Archivo de la etiqueta: eigenvectores

Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si AMn(F) entonces

det(λIn tA)=det( t(λInA))=det(λInA).

Luego det(λInA)=0 si y sólo si det(λIn tA)=0. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de A y tA son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado n, sabemos que hay a lo más n soluciones. Entonces toda matriz tiene a lo más n eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea V un espacio de dimensión finita sobre F y T:VV lineal. Entonces T tiene a lo más dimV eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si V es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de R en R y T:VV es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real r la función erx es un eigenvector con eigenvalor r puesto que

T(erx)=(erx)=rerx.

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de T, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea A=[aij] una matriz triangular superior en Mn(F). Demuestra que los eigenvalores de A son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio det(λInA). Notamos que si A es triangular superior, entonces λInA también es triangular superior. Más aún, las entradas de la diagonal son simplemente λaii. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

det(λInA)=(λa11)(λa22)(λann)

cuyas raíces son exactamente los elementos aii.

◻

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de A3 donde

A=(12340567008900010)M4(R).

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz A3. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si [aij] y [bij] son dos matrices triangulares superiores, las entradas de la diagonal son aiibii. En nuestro caso, las entradas de la diagonal son 13,53,83 y 103, y por el problema anterior, estos son precisamente los eigenvalores de A3.

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean λ1,,λk eigenvalores distintos dos a dos de una transformación lineal T:VV. Entonces los λi-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección {vi} de vectores con T(vi)=λivi y v1++vk=0 entonces v1==vk=0. Procedemos por inducción sobre k.

Nuestro caso base es una tautología, pues si k=1 entonces tenemos que mostrar que si v1=0 entonces v1=0.

Asumamos que el resultado se cumple para k1 y verifiquemos que se cumple para k. Supongamos que v1++vk=0. Aplicando T de ambos lados de esta igualdad llegamos a

T(v1++vk)=T(v1)++T(vk)=λ1v1++λkvk=0.

Por otro lado, si multiplicamos a la igualdad v1++vk=0 por λk de ambos lados llegamos a

λkv1++λkvk=0.

Sustrayendo y factorizando estas dos igualdades se sigue que

(λkλ1)v1++(λkλk1)vk1=0.

Esto es una combinación lineal de los primeros k1 vectores vi igualada a cero. Luego, la hipótesis inductiva nos dice que (λkλi)vi=0 para todo i=1,,k1. Como λkλi entonces λkλi0 y entonces vi=0. Sustituyendo en la igualdad original, esto implica que vk=0 inmediatamente.

◻

Enseguida veremos que si formamos un polinomio P(T), entonces P(λ) es un eigenvalor de P(T) para cualquier eigenvalor λ de T. Esto lo veremos en el siguiente problema.

Problema. Sea λ un eigenvalor de T:VV y sea P un polinomio en una variable con coeficientes en F. Demuestra que P(λ) es un eigenvalor de P(T).

Solución. Como λ es un eigenvalor de T, existe v un vector no cero tal que T(v)=λv. Inductivamente, se cumple que Tk(v)=λkv. En efecto

Tk+1(v)=T(Tk(v))=T(λkv)=λkT(v)=λk+1v.

Usando esto, si P(X)=anXn++a1X+a0 se tiene que

P(T)(v)=anTn(v)++a1T(v)+a0v=anλnv++a1λv+a0v=(anλn++a1λ+a0)v=P(λ)v.

Esto muestra que P(λ) es un eigenvalor de P(T).

◻

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea AMn(C) una matriz y PC[X] un polinomio tal que P(A)=On. Entonces cualquier eigenvalor λ de A satisface P(λ)=0.

Solución. Por el problema anterior, P(λ) es un eigenvalor de P(A), pero P(A)=On y el único eigenvalor de la matriz cero es 0. Luego P(λ)=0.

◻

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea T:VV una transformación lineal sobre un espacio de dimensión finita sobre un campo F. Los eigenvalores de T son precisamente las raíces en F del polinomio mínimo μT.

Demostración. Dado que μT(T)=0, el problema que acabamos de resolver nos dice que todos los eigenvalores de T son raíces de μT.

