su diagonal.

$\square$

Si $A$ es una matriz diagonalizable, entonces es semejante a una matriz diagonal $D$. Por la proposición anterior, los eigenvalores de $A$ serían entonces las entradas en la diagonal principal de $D$. Esto nos da una intuición muy importante: si acaso pudiéramos encontrar todos los eigenvalores de $A$, entonces eso podría ser un paso parcial hacia diagonalizarla.

Encontrar eigenvalores es encontrar las raíces de un polinomio

La siguiente proposición conecta eigenvalores, polinomios y determinantes.

Proposición. Sea $A$ una matriz en $M_n(F)$. Entonces la expresión $$\det(\lambda I_n – A)$$ está en $F[\lambda]$, es decir, es un polinomio en la variable $\lambda$ con coeficientes en $F$. Además, es de grado exactamente $n$.

Demostración. La fórmula para el determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}

en términos de permutaciones nos dice que el determinante es sumas de productos de entradas de $A$. Cada una de las entradas es un polinomio en $F[\lambda]$, ya sea constante, o lineal. Como $F[\lambda]$ es cerrado bajo sumas y productos, esto prueba la primer parte de la afirmación.

Para probar que el grado es exactamente $n$, notemos que cada sumando de la expresión multiplica exactamente $n$ entradas. Como las entradas a lo mucho son de grado uno en $F[\lambda]$, entonces cada sumando es un polinomio de grado a lo más $n$. Hay una única forma que el grado sea $n$: cuando se elige la permutación identidad y entonces se obtiene el sumando $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

Esto termina la prueba.

$\square$

La proposición anterior nos asegura entonces que la siguiente definición tiene sentido.

Definición. Para $A$ una matriz en $M_n(F)$, el polinomio característico de $A$ es el polinomio $\chi_A(\lambda)$ en $F[\lambda]$ dado por $$\chi_A(\lambda) = \det(\lambda I_n – A).$$

De esta forma, $\lambda$ es un eigenvalor de $A$ si y sólo si es una raíz del polinomio $\chi_A(\lambda)$. Esto son buenas y malas noticias. Por un lado, nos cambia un problema de álgebra lineal a uno de polinomios, en donde a veces tenemos herramientas algebraicas que nos ayudan a encontrar raíces. Sin embargo, como se ve en cursos anteriores, también hay otros polinomios para los cuales es muy difícil encontrar sus raíces de manera exacta. Lo que salva un poco esa situación es que sí existen métodos para aproximar raíces numéricamente de manera computacional.

A pesar de la dificultad de encontrar raíces, sin duda tenemos consecuencias interesantes de esta conexión. Consideremos como ejemplo el siguiente resultado.

Proposición. Una matriz $A$ en $M_n(F)$ tiene a lo más $n$ eigenvalores distintos. Lo mismo es cierto para una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$.

Demostración. La matriz $A$ tiene tantos eigenvalores como raíces en $F$ tiene su polinomio característico. Como el polinomio característico es de grado exactamente $n$, tiene a lo más $n$ raíces en $F$.

La parte de transformaciones queda de tarea moral.

$\square$

Ya que encontramos los eigenvalores de una matriz o transformación, es posible que queramos encontrar uno o más eigenvectores correspondientes a ese eigenvalor. Observa que eso corresponde a encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo de la forma $$(I_n-A) X = 0.$$ Para ello ya tenemos muchas herramientas, como hacer reducción Gaussiana.

Terminamos esta entrada con un ejemplo de cómo encontrar los valores propios y vectores propios en un caso concreto.

Problema. Encuentra los eigenvalores de la matriz $$A=\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$ considerándola como:

  • Una matriz en $M_3(\mathbb{R})$
  • Una matriz en $M_3(\mathbb{C})$.

En el caso de $M_n(\mathbb{R})$, encuentra un eigenvector para cada eigenvalor.

Solución. Para encontrar los eigenvalores, tenemos que encontrar el determinante $$\begin{vmatrix}\lambda – 1 & 0 & 0\\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}.$$

Usando expansión de Laplace en la primer columna y haciendo las operaciones, obtenemos que el determinante de $\lambda I_3 – A$ es el polinomio $$(\lambda-1)(\lambda^2+1).$$

Aquí es importante la distinción de saber en qué campo estamos trabajando. Si estamos en $M_3(\mathbb{R})$, la única raíz del polinomio es $1$. Si estamos en $M_3(\mathbb{C})$, obtenemos otras dos raíces: $i$ y $-i$.

Ahora, para cuando $A$ es matriz en $M_3(\mathbb{R})$, necesitamos encontrar un eigenvector para el eigenvalor $1$. Esto equivale a encontrar una solución al sistema de ecuaciones $$(I_3-A)X=0,$$ es decir, a $$\begin{pmatrix}0 & 0 & 0\\ 0 & 1 & 1 \\ 0 & -1 & 1\end{pmatrix}X=0.$$

Una solución para este sistema es $X=(1,0,0)$. Y en efecto, $(1,0,0)$ es eigenvector de $A$ para el eigenvalor $1$ pues no es el vector cero y $$\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$\triangle$

Observa que la matriz anterior no es diagonalizable en $M_n(\mathbb{R})$, pues si lo fuera tendría que ser semejante a una matriz diagonal $D$ con entradas $i$ y $-i$ en la diagonal, pero entonces $D$ no sería una matriz en $M_n(\mathbb{R})$. Esto nos da otra intuición con respecto a la diagonalización de una matriz: si acaso una matriz en $M_n(F)$ es diagonalizable, entonces su polinomio característico debe tener puras raíces en $F$. Esta es una condición necesaria, pero aún no es suficiente.