Conversamente, supongamos que existe λ una raíz de μT que no es eigenvalor. Entonces la transformación TλId es invertible. Como μT(λ)=0, podemos factorizar la raíz y escribir μT(X)=(Xλ)Q(X) para algún QF[X]. Dado que μT(T)=0 deducimos que

(TλId)Q(T)=0.

Recordando una vez más que TλId es invertible, esta ecuación implica que Q(T)=0. Ya que μT es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que μT divide a Q. Pero esto se contradice con la igualdad μT(X)=(Xλ)Q(X), que nos dice que μT tiene grado mayor. Esto concluye la demostración.

◻

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz AMn(R) se dice estocástica si aij0 para todo i,j{1,,n} y j=1naij=1 para todo i{1,,n}.

Demuestra que 1 es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector v=(1,,1). Nota que

Av=(a11a12a1na21a22a2nan1an2ann)(111)=(a11+a12++a1na21+a22++a2nan1+an2++ann)=(111).

Es decir Av=v, por lo que v es un eigenvector de A con eigenvalor asociado 1.

◻

Problema 2. Sea V el espacio de todos los polinomios con coeficientes reales. Sea T:VV la transformación lineal dada por P(X)P(1X). ¿Cuáles son los eigenvalores de T?

Solución. Observa que
T2(P)=TT(P)=T(P(1X))=P(1(1X))=P(X). Así T2=Id, o bien T2Id=0. Luego, el polinomio mínimo μT tiene que dividir al polinomio X21. Sin embargo, los únicos factores de este polinomio son X1 y X+1. Dado que T±Id se tiene que μT(X)=X21. Por el último teorema que vimos, los eigenvalores de T son precisamente las raíces de μT en R, es decir ±1.

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea V el espacio de polinomios con coeficientes reales de grado a lo más n. Encuentra los eigenvalores de la transformación T:P(X)P(X)(1+X)P(X).
  • Si V es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de T:P(X)P(3X).
  • Sean A,B matrices en Mn(C) tales que ABBA=B. Demuestra que para todo k1 se cumple que ABkBkA=kBk y de esto deduce que B es nilpotente: existe m tal que Bm=0. Sugerencia: ¿Cuántos eigenvalores puede tener T:XAXXA?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea A una matriz cuadrada con entradas reales. Supón que λ es un real positivo que es eigenvalor de A2. Demuestra que λ o λ es un eigenvalor de A. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con V un espacio vectorial sobre F y T:VV una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de T es un escalar λF tal que λIdT no es invertible. Un eigenvector (también conocido como vector propio o λ-eigenvector) correspondiente a λ es un vector no-cero de ker(λIdT). A este kernel se le conoce como el eigenespacio correspondiente a λ (o λ-eigenespacio).

Entonces un λ-eigenvector es por definición distinto de cero y satisface

T(v)=λv.

Hay que tener cuidado. se permite que λ=0 sea eigenvalor, pero no se permite que v=0 sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a λ. Podemos enunciar definiciones análogas con matrices.

Definición. Sea AMn(F) una matriz cuadrada. Un escalar λF es un eigenvalor de A si existe un vector XFn distinto de cero (un eigenvector) tal que AX=λX. En este caso el subespacio

ker(λInA):={XFnAX=λX}

es el λ-eigenespacio de A.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si V es un espacio de dimensión finita y T:VV es una transformación lineal, podemos escoger cualquier base de V y asociarle a T su forma matricial, digamos A, en esta base. Los eigenvalores de T son precisamente los eigenvalores de A. ¡Pero cuidado! Los eigenvectores de A dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo 1. Considera la matriz

A=(0110).

Busquemos los eigenvectores y eigenvalores de A, pensando a A como una matriz con entradas complejas. Sea λC un eigenvalor y X un eigenvector asociado. Entonces se cumple la relación AX=λX. Si X=(x1,x2) entonces la condición mencionada es equivalente al par de ecuaciones

x2=λx1,x1=λx2.

Sustituyendo una en la otra obtenemos

x2=λ2x2.

Si x2=0 entonces x1=0 y así X es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces x20 y podemos dividir por x2 a la ecuación previa, de manera que λ2=1, o sea λ=±i. Conversamente, i y i son eigenvalores. En efecto, podemos tomar x2=1 y x1=λ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

ker(λI2A)={(λx2,x2)x2C}

y esto no es más que la recta generada por el vector v=(λ,1)C2. Por lo tanto, vista como una matriz compleja, A tiene dos eigenvalores distintos ±i y dos eigenespacios, los generados por (i,1) y (i,1).

Por otro lado, veamos qué pasa si pensamos a A como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, x2=λ2x2. Podemos reescribirla factorizando el término x2:

(λ2+1)x2=0.

Como λ esta vez es un número real, λ2+1 siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que x2=0, ¡pero entonces x1=0 y así X=0! En conclusión: vista como una matriz con entradas reales, A no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo (AλIn)X=0, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar λF es un eigenvalor de AMn(F) si y sólo si

det(λInA)=0.

Demostración. El sistema (λInA)X=0 tiene soluciones no triviales si y sólo si la matriz λInA no es invertible. A su vez, la matriz λInA no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

◻

Regresemos a nuestra pregunta. Si

A=(a11a12a1na21a22a2nan1an2ann)

entonces la proposición nos dice que podemos calcular los valores propios de A resolviendo la ecuación polinomial

|λa11a12a1na21λa22a2nan1an2λann|=0

en F. Esta es una ecuación polinomial de grado n, y si el grado es mayor a 4 en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema 2. Queremos calcular los eigenvalores de A, donde A está dada por

A=(100001010).

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

|λ1000λ101λ|=0.

Calculando el determinante vemos que esto es de hecho

(λ1)(λ2+1)=0.

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es C entonces los eigenvalores son 1 y ±i. Si trabajamos sobre R entonces tenemos un único eigenvalor: 1.

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema 1. Encuentra todos los números reales x tales que la matriz

A=(1x21)

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio det(λI2A). Es decir, tenemos que trabajar la ecuación

det(λI2A)=|λ1x2λ1|=0.

Que a su vez se reduce a

(λ1)22x=0.

Y para que tenga dos soluciones basta con que 2x sea un número positivo. En efecto, en ese caso podemos despejar y resolver

λ=1±2x.

Como 2x es positivo solo si x lo es, podemos concluir que la condición necesaria y suficiente es que x sea un real positivo. Similarmente, si x es un número negativo no tendremos ningún eigenvalor.

Problema 2. Sea V el conjunto de todas las matrices AM2(C) tales que v=(12) es un eigenvector de A. Demuestra que V es un subespacio de M2(C) y da una base.

Solución. Supongamos que v es un eigenvector de A, con eigenvalor λ, y que es eigenvector de B, con eigenvalor μ. Entonces

(A+cB)(v)=Av+cBv=λv+cμv=(λ+cμ)v

por lo que v es eigenvector de A+cB con eigenvalor λ+cμ. Esto demuestra que V es un subespacio. Para darnos una idea de cómo podría ser una base para V, comencemos con una matriz genérica A=(abcd) tal que AV. Entonces A tiene que satisfacer Av=λv para algún λ. Escribamos esto más explícitamente

(abcd)(12)=(a+2bc+2d)=(λ2λ).

Así se desprenden dos ecuaciones

{a+2b=λc+2d=2λ.

Sabemos que λ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a λ entonces necesitamos alguna de las variables, a o b para determinar a la otra y lo mismo con c y d. Entonces escojamos b y d como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a a y c por sus valores en b y d):

A=(λ2bb2λ2dd)=b(2100)+d(0021)+λ(1020).

Entonces proponemos como base

β={(2100),(0021),(1020)}.

Ya vimos que β genera a V, y dejamos la independencia lineal como ejercicio.