Más adelante…

En esta entrada definimos el concepto de eigenvalor y eigenvector para una transformación lineal y para una matriz; y vimos algunas de las propiedades que cumplen. En la siguiente entrada estudiaremos el concepto de polinomio característico utilizando los conceptos que hemos visto en esta entrada y enunciaremos (sin demostración) dos teoremas muy importantes. Luego, pondremos en práctica lo que hemos estudiado resolviendo algunos ejercicios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • En la entrada vimos que los eigenvalores de una transformación $T$ son los eigenvalores de cualquier matriz que la represente. ¿Es cierto que los eigenvectores de $T$ son los eigenvectores de cualquier matriz que lo represente?
  • Muestra que una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$ tiene a lo más $n$ eigenvalores distintos.
  • Encuentra los eigenvalores de las matrices de permutación.
  • Para un real $\theta\in[0,2\pi)$ se define la matriz $$A(\theta):=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$ Muestra que $A(\theta)$ tiene eigenvalores reales si y sólo si $\theta=0$ \o $\theta=\pi$. Sugerencia: Encuentra el polinomio característico (que es cuadrático) y calcula su discrimintante. Si es negativo, no tiene soluciones reales.
  • Sea $A$ una matriz en $M_n(F)$. Muestra que la matriz transpuesta $^t A$ tiene los mismos eigenvalores que $A$, y de hecho, el mismo polinomio característico que $A$. Sugerencia. Recuerda que una matriz y su transpuesta tienen el mismo determinante.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\triangle$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\triangle$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Rango de transformaciones lineales y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hablamos de transformaciones lineales, cómo actúan en conjuntos especiales de vectores y de cómo se pueden representar con matrices. Hablamos también de cómo cambiar de una base a otra y cómo usar esto para entender transformaciones en varias bases. Estamos listos para introducir un concepto fundamental de álgebra lineal, el de rango de una transformación lineal y de una matriz.

Antes de entrar en las definiciones formales, vale la pena hablar un poco de rango de manera intuitiva. Supongamos que $V$ es un espacio vectorial de dimensión $n$ y que $W$ es un espacio vectorial sobre el mismo campo que $V$. Una transformación lineal $T:V\to W$ puede «guardar mucha independencia lineal» o «muy poquita». Si $T$ es inyectiva, ya vimos antes que $T$ manda linealmente independientes a linealmente independientes. Si $T$ es la transformación $0$, entonces se «pierde toda la independencia».

El rango mide algo intermedio entre estos dos extremos. Mientras mayor sea el rango, más independencia lineal se preserva y viceversa. Si mantienes esta intuición en mente, varias de las proposiciones te resultarán más naturales.

Otro buen ejemplo para tener en mente es tomar una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$. Si es la transformación identidad, la base canónica se preserva. Si es la proyección al plano $xy$, entonces «perdemos» al vector $(0,0,1)$, pues se va al $(0,0,0)$. Si es la proyección al eje $x$, «perdemos» al $(0,1,0)$ y al $(0,0,1)$ pues ambos se van a $(0,0,0)$. Y si es la transformación $0$, perdemos a todos. El rango precisamente va a medir esto, y para estos ejemplos tendremos rango $3$, $2$, $1$ y $0$ respectivamente.

Rango para transformaciones lineales

Como en otras ocasiones, cuando hablemos de transformaciones lineales entre espacios vectoriales, serán sobre un mismo campo $F$.

Definición. Sean $V$ y $W$ espacios de dimensión finita. El rango de una transformación lineal $T:V\to W$ es la dimensión de la imagen de $T$, es decir, $$\rank(T)=\dim\Ima T.$$

Si $B$ es una base de $V$, entonces genera a $V$. La transformación $T$ es suprayectiva de $V$ a $\Ima T$, de modo que $T(B)$ es generador de $\Ima T$. De esta forma, para encontrar el rango de una transformación lineal $T:V\to W$ basta:

  • Tomar una base $B$ de $V$.
  • Aplicar $T$ a cada elemento de $B$.
  • Determinar un conjunto linealmente independiente máximo en $T(B)$.

Para hacer este último paso, podemos poner a los vectores coordenada de $T(B)$ con respecto a una base de $W$ como los vectores fila de una matriz $A$ y usar reducción gaussiana. Las operaciones elementales no cambian el espacio generado por las filas, así que el rango de $T$ es el número de vectores fila no cero en la forma escalonada reducida $A_{\text{red}}$ de $A$.

Ejemplo. Encuentra el rango de la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$

Solución. Tomemos $e_1,e_2,e_3$ la base canónica de $\mathbb{R}^3$. Tenemos que $T(e_1)=\begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}$, $T(e_2)=\begin{pmatrix} 1 & 0 \\ 2 & -1\end{pmatrix}$ y $T(e_3)=\begin{pmatrix}-1 & 0\\ -2 & 1\end{pmatrix}$.

Tomando la base canónica $E_{11},E_{12},E_{21},E_{22}$ de $M_2(\mathbb{R})$, podemos entonces poner a las coordenadas de $T(e_1),T(e_2),T(e_2)$ como vectores fila de una matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 1 & 0 & 2 & -1\\ -1& 0 & -2 & 1\end{pmatrix}.$$ Sumando la segunda fila a la tercera, y después restando la primera a la segunda,obtenemos la matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 0 & -2 & 2 & -2\\ 0& 0 & 0 & 0\end{pmatrix}.$$ De aquí, sin necesidad de terminar la reducción gaussiana, podemos ver que habrá exactamente dos filas no cero. De este modo, el rango de la transformación es $2$.

$\triangle$

Propiedades del rango

Demostremos ahora algunas propiedades teóricas importantes acerca del rango de una transfromación lineal.

Proposición. Sean $U$, $V$ y $W$ espacios de dimensión finita. Sean $S:U\to V$, $T:V\to W$, $T’:V\to W$ transformaciones lineales. Entonces:

  1. $\rank(T)\leq \dim V$
  2. $\rank(T)\leq \dim W$
  3. $\rank(T\circ S)\leq \rank(T)$
  4. $\rank(T\circ S)\leq \rank(S)$
  5. $\rank(T+T’)\leq \rank(T) + \rank(T’)$

Demostración. (1) Pensemos a $T$ como una transformación $T:V\to \Ima(T)$. Haciendo esto, $T$ resulta ser suprayectiva, y por un resultado anterior tenemos que $\dim V\geq \dim \Ima T = \rank (T)$.

(2) Sabemos que $\Ima (T)$ es un subespacio de $W$, así que $\rank(T)=\dim \Ima T \leq \dim W$.