◻

Más adelante…

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz A=(110021001)M3(C).
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz AMn(R) cuyas entradas son puros 2.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si u y v son eigenvectores de A, entonces u+v es eigenvector de A.
    2. Si λ es eigenvalor de A y μ es eigenvalor de B, entonces λμ es eigenvalor de AB.
    3. Si A y B son formas matriciales de una misma transformación T y v es eigenvector de A, entonces v es eigenvector de B.
  5. Considera la transformación derivada en R[x]. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales

Por Blanca Radillo

Introducción

Hoy es la última clase del curso. Ha sido un semestre difícil para todas y todos. El quedarnos en casa, obligados a buscar alternativas digitales que sean de fácil acceso para la mayoría de las personas, aprender a realizar toda nuestra rutina diaria en un mismo espacio; sin dudarlo, un semestre lleno de retos que de una u otra manera, haciendo prueba y error, hemos aprendido a sobrellevar.

El día de hoy terminaremos con el tema de teoría espectral. Veremos algunos problemas donde usaremos las técnicas de búsqueda de eigenvalores y eigenvectores, así como aplicaciones de uno de los teoremas más importante: el Teorema Espectral.

Matrices simétricas, matrices diagonalizables

En entradas anteriores hemos discutido sobre qué condiciones me garantizan que una matriz A es diagonalizable. No volveremos a repetir cuál es la definición de matriz diagonalizable ya que en múltiples ocasiones lo hicimos.

Sabemos que una matriz simétrica en Mn(R) siempre es diagonalizable, gracias al teorema espectral, pero el siguiente problema nos ilustra que si cambiamos de campo F, no tenemos la garantía de que las matrices simétricas en Mn(F) también lo sean.

Problema 1. Demuestra que la matriz simétrica con coeficientes complejos

A=(1ii1)

no es diagonalizable.

Solución. Por la primera proposición de la clase «Eigenvalores y eigenvectores de transformaciones y matrices», si A fuese diagonalizable, es decir, que existe una matriz invertible P y una diagonal D tal que A=P1DP, entonces A y D tienen los mismos eigenvalores. Entonces, encontremos los eigenvalores de A: buscamos λC tal que det(λIA)=0,

det(λIA)=|λ1iiλ+1|=(λ1)(λ+1)i2=λ21+1=λ2=0.

Por lo tanto, el eigenvalor con multiplicidad 2 de A (y también el eigenvalor de D) es λ=0. Si D es de la forma

D=(a00b),

es fácil ver (y calcular) que sus eigenvalores son a y b, pero por lo anterior, podemos concluir que a=b=0, y por lo tanto D es la matriz cero. Si fuese así, A=P1DP=0, contradiciendo la definición de A.

◻

Problema 2. Sea A una matriz simétrica con entradas reales y supongamos que Ak=I para algún entero positivo k. Prueba que A2=I.

Solución. Dado que A es simétrica y con entradas reales, todos sus eigenvalores son reales. Más aún son k-raíces de la unidad, entonces deben ser ±1. Esto implica que todos los eigenvalores de A2 son iguales a 1. Dado que A2 también es simétrica, es diagonalizable y, dado que sus eigenvalores son iguales a 1, por lo tanto A2=I.

◻

Más propiedades de transformaciones lineales y bases ortogonales

En otras clases como Cálculo, Análisis, hablamos de funciones continuas, discontinuas, acotadas, divergentes; mientras que en este curso nos hemos enfocado únicamente en la propiedad de linealidad de las transformaciones. Si bien no es interés de este curso, podemos adelantar que, bajo ciertas condiciones del espacio V, podemos tener una equivalencia entre continuidad y acotamiento de una transformación.

Decimos que la norma de una transformación está definida como

T=supxV0T(x)x.

Por ende, decimos que una transformación es acotada si su norma es acotada, T<.

Problema 1. Sea V un espacio euclideano y sea T una transformación lineal simétrica en V. Sean λ1,,λn los eigenvalores de T. Prueba que

supxV0T(x)x=max1in|λi|.

Solución. Renumerando a los eigenvalores, podemos decir que maxi|λi|=|λn|. Sea e1,,en una base ortonormal de V tal que T(ei)=λiei para todo i. Si xV0, podemos escribirlo como x=x1e1++xnen para algunos reales xi. Entonces, por linealidad de T,

T(x)=i=1nλixiei.

Dado que |λi||λn| para toda i, tenemos que

T(x)x=i=1nλi2xi2i=1nxi2|λn|,

por lo tanto

max1in|λi|=|λn|=T(en)ensupxV0T(x)x|λn|=max1in|λi|.