(3) La imagen de $T$ contiene a la imagen de $T\circ S$, pues cada vector de la forma $T(S(v))$ es de la forma $T(w)$ (para $w=S(v)$). Así, \begin{align*}\rank(T) &=\dim \Ima T \geq \dim \Ima T\circ S\\ &= \rank (T\circ S).\end{align*}

(4) La función $T\circ S$ coincide con la restricción $T_{\Ima S}$ de $T$ a $\Ima S$. Por el inciso (1), $\rank(T_{\Ima S})\leq \dim \Ima S = \rank(S)$, así que $\rank (T\circ S) \leq \rank(S)$.

(5) Tenemos que $\Ima (T+T’) \subseteq \Ima T + \Ima T’$. Además, por un corolario de la fórmula de Grassman, sabemos que
\begin{align*}
\dim (\Ima T + \Ima T’)&\leq \dim \Ima T + \dim \Ima T’\\
&= \rank(T) + \rank(T’).
\end{align*}

Así,
\begin{align*}
\rank(T+T’)&\leq \rank(\Ima T + \Ima T’)\\
&\leq \rank(T)+\rank(T’).
\end{align*}

$\square$

Proposición. Sean $R:U\to V$, $T:V\to W$ y $S:W\to Z$ transformaciones lineales con $R$ suprayectiva y $S$ inyectiva. Entonces $$\rank(S\circ T\circ R)=\rank (T).$$

Dicho de otra forma «composición por la izquierda con transformaciones inyectivas no cambia el rango» y «composición por la derecha con transformaciones suprayectivas no cambia el rango». Un corolario es «composición con transformaciones invertibles no cambia el rango».

Demostración. De la proposición anterior, tenemos que $\rank(S\circ T)\leq \rank (T)$. La restricción $S_{\Ima T}$ de $S$ a la imagen de $T$ es una transformación lineal de $\Ima T$ a $\Ima (S\circ T)$ que es inyectiva, de modo que $\dim \Ima T \leq \dim \Ima (S\circ T)$, que es justo $\rank(T)\leq \rank(S\circ T)$, de modo que tenemos la igualdad $\rank(S\circ T)=\rank (T)$.

Como $R$ es suprayectiva, $\Ima R= V$, de modo que $\Ima(S\circ T \circ R)=\Ima(S\circ T)$. Así, \begin{align*}\rank (S\circ T \circ R) &= \rank (S\circ T)\\&=\rank(T).\end{align*}

$\square$

Teorema de rango-nulidad

Una transformación lineal $T:V\to W$ determina automáticamente dos subespacios de manera natural: el kernel $\ker T$ y la imagen $\Ima T$. Resulta que las dimensiones de $\ker T$, de $\Ima T$ y de $V$ están fuertemente relacionadas entre sí.

Teorema. Sean $V$ y $W$ espacios de dimensión finita. Sea $T:V\to W$ una transformación lineal. Entonces $$\dim\ker T + \rank(T) = \dim V.$$

Demostración. Supongamos que $\dim V=n$ y $\dim \ker T = k$. Queremos mostrar que $\rank(T)=n-k$. Para ello, tomemos una base $B$ de $\ker T$ y tomemos $B’=\{v_1,\ldots,v_{n-k}\}$ tal que $B\cup B’$ sea base de $V$. Basta mostrar que $T(B’)=\{T(v_1),\ldots,T(v_{n-k})\}\subset \Ima T$ es base de $\Ima T$. Sea $U$ el generado por $B’$, de modo que $V=U \oplus \ker T$.

Veamos que $T(B’)$ es generador de $\Ima T$. Tomemos $T(v)$ en $\Ima T$. Podemos escribir $v=z+u$ con $z\in \ker T$ y $u\in U$. Así, $T(v)=T(z)+T(u)=T(u)$, y este último está en el generado por $T(B’)$.

Ahora veamos que $T(B’)$ es linealmente independiente. Si $$\alpha_1T(v_1)+\ldots+\alpha_{n-k}T(v_{n-k})=0,$$ entonces $T(\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k})=0$, de modo que $\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k}$ está en $U$ y en $\ker T$, pero la intersección de estos espacios es $\{0\}$. Como esta combinación lineal es $0$ y $B’$ es linealmente independiente, $\alpha_1=\ldots=\alpha_n=0$.

De esta forma, $T(B’)$ es linealmente independiente y genera a $\Ima T$, de modo que $\rank(T) =|B’|=n-k$.

$\square$

Ejemplo. Consideremos de nuevo la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$ Muestra que $T$ no es inyectiva.

Solución. Ya determinamos previamente que esta transformación tiene rango $2$. Por el teorema de rango-nulidad, su kernel tiene dimensión $1$. Así, hay un vector $v\neq (0,0,0)$ en el kernel, para el cual $T(v)=0=T(0)$, de modo que $T$ no es inyectiva.

$\square$

Problema. Demuestra que para cualquier entero $n$ existe una terna $(a,b,c)\neq (0,0,0)$ con $a+b+c=0$ y tal que $$\int_0^1 at^{2n}+bt^n+c \,dt = 0.$$

Solución. Podríamos hacer la integral y plantear dos ecuaciones lineales. Sin embargo, daremos argumentos dimensionales para evitar la integral. Consideremos las transformaciones lineales $T:\mathbb{R}^3\to \mathbb{R}$ y $S:\mathbb{R}^3\to \mathbb{R}$ dadas por
\begin{align*}
T(x,y,z)&=\int_0^1 xt^{2n}+yt^n+z \,dt\\
S(x,y,z)&=x+y+z.
\end{align*}
Notemos que $T(0,0,1)=\int_0^1 1\, dt = 1=S(0,0,1)$, de modo que ni $T$ ni $S$ son la transformación $0$. Como su rango puede ser a lo más $\dim\mathbb{R}=1$, entonces su rango es $1$. Por el teorema de rango-nulidad, $\dim \ker S= \dim \ker T = 2$. Como ambos son subespacios de $\mathbb{R}^3$, es imposible que $\ker S \cap \ker T=\{0\}$, de modo que existe $(a,b,c)$ no cero tal que $T(a,b,c)=S(a,b,c)=0$. Esto es justo lo que buscábamos.

$\square$

Rango para matrices

Definición. El rango de una matriz $A$ en $M_{m,n}(F)$ es el rango de la transformación lineal asociada de $F^n$ a $F^m$ dada por $X\mapsto AX$. Lo denotamos por $\rank(A)$.

A partir de esta definición y de las propiedades de rango para transformaciones lineales obtenemos directamente las siguientes propiedades para rango de matrices.

Proposición. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz en $M_{n,p}(F)$ y $A$, $A’$ matrices en $M_{m,n}(F)$. Sea $P$ una matriz en $M_{n,p}(F)$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz en $M_{r,m}(F)$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QAP) = \rank(A)$

Como discutimos anteriormente, el rango de una transformación se puede obtener aplicando la transformación a una base y viendo cuál es el máximo subconjunto de imágenes de elementos de la base que sea linealmente independiente. Si tomamos una matriz $A$ en $M_{m,n}(F)$, podemos aplicar esta idea con los vectores $e_1,\ldots,e_n$ de la base canónica de $F^{n}$. Como hemos visto con anterioridad, para cada $i=1,\ldots, n$ tenemos que el vector $Ae_i$ es exactamente la $i$-ésima columna de $A$. Esto nos permite determinar el rango de una matriz en términos de sus vectores columna.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^m$ generado por sus vectores columna.

Problema. Determina el rango de la matriz $$\begin{pmatrix} 3 & 1 & 0 & 5 & 0\\ 0 & 8 & 2 & -9 & 0\\ 0 & -1 & 0 & 4 & -2\end{pmatrix}.$$

Solución. Como es una matriz con $3$ filas, el rango es a lo más $3$. Notemos que entre las columnas están los vectores $(3,0,0)$, $(0,2,0)$ y $(0,0,-2)$, que son linealmente independientes. De esta forma, el rango de la matriz es $3$.

$\triangle$

A veces queremos ver que el rango de un producto de matrices es grande. Una herramienta que puede servir en estos casos es la desigualdad de Sylvester.

Problema (Desigualdad de Sylvester). Muestra que para todas las matrices $A$, $B$ en $M_n(F)$ se tiene que $$\rank(AB)\geq \rank(A)+\rank(B)-n.$$

Solución. Tomemos $T_1:F^n\to F^n$ y $T_2:F^n\to F^n$ tales que $T_1(X)=AX$ y $T_2(X)=BX$. Lo que tenemos que probar es que $$\rank(T_1\circ T_2) \geq \rank(T_1) + \rank(T_2) – n.$$

Consideremos $S_1$ como la restricción de $T_1$ a $\Ima T_2$. Tenemos que $\ker S_1 \subset \ker T_1$, así que $\dim \ker S_1 \leq \dim \ker T_1$. Por el teorema de rango-nulidad en $S_1$, tenemos que
\begin{align*}
rank(T_2) &= \dim \Ima T_2 \\
&= \dim \ker S_1 + \rank(S_1) \\
&= \dim \ker S_1 + \rank(T_1\circ T_2)\\
&\leq \dim \ker T_1 + \rank(T_1\circ T_2),
\end{align*} así que $$\rank(T_2)\leq \dim \ker T_1 + \rank(T_1\circ T_2).$$

Por el teorema de rango-nulidad en $T_1$ tenemos que $$\dim \ker T_1 + \rank(T_1)=n.$$

Sumando la desigualdad anterior con esta igualdad obtenemos el resultado.

$\square$

El teorema $PJQ$ (opcional)

El siguiente resultado no se encuentra en el temario usual de Álgebra Lineal I. Si bien no formará parte de la evaluación del curso, recomendamos fuertemente conocerlo y acostumbrarse a usarlo pues tiene amplias aplicaciones a través del álgebra lineal.

Teorema (Teorema PJQ). Sea $A$ una matriz en $M_{m,n}(F)$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P\in M_m(F)$ y $Q\in M_n(F)$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz en $M_{m,n}$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}.$$

No damos la demostración aquí. Se puede encontrar en el libro de Titu Andreescu, Teorema 5.68. Veamos algunas aplicaciones de este teorema.

Problema 1. Muestra que una matriz tiene el mismo rango que su transpuesta.

Solución. Llamemos $r$ al rango de $A$. Escribimos $A=PJ_rQ$ usando el teorema $PJQ$, con $P$ y $Q$ matrices invertibles. Tenemos que $^tA=^tQ\, ^tJ_r \,^tP$, con $^tQ$ y $^tP$ matrices invertibles. Además, $^t J_r$ es de nuevo de la forma de $J_r$. Así, por el teorema $PJQ$, tenemos que $^t A$ es de rango $r$.

Combinando el problema anterior con el resultado del rango de una matriz en términos de sus vectores columna obtenemos lo siguiente.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^n$ generado por sus vectores renglón.

Terminamos esta entrada con una aplicación más del teorema $PJQ$.

Problema 2. Muestra que una matriz $A$ de rango $r$ se puede escribir como suma de $r$ matrices de rango $1$. Muestra que es imposible hacerlo con menos matrices.

Solución. Expresamos $A=PJ_rQ$ usando el teorema $PJQ$. Si definimos $A_i=PE_{ii}Q$ para $i=1,\ldots,r$, donde $E_{ii}$ es la matriz cuya entrada $(i,i)$ es uno y las demás cero, claramente tenemos que $J_r=E_{11}+E_{22}+\ldots+E_{rr}$, por lo que $$A=PJ_rQ=A_1+A_2+\ldots+A_r.$$ Además, como $E_{ii}$ es de rango $1$, por el teorema $PJQ$ cada matriz $A_i$ es de rango $1$.

Veamos que es imposible con menos. Si $B_1,\ldots,B_s$ son matrices de rango $1$, como el rango es subaditivo tenemos que $\rank (B_1+\ldots+B_s)\leq s$. Así, si sumamos menos de $r$ matrices, no podemos obtener a $A$.

$\square$

Más adelante…

Esta entrada es solamente una breve introducción al concepto de rango y a algunas propiedades que pueden ser de utilidad al momento de calcular el rango de una matriz o una transformación lineal. Más adelante, veremos que el rango de una matriz está también relacionado con las soluciones de su sistema lineal homogéneo asociado.

El teorema de rango-nulidad es fundamental para el álgebra lineal. Muchas veces necesitamos calcular el rango de la imagen de una transformación lineal, pero es mucho más fácil calcular la dimensión de su kernel. O viceversa. En estas situaciones es muy importante recordar la forma en la que dicho teorema las relaciona.