Obteniendo lo que queremos.

◻

Para finalizar, no olvidemos que una matriz es diagonalizable si y sólo si el espacio tiene una base de eigenvectores, y que está íntimamente relacionado con el teorema espectral.

Problema 2. Encuentra una base ortogonal consistente con los eigenvectores de la matriz

A=17(263632326).

Solución. Para encontrar los eigenvectores, primero encontrar los eigenvalores y, después, para cada eigenvalor, encontrar el/los eigenvectores correspondientes.

Calculemos:

0=det(λIA)=|λ+2/76/73/76/7λ3/72/73/72/7λ6/7|=λ3λ2λ+1=(λ1)(λ21),

entonces los eigenvalores de A son 1,1, (λ=1 tiene multiplicidad 2).

Ahora, hay que encontrar los vectores v=(x,y,z) tal que Av=λv, para todo eigenvalor λ.

Si λ=1,

(λIA)v=17(56361023213)v=0,

reduciendo, obtenemos que v=(3α,2α,α) para todo αR.

Si λ=1, resolviendo de la misma manera (λIA)v=(IA)v=0, tenemos que v=(β,γ,3β+2γ) para todo β,γ. Entonces el conjunto de eigenvectores es

B={v1=(3,2,1),v2=(1,0,3),v3=(0,1,2)}.

Es fácil ver que el conjunto B es linealmente independiente, más aún dim(R3)=3=|B|, por lo tanto, B es la base consistente con los eigenvectores de A.

Agradecemos su esfuerzo por llegar hasta el final a pesar de todas las adversidades. Esperamos pronto volver a ser sus profesores/ayudantes. Mucha suerte en la última parcial, es el último esfuerzo. Pero también les deseamos mucho éxito en su proyecto de vida. ¡Gracias!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de eigenvalores, eigenvectores y polinomio característico.

Por Ayax Calderón

Para esta entrada haremos uso de las definiciones y propiedades básicas de eigenvalores y polinomio característico vistas en las clases del miércoles y viernes de la semana pasada.

Problema 1. Encuentra los valores propios de la matriz.
A=(0110)

Solución. Consideremos a A como una matriz con entradas complejas. Sea λ un eigenvalor y x un vector no nulo tal que Ax=λx. Si x1,x2 son las coordenadas de x, la condición Ax=λx es equivalente a las ecuaciones

x2=λx1,x1=λx2.

Sustituyendo x1 en la primera ecuación se sigue que x2=λ2x2.
Si x2=0, entonces x1=0, lo cual es imposible. Por lo tanto x20 y necesariamente λ2=1, entonces λ{i,i}. Conversamente, i y i son ambos eigenvalores, ya que podemos escoger x2=1 y x1=λ como solución del sistema anterior. Así que vista como matriz compleja, A tiene dos valores propios ±i.

Por otro lado, si vemos a A como matriz con entradas reales, y λR es un eigenvalor y x un eigenvector como arriba, entonces

(λ2+1)x2=0.

Como λ es real, λ2+1 es distinto de cero y así x2=0, luego x1=0 y x=0. Así que, en conclusión, vista como matriz con entradas reales, A no tiene eigenvalores.

Problema 2. Encuentra el polinomio característico y los eigenvalores de la matriz

A=(011101111)M3(F2).

Solución. χA(λ)=det(λI3A)=det(λI3+A) (pues 1=1 en F2).

|λ111λ111λ+1|=|1+λ011+λ1+λ10λλ+1|

La igualdad anterior se obtiene de sumar la segunda columna a la primera y la tercera columna a la segunda.

Ahora vemos que

|λ+1011+λ1+λ10λλ+1|=(λ+1)|10111+λ10λλ+1|

=(λ+1)(λ+1)2=(λ+1)3.

Por lo tanto, χA(λ)=(λ+1)3, y así el único eigenvalor es 1.

Problema 3. Sean a0,a1,,an1F y sea

A=(0000a01000a10100a20001an1).

Demuestra que

χA=xnan1xn1a0.

Demostración. Sea P=xnan1xn1a1xa0. Considera la matriz

B=xInA=(x000a01x00a101x0a20001xan1).

Sumando a la primera fila de B la segunda fila multiplicada por x, la tercera fila multiplicada por x2, , la nésima fila multiplicada por xn1 obtenemos la matriz.

C=(0000P1x00a101x0a20001xan1).

Tenemos que χA=detB=detC y, desarrollando detC con respecto a la primera fila, obtenemos

detC=(1)n+1P|1x0010001|=(1)n+1P(1)n1=P.

◻

Problema 4. Sea AMn(F) una matriz con polinomio característico
χA(t)=(1)ntn++a1t+a0.
Demuestra queχA(0)=a0. Deduce que A es invertible si y sólo si a00.

Demostración. Es fácil ver que χA(0)=a0, ya que a0 es el término independiente. Por otro lado, recordamos que χA(t)=det(AtIn), entonces χA(0)=detA. se sigue que χA(0)=a0=detA, y por la última igualdad sabemos que A es invertible si y sólo si a00.

◻

Problema 5. Demuestra que cualquier matriz AMn(R) es suma de dos matrices invertibles.

Demostración. Veamos que existen B,CMn(R) tales que A=B+C.
Definimos la matriz B como: bii=1 si aii=0 y bii=aii2 si aii0,bij=aij si i>j y bij=0 si i<j.

Similarmente definimos la matriz C como: cii=1 si aii=0, cii=aii2 si aii0, cij=aij si i<j y cij=0 si i>j.

Por construcción B y C son matrices triangulares con todas sus entradas diagonales distintas de cero. Por lo tanto 0{detB,detC}, es decir, B y C son invertibles. Además por la manera en la que construimos las matrices B y C se tiene que A=B+C.

◻

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Por Leonardo Ignacio Martínez Sandoval

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea V un espacio euclideano y T:VV una transformación simétrica. Entonces, existe una base ortonormal de V que consiste de eigenvectores de T.

Teorema. Sea A una matriz simétrica en Rn. Entonces, existe una matriz ortogonal P y una matriz diagonal D, ambas en Rn, tales que A=P1DP.

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz A en Mn(F) es simétrica si es igual a su transpuesta.
  • Una matriz A en Mn(F) es ortogonal si es invertible y A1=tA.
  • Si T:VV es una transformación lineal de un espacio vectorial V a sí mismo y W es un subespacio de V, entonces decimos que W es estable bajo T si T(W)W.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si W es un subespacio de un espacio Euclideano V, entonces W es el conjunto de todos los vectores que de V que son ortogonales a todos los vectores de W.
  • Una matriz A en Mn(F) es diagonalizable si existen matrices P y D en Mn(F) con P invertible, D diagonal y tales que A=P1DP.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz A en Mn(R) tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente n raíces en C, contando multiplicidades. Si alguna de estas raíces r no es real, entonces A no puede ser diagonalizable en Mn(R). La razón es que A sería similar a una matriz diagonal D, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como A y D comparten eigenvalores (por ser similares), entonces r tendría que ser una entrada de D, pero entonces D ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea A una matriz simétrica en Mn(R) y λ una raíz del polinomio característico de A. Entonces, λ es un número real.

Demostración. El polinomio característico de A es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que λ debe ser un número en C. Así, podemos escribirlo de la forma λ=a+ib, con a y b números reales. Lo que mostraremos es que b=0.

Se tiene que λ es un eigenvalor de A vista como matriz en Mn(C), y por lo tanto le corresponde un eigenvector U en Cn, es decir, un U0 tal que AU=λU. Este vector U lo podemos separar en partes reales e imaginarias con vectores V y W en Rn tales que U=V+iW.

En estos términos,
AU=A(V+iW)=AV+iAWyλU=(a+ib)(V+iW)=(aVbW)+i(aW+bV),

de modo que igualando partes reales e imaginarias en la expresión AU=λU tenemos que
AV=aVbWyAW=aW+bV.

Como A es simétrica, tenemos que

(1)AV,W=tAV,W=V,AW.

Estudiemos las expresiones en los extremos, reemplazando los valores de AV y AW que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

AV,W=aVbW,W=aV,WbW,W=aV,WbW2,

y que

V,AW=V,aW+bV=aV,W+bV,V=aV,W+bV2.