Con este tema termina la segunda unidad del curso. Ahora estudiaremos aspectos un poco más geométricos de espacios vectoriales. En la siguiente unidad, hablaremos de dualidad, ortogonalidad, formas bilineales y productos interiores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Termina de hacer la reducción gaussiana del primer ejemplo.
  • Sea $T$ una transformación de un espacio vectorial $V$ de dimensión finita a si mismo. Usa el teorema de rango-nulidad para mostrar que si $T$ es inyectiva o suprayectiva, entonces es biyectiva.
  • Determina el rango de la matriz $$\begin{pmatrix} 0 & 0 & 0 & 8 & 3\\ 7 & 8 & -1 & -2 & 0\\ 3 & -1 & 4 & 4 & -9\end{pmatrix}.$$
  • Demuestra que aplicar operaciones elementales a una matriz no cambia su rango.
  • Demuestra que matrices similares tienen el mismo rango.
  • Demuestra por inducción que para matrices $A_1,\ldots, A_n$ del mismo tamaño tenemos que $$\rank (A_1+\ldots+A_n)\leq \sum_{i=1}^n \rank(A_i).$$
  • Escribe la demostración de la última proposición de la sección del teorema $PJQ$
  • Revisa la demostración del teorema de descomposición $PJQ$ en el libro de Titu Andreescu.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones lineales, vectores independientes y forma matricial

Por Ayax Calderón

Introducción

En esta entrada resolveremos algunos problemas acerca de transformaciones lineales, de su efecto en conjuntos generadores, independientes y bases, y de la forma matricial de transformaciones lineales.

Problemas resueltos

El siguiente problema es para repasar qué le hace una transformación lineal a una combinación lineal, y cómo podemos usar este hecho para saber cuánto vale una transformación lineal evaluada en un vector, sabiendo qué le hace a los elementos de una base.

Problema 1. Sean $$v_1=(1,0,0), v_2=(1,1,0), v_3=(1,1,1),$$

y sea $T:\mathbb{R}^3\to \mathbb{R}^2$ una transformación lineal tal que \begin{align*}T(v_1)&=(3,2)\\ T(v_2)&=(-1,2)\\ T(v_3)&=(0,1).\end{align*}

Calcula el valor de $T(5,3,1)$.

Solución. Primero observemos que ${(1,0,0), (1,1,0), (1,1,1)}$ es una base de $\mathbb{R}^3$, entonces existen $a,b,c\in \mathbb{R}$ tales que $$(5,3,1)=a(1,0,0)+b(1,1,0)+c(1,1,1).$$
Si logramos expresar a $(5,3,1)$ de esta forma, después podremos usar que $T$ es lineal para encontrar el valor que queremos. Encontrar los valores de $a,b,c$ que satisfacen la ecuación anterior lo podemos ver como el sistema de ecuaciones $$\begin{pmatrix}
1 & 1 & 1\\
0 & 1 & 1\\
0 & 0 & 1\end{pmatrix} \begin{pmatrix}
a\\
b\\
c\end{pmatrix} = \begin{pmatrix}
5\\
3\\
1\end{pmatrix}.$$

Para resolver este sistema, consideramos la matriz extendida del sistema y la reducimos
\begin{align*} & \begin{pmatrix}
1 & 1 & 1 & 5\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to &\begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to & \begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 0 & 2\\
0 & 0 & 1 & 1\end{pmatrix}\end{align*}

Así, $a=2, b=2, c=1$.

Finalmente, usando que $T$ es transformación lineal,

\begin{align*}
T(5,3,1)&=T(2(1,0,0)+2(1,1,0)+(1,1,1))\\
&=2T(1,0,0)+2T(1,1,0)+T(1,1,1)\\
&=2(3,2)+2(-1,2)+(0,1)\\
&=(6,4)+(-2,4)+(0,1)\\
&=(4,9).
\end{align*}

$\triangle$

Veamos ahora un problema para practicar encontrar la matriz correspondiente a una base.

Problema 2. Sea $\mathbb{R}_n[x]$ el espacio de los polinomios de grado a lo más $n$ con coeficientes reales.

Considera la transformación lineal $T:\mathbb{R}_3[x]\to \mathbb{R}_2[x]$ dada por $T(p(x))=p'(x)$, es decir, aquella que manda a cada polinomio a su derivada.

Sean $\beta=(1,x,x^2,x^3)$ y $\gamma=(1,x,x^2)$ las bases canónicas ordenadas de $\mathbb{R}_3[x]$ y $\mathbb{R}_2[x]$, respectivamente. Encuentra la representación matricial de la transformación $T$.

Solución. Primero le aplicamos $T$ a cada uno de los elementos de $\beta$, que simplemente consiste en derivarlos. Obtenemos que:

$T(1)=0=0\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x^2)=2x=0\cdot 1 + 2\cdot x + 0\cdot x^2$
$T(x^3)=3x^2=0\cdot 1 + 0\cdot x + 3\cdot x^2$

Para construir la matriz de cambio de base, lo que tenemos que hacer es formar una matriz con cuatro columnas (una por cada elemento de la base $\beta$). La primera columna debe tener las coordenadas de $T(1)$ en la base $\gamma$. La segunda columna, las coordenadas de $T(x)$ en la base $\gamma$. Y así sucesivamente. Continuando de este modo, llegamos a que

$$\begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3\end{pmatrix}$$
es la forma matricial de $T$ con respecto a las bases canónicas.

$\triangle$

Finalmente, el siguiente problema combina muchas de las ideas relacionadas con la forma matricial de una transformación. Se recomienda fuertemente que lo leas con detenimiento. Es un ejemplo en el que encontramos tres formas matriciales: las de dos transformaciones y las de su composición. Después, se verifica que la de la composición en efecto es el producto de las correspondientes a las dos transformaciones.

Problema 3. Considera las transformaciones

\begin{align*}
T:\mathbb{R}^3&\to \mathbb{R}_2[x]\quad\text{y}\\
S:\mathbb{R}_2[x] &\to M_2(\mathbb{R})
\end{align*}

dadas por

\begin{align*}
T(a,b,c)&=a+2bx+3cx^2\quad \text{y}\\
S(a+bx+cx^2)&=\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix}.
\end{align*}

Consideramos la base ordenada $B_1=(1,x,x^2)$ de $\mathbb{R}_2[x]$, la base canónica ordenada $B_2$ de $\mathbb{R}^3$ y la base ordenada $B_3=(E_{11}, E_{12}, E_{21}, E_{22})$ de $M_2(\mathbb{R})$.