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

aV,WbW2=aV,W+bV2,

que se simplifica a b(V2+W2)=0.

Estamos listos para dar el argumento final. Como U=V+iW es un eigenvector, entonces no es nulo, de modo que no es posible que V y W sean ambos el vector 0 de Rn. Como el producto interior es positivo definido, entonces alguna de las normas V o W no es cero, de modo que V2+W20.

Concluimos que b=0, y por lo tanto que λ es un número real.

◻

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a C para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si V es un espacio Euclideano y T:VV es una transformación lineal, entonces decimos que T es simétrica si para todo par de vectores u y v en V se tiene que T(u),v=u,T(v). Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea V un espacio Eucideano y T:VV una transformación lineal simétrica. Sea W un subespacio de V estable bajo T. Entonces:

  • W también es estable bajo T y
  • Las restricciones de T a W y a W son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si w pertenece a W, entonces T(w) también, es decir, que T(w) es ortogonal a todo vector v en W.

Tomemos entonces un vector v en W. Como W es estable bajo T, tenemos que T(v) está en W, de modo que w,T(v)=0. Como T es simétrica, tenemos entonces que T(w),v=w,T(v)=0. Esto es lo que queríamos probar.

Para la segunda parte, si T1 es la restricción de T1 a W y tomamos vectores u y v en W, tenemos que
T1(u),v=T(u),v=u,T(v)=u,T1(v),

lo cual muestra que T1 es simétrica. La prueba para W es análoga y queda como tarea moral.

◻

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en Mn(F) sea diagonalizable, y que exista una base especial para Fn. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea A una matriz en Mn(F). Las siguientes dos afirmaciones son equivalentes:

  • A es diagonalizable, es decir, existen matrices P y D en Mn(F), con P invertible y D diagonal tales que A=P1DP.
  • Existe una base para Fn que consiste de eigenvectores de A.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz B en Mn(F) de vectores columna C1,,Cn, entonces los vectores columna del producto AB son AC1,ACn. Además, si D es una matriz diagonal en Mn(F) con entradas en la diagonal d1,,dn, entonces los vectores columna de BD son d1C1,,dnCn.

Comencemos la prueba del teorema. Supongamos que A es diagonalizable y tomemos matrices P y D en Mn(F) con P invertible y D diagonal de entradas d1,,dn, tales que A=P1DP. Afirmamos que los vectores columna C1,,Cn de P1 forman una base de Fn que consiste de eigenvectores de A.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son n, como la dimensión de Fn. Esto prueba que son una base.

De A=P1DP obtenemos la igualdad AP1=P1D. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada j=1,,n se cumple ACj=djCj. Como Cj forma parte de un conjunto linealmente independiente, no es el vector 0. Así, Cj es un eigenvector de A con eigenvalor dj. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de Fn que consiste de eigenvectores C1,,Cn de A. Para cada j=1,,n, llamemos λj al eigenvalor correspondiente a Cj, y llamemos D a la matriz diagonal con entradas λ1,,λn.

Como C1,,Cn son vectores linealmente independientes, la matriz B cuyas columnas son C1,,Cn es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna j de la matrizAB es ACj y la columna j de la matriz BD es λjCj. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que AB=BD, o bien, reescribiendo esta igualdad, que A=BDB1. Así, la matriz invertible P=B1 y la matriz diagonal D diagonalizan a A.

◻

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz P no sólo será invertible, sino que además será ortogonal.

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un ejemplo de una matriz simétrica en Mn(C) cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de T a W es simétrica.
  • Realiza la demostración de que si A y B son matrices en Mn(F) y los vectores columna de B son C1,,Cn, entonces los vectores columna de AB son AC1,,ACn. También, prueba que si D es diagonal de entradas d1,,dn, entonces las columnas de BD son d1C1,,dnCn.
  • Encuentra una matriz A con entradas reales similar a la matriz (100050003), tal que ninguna de sus entradas sea igual a 0. Encuentra una base ortogonal de eigenvectores de A para R3.
  • Diagonaliza la matriz (2000020019730765724767207487237).

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»