  1. Verifica que $T$ y $S$ son transformaciones lineales.
  2. Escribe las matrices asociadas a $T$ y $S$ con respecto a las bases dadas.
  3. Encuentra la matriz asociada a la composición $S\circ T$ con respecto a las bases anteriores usando el resultado que dice que es el producto de las dos matrices que ya encontraste.
  4. Calcula explícitamente $S\circ T$, después encuentra directamente su matriz asociada con respecto a las bases anteriores y verifica que el resultado obtenido aquí es el mismo que en el inciso anterior.

Solucion. 1. Sea $u\in \mathbb{R}$ y sean $(a,b,c), (a’,b’,c’)\in \mathbb{R}^3$.
Entonces

\begin{align*}
T(u&(a,b,c)+(a’,b’,c’))\\
&=T(au+a’,bu+b’,cu+c’)\\
&=(au+a’)+2(bu+b’)x+3(cu+c’)x^2\\
&=u(a+2bx+3cx^2)+(a’+2b’x+3c’x^2)\\
&=uT(a,b,c)+T(a’,b’,c’).
\end{align*}

Así, $T$ es lineal.

Ahora, sea $u\in \mathbb{R}$ y sean $a+bx+cx^2, a’+b’x+c’x^2\in \mathbb{R}_2[x]$.
Entonces

\begin{align*}
S(u&(a+bx+cx^2)+(a’+b’x+c’x^2))\\
&=S(ua+a’+(ub+b’)x+(uc+c’)x^2)\\
&=\begin{pmatrix}
ua+a’ & (ua+a’)+(ub+b’)\\
ua+a’-(uc+c’) & ub+b’\end{pmatrix}\\
&=u\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix} + \begin{pmatrix}
a’ & a’+b’\\
a’-c’ & b’\end{pmatrix}\\
&=uS(a+bx+cx^2)+S(a’+b’x+c’x^2).
\end{align*}

Así, $S$ es lineal.

2. Empezamos calculando la matriz $\Mat_{B_1,B_2}(T)$ de $T$ con respecto a $B_1$ y $B_2$. La base $B_2$ es la base canónica ordenada de $\mathbb{R}^3$, es decir, $B_2=(e_1,e_2,e_3)$. Aplicando $T$ en cada uno de estos vectores,

\begin{align*}
T(e_1)&=T(1,0,0)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2,\\
T(e_2)&=T(0,1,0)=2x= 0\cdot 1 + 2\cdot x + 0 \cdot x^2,\\
T(e_3)&=T(0,0,1)=3x^2= 0\cdot 1 + 0\cdot x + 3 \cdot x^2.
\end{align*}

Así, $$\Mat_{B_1,B_2}(T)=\begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0& 0 & 3\end{pmatrix}.$$

De manera análoga, calculamos

\begin{align*}
S(1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix} \\
&= 1 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0\cdot E_{22},\\
S(x)&=\begin{pmatrix}
0 & 1\\
0 & 1\end{pmatrix} \\
&= 0 \cdot E_{11} + 1 \cdot E_{12} + 0 \cdot E_{21} + 1\cdot E_{22},\\
S(x^2)&=\begin{pmatrix}
0 & 0\\
-1 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} + (-1) \cdot E_{21} + 0\cdot E_{22}.\end{align*}

Por lo tanto $$\Mat_{B_3,B_1}(S)=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix}.$$

3. Usando el resultado de que la forma matricial de una composición de transformaciones es el producto de sus formas matriciales, $$\Mat_{B_3,B_2}(S\circ T)=\Mat_{B_3,B_1}(S)\cdot \Mat_{B_1,B_2}(T).$$

Así, tenemos que:
\begin{align*}
\Mat_{B_3,B_2}(S\circ T)&=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix} \begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 3\end{pmatrix} \\
&= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.\end{align*}

4. Calculamos la composición directamente como sigue:

\begin{align*}
(S\circ T)(a,b,c)&=S(T(a,b,c))\\
&= S(a+2bx+3cx^2)\\
&=\begin{pmatrix}
a & a+2b\\
a-3c & 2b\end{pmatrix}.
\end{align*}

Para encontrar la matriz que representa a esta transformación lineal, evaluamos en cada elemento de $B_2$.

\begin{align*}
(S\circ T)(e_1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix}\\
& = 1\cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 2\\
0 & 2\end{pmatrix} \\
&= 0\cdot E_{11} + 2 \cdot E_{12} + 0 \cdot E_{21} + 2 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 0\\
-3 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} +(-3) \cdot E_{21} + 0 \cdot E_{22}.
\end{align*}

Así, la matriz asociada a $S\circ T$ con las bases indicadas es $$\Mat_{B_3,B_2}(S\circ T)= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.$$

Esto es, por supuesto, justo lo que se obtuvo en el inciso 3.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transformaciones lineales en bases, conjuntos independientes y generadores

Por Leonardo Ignacio Martínez Sandoval

Introducción

El objetivo de esta entrada es entender qué efecto tienen las transformaciones lineales en bases, en conjuntos linealmente independientes y en conjuntos generadores. En la siguiente lista recordamos brevemente estas nociones:

  • Una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ es una función que «abre sumas» (es decir $T(x+y)=T(x)+T(y)$) y «saca escalares» (es decir $T(cx)=cT(x)$). Recuerda que es necesario que $V$ y $W$ estén sobre el mismo campo, cosa que asumiremos cuando hablemos de transformaciones lineales.
  • Un conjunto de vectores $\{v_1,\ldots, v_n\}$ en $V$ es linealmente independiente si la única combinación lineal de ellos que da $0$ es la trivial, osea en la que todos los coeficientes son $0$.
  • Si cualquier vector de un espacio vectorial $V$ puede escribirse como combinación lineal de un conjunto de vectores $S=\{v_1,\ldots,v_n\}$, entonces decimos que $S$ genera a $V$.
  • Un conjunto de vectores en $V$ es base si es linealmente independiente y genera a $V$.

La idea de esta entrada es entender lo siguiente:

  • ¿Cuándo las imágenes de linealmente independientes/generadores/bases son linealmente independientes/generadores/bases tras aplicar una transformación lineal?
  • ¿Cómo saber si una transformación lineal es inyectiva?
  • ¿Cómo el efecto de transformaciones lineales en bases nos permite determinar exactamente qué le hacen al resto de los vectores?

Exploración

Tomemos espacios vectoriales $V$, $W$ y una transformación lineal $T:V\to W$. Si comenzamos con un conjunto $S=\{v_1,\ldots,v_n\}$ de vectores en $V$ que es linealmente independiente (o generador, o base) en $V$, ¿cuándo sucede que $T(S)=\{T(v_1),\ldots,T(v_n)\}$ es linealmente independiente (o generador, o base, respectivamente) en $W$?

Esto definitivamente no sucede siempre. La tranformación $Z:\mathbb{R}^3\to \mathbb{R}[x]$ que manda a todo vector $(x,y,z)$ al polinomio $0$ es una transformación lineal. Sin embargo, a la base canónica $\{e_1,e_2,e_3\}$ la manda al conjunto $\{0,0,0\}=\{0\}$, que no es un conjunto ni linealmente independiente, ni generador de los polinomios con coeficientes reales.

De esta forma, tenemos que pedirle más a la transformación $T$ para que preserve las propiedades mencionadas.

Intuitivamente, si la imagen de $T$ no cubre a todo $W$, entonces los vectores de la forma $T(v)$ con $v$ en $V$ no deberían de poder generar a $W$. Así, para que $T$ mande generadores a generadores, tiene que pasar que «$T$ pase por todo $W$». Esta noción queda capturada formalmente al pedir que $T$ sea suprayectiva.

Del mismo modo, también intuitivamente si «$T$ manda elementos distintos al mismo elemento», entonces perderemos familias linealmente independientes al aplicarla. Así, para preservar conjuntos linealmente independientes, necesitamos que vectores distintos vayan a valores distintos. En términos formales, necesitamos que $T$ sea inyectiva.

Resultados principales de transformaciones lineales en bases, generadores y linealmente independientes

El primer resultado es que los requisitos que descubrimos intuitivamente en la sección pasada son suficientes.

Teorema. Sea $T:V\to W$ una transformación lineal y $S=\{v_1,\ldots,v_n\}$ un conjunto de vectores de $V$. Entonces:

  • Si $T$ es inyectiva y $S$ es linealmente independiente, entonces $T(S)$ es linealmente independiente.
  • Cuando $T$ es suprayectiva y $S$ es generador, entonces $T(S)$ es generador.
  • Si $T$ es biyectiva y $S$ es base, entonces $T(S)$ es base.

Demostración. Comencemos suponiendo que $T$ es inyectiva y $S$ es linealmente independiente. Entonces $T(v_1),\ldots,T(v_n)$ son todos distintos. Tomemos una combinación lineal de elementos de $T(S)$ igual a cero, es decir, $$a_1T(v_1)+a_2T(v_2)+\ldots+a_nT(v_n)=0.$$ Debemos mostrar que todos los coeficientes son iguales a cero. Como $T$ es transformación lineal, podemos juntar las sumas y productos escalares como sigue: $$T(a_1v_1+a_2v_2+\ldots+a_nv_n)=0=T(0).$$

Como $T$ es inyectiva, esto implica que $$a_1v_1+a_2v_2+\ldots+a_nv_n=0,$$ pero como $S$ es linealmente independiente, concluimos que $$a_1=\ldots=a_n=0.$$ Así, $T(S)$ es linealmente independiente.

Supongamos ahora que $T$ es suprayectiva y $S$ es generador. Tomemos un $w\in W$. Como $T$ es suprayectiva, existe $v\in V$ tal que $T(v)=w$ y como $S$ es generador, existen $a_1,\ldots,a_n$ tales que $$a_1v_1+\ldots+a_nv_n=v.$$ Aplicando $T$ en ambos lados, abriendo las sumas y sacando escalares obtenemos que $$a_1T(v_1)+\ldots+a_nT(v_n)=T(v)=w.$$ Así, todo elemento de $W$ se puede escribir como combinación lineal de elementos de $T(S)$, como queríamos.

Finalmente, supongamos que $T$ es biyectiva y $S$ es base. Como $T$ es inyectiva y $S$ linealmente independiente, entonces $T(S)$ es linealmente independiente. Como $T$ es suprayectiva y $S$ generador, entonces $T(S)$ es generador. Así, $T(S)$ es base.

$\square$

Una consecuencia fudamental del resultado anterior es que si $V$ y $W$ son espacios de dimensión finita y existe una transformación lineal inyectiva $T:V\to W$, entonces $\dim(V)\leq \dim(W)$. En efecto, si $B$ es base de $V$ y $T$ es inyectiva, entonces $T(B)$ es linealmente independiente en $W$ y sabemos que $W$ tiene a lo más $\dim(W)$ vectores linealmente independientes, así que $\dim(V)=|B|=|T(B)|\leq \dim(W)$. De manera similar, si existe una transformación lineal $T:V\to W$ suprayectiva, entonces $\dim(V)\geq \dim(W)$. Demuestra esto. ¿Qué pasa con las dimensiones si existe una transformación lineal biyectiva entre $V$ y $W$?

¿Cuándo una transformación lineal es inyectiva?

El teorema anterior también sugiere que es importante saber cuándo una transformación lineal es inyectiva, suprayectiva o ambas. Resulta que en el caso de la inyectividad hay un criterio que nos ayuda.

Proposición. Sean $V$ y $W$ espacios vectoriales. Una transformación lineal $T:V\to W$ es inyectiva y si sólo si el único vector $v$ de $V$ tal que $T(v)=0$ es el vector $v=0$. En otras palabras $T$ es inyectiva si y sólo si $\ker(T)=\{0\}$.

Demostración. Sean $V$ y $W$ espacios vectoriales y $T:V\to W$ una transformación lineal. Recordemos que sabemos que $T(0)=0$.

Si $T$ es inyectiva y $T(x)=0$, entonces $T(x)=T(0)$ y por inyectividad $x=0$, de modo que $x$ es el único vector que va a $0$ bajo $T$.

Si el único vector que bajo $T$ va a $0$ es el $0$ y tenemos que $T(x)=T(y)$, entonces usando que $T$ es lineal tenemos que $0=T(y)-T(x)=T(y-x)$. Así, por hipótesis $y-x=0$, es decir, $x=y$. Con esto queda mostrado que $T$ es inyectiva.

$\square$

Transformaciones lineales en bases dan toda la información

Conociendo los valores de una transformación lineal en algunos vectores, es posible determinar el valor de la transformación en otros vectores que son combinación lineal de los primeros. Considera el siguiente ejemplo.

Problema. La transformación lineal $T:M_2(\mathbb{R})\to\mathbb{R}^2$ cumple que $T\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}=(1,0)$, $T\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}=(0,-1)$, $T\begin{pmatrix}
0 & 0\\
1 & 1
\end{pmatrix}=(-1,0)$ y $T\begin{pmatrix}
1 & 0\\
1 & 0
\end{pmatrix}=(0,1)$. Determina el valor de $T\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$.

Intenta resolver el problema por tu cuenta antes de ver la solución. Para ello, intenta poner a la matriz $\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$ como combinación lineal de las otras matrices y usar que $T$ es lineal.

Solución. Sean $A$, $B$, $C$ y $D$ las matrices de las cuales conocemos cuánto vale $T$ en ellas y $E$ la matriz con puros $3$’s. Queremos determinar el valor de $T(E)$. Notemos que $E=\frac{3}{2}(A+B+C+D)$. Como $T$ es transformación lineal, tenemos que

\begin{align*}
T(E)&=\frac{3}{2}(T(A)+T(B)+T(C)+T(D))\\
&=\frac{3}{2}((1,0)+(0,-1)+(-1,0)+(0,1))\\
&=(0,0).
\end{align*}

$\square$

En este problema lo que sirvió para encontrar el valor de $T(E)$ fue poner a la matriz $E$ como combinación lineal de las matrices $A,B,C,D$. De hecho, para cualquier matriz que sea combinación lineal de las matrices $A,B,C,D$, pudiéramos haber hecho lo mismo.

A partir de esta observación, podemos intuir que al conocer el efecto de transformaciones lineales en bases, podemos saber qué le hacen a cada elemento del espacio vectorial. El siguiente teorema enuncia esto de manera formal y dice un poco más.

Teorema. Sean $V$, $W$ espacios vectoriales, $B=\{v_1,v_2,\ldots,v_n\}$ una base de $V$ y $w_1,w_2,\ldots, w_n$ vectores cualesquiera de $W$. Entonces, existe una y sólo una transformación lineal $T:V\to W$ tal que $$T(v_1)=w_1,\quad T(v_2)=w_2, \quad \ldots, \quad T(v_n)=w_n.$$

Demostración. Probemos primero la parte de existencia. Como $B$ es base, cualquier vector $v$ de $V$ se puede escribir como $$a_1v_1+a_2v_2+\ldots+a_nv_n.$$ Construyamos la función $T:V\to W$ tal que $$T(v)=a_1w_1+a_2w_2+\ldots+a_nw_n.$$

Como para cada $i=1,\ldots,n$ tenemos que la combinación lineal de $v_i$ en términos de $B$ es $v_i=1\cdot v_i$, tenemos que $T(v_i)=1\cdot w_i=w_i$, que es una de las cosas que queremos. La otra que queremos es que $T$ sea lineal. Mostremos esto. Si $$v=a_1v_1+a_2v_2+\ldots+a_nv_n$$ y $$w=b_1v_1+b_2v_2+\ldots+b_nv_n,$$ entonces $$v+w=(a_1+b_1)v_1+
(a_2+b_2)v_2+\ldots+ (a_n+b_n)v_n,$$ y por definición $$T(v+w)=(a_1+b_1)w_1+ (a_2+b_2)w_2+\ldots+ (a_n+b_n)w_n.$$ Notemos que el lado derecho es igual a $T(v)+T(w)$, de modo que $T$ abre sumas. De manera similar se puede mostrar que $T$ saca escalares.

Esbocemos ahora la demostración de la unicidad. Supongamos que $T$ y $T’$ son transformaciones lineales de $V$ a $W$ tales que $T(v_i)=T'(v_i)=w_i$ para toda $i=1,\ldots,n$. Tenemos que mostrar que $T(v)=T'(v)$ para toda $v$. Para ello procedemos como en el problema antes de este teorema: escribimos a $v$ como combinación lineal de elementos de $B$. Esto se puede hacer de una única forma. El valor de $T(v)$ a su vez depende únicamente de $w_1,\ldots,w_n$ y de la los coeficientes en combinación lineal. El de $T'(v)$ también. Por lo tanto son iguales.

$\square$

Una consecuencia del teorema anterior, en la que no es necesario enunciar a las imágenes de la base, es la siguiente.

Corolario. Sean $V$ y $W$ espacios vectoriales, $B$ una base de $V$, y $T$ y $T’$ transformaciones lineales de $V$ a $W$. Si $T(v)=T'(v)$ para toda $v\in B$, entonces $T(v)=T'(v)$ para toda $v\in V$.

Más adelante…

Las propiedades que demostramos en esta entrada se usan con tanta frecuencia que muchas veces se aplican sin siquiera detenerse a argumentar por qué son válidas. Por esta razón, es importante que te familiarices con ellas. Otra ventaja de conocerlas a profundidad es que muchas veces ayudan a dar demostraciones sencillas o elegantes para algunos problemas. Finalmente, los hechos que aquí mostramos los usaremos prácticamente sin demostración en las siguientes entradas, en donde desarrollaremos la teoría de la forma matricial de transformaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra qué le hace al vector $(7,3)$ una transformación lineal $T:\mathbb{R}^2\to \mathbb{R}$ tal que $T(2,1)=20$ y $T(7,2)=5$.
  • Determina si las matrices $A,B,C,D$ del problema de la entrada son una base para $M_2(\mathbb{R})$. Si no son una base, ¿cuál es la dimensión del subespacio que generan?
  • En el último teorema se afirma que la función que construimos saca escalares. Muestra esto.
  • De ese mismo teorema, escribe los detalles de que dicha función es única.
  • Demuestra el corolario enunciado en la entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»