Archivo de la etiqueta: álgebra lineal

Álgebra Lineal I: Aplicaciones de bases ortogonales y descomposición de Fourier

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos hablando de bases ortogonales. Como recordatorio, para poder hablar de esto, necesitamos un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior, y por lo tanto podemos hablar de normas. Una base ortogonal de $V$ es una base en la cual cada par de vectores tiene producto interior $0$. Es ortonormal si además cada elemento es de norma $1$. Ahora veremos que dada una base ortonormal, podemos hacer una descomposición de Fourier de los vectores de $V$, que nos permite conocer varias de sus propiedades fácilmente.

La teoría que discutiremos está basada en el contenido de la Sección 10.5 del libro Essential Lineal Algebra with Applications de Titu Andreescu. Las últimas dos secciones de esta entrada son un poco abstractas, pero son la puerta a ideas matemáticas interesantes con muchas aplicaciones dentro de la matemática misma y en el mundo real.

Descomposición de Fourier

Es fácil conocer las coordenadas de un vector en términos de una base ortonormal.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal con este producto interior, entonces para cualquier vector $v$, la coordenada de $v$ con respecto a $e_i$ es $\langle v, e_i \rangle$.

Demostración. Expresemos a $v$ en la base $B$ como $$v=\alpha_1e_1+\ldots+\alpha_n e_n.$$

Tomemos $j$ en $1,2,\ldots,n$. Usando la linealidad del producto interior, tenemos que
\begin{align*}
\langle v, e_j \rangle &= \left \langle \sum_{i=1}^n \alpha_i e_i, e_j \right \rangle\\
&=\sum_{i=1}^n \alpha_i \langle e_i,e_j \rangle.
\end{align*}

Como $B$ es base ortonormal, tenemos que en el lado derecho $\langle e_j,e_j\rangle = 1$ y que si $i\neq j$ entonces $\langle e_i, e_j\rangle=0$. De esta forma, el lado derecho de la expresión es $\alpha_j$, de donde concluimos que $$\langle v, e_j \rangle = \alpha_j,$$ como queríamos.

$\square$

Definición. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal, a $$v=\sum_{i=1}^n \langle v, e_i \rangle e_i$$ le llamamos la descomposición de Fourier de $v$ con respecto a $B$.

Ejemplo. Trabajemos en el espacio vectorial $V=\mathbb{R}_2[x]$ de polinomios reales de grado a lo más $2$. Ya mostramos anteriormente (con más generalidad) que $$\langle p,q \rangle = p(-1)q(-1)+p(0)q(0)+p(1)q(1)$$ es un producto interior en $V$.

Los polinomios $\frac{1}{\sqrt{3}}$, $\frac{x}{\sqrt{2}}$ y $\frac{3x^2-2}{\sqrt{6}}$ forman una base ortonormal, lo cual se puede verificar haciendo las operaciones y queda de tarea moral. ¿Cómo expresaríamos a la base canónica $\{1,x,x^2\}$ en términos de esta base ortonormal? Los primeros dos son sencillos:
\begin{align}
1&=\sqrt{3}\cdot \frac{1}{\sqrt{3}}\\
x&=\sqrt{2}\cdot \frac{x}{\sqrt{2}}.
\end{align}

Para encontrar el tercero, usamos el teorema de descomposición de Fourier. Para ello, calculamos los siguientes productos interiores:

\begin{align*}
\left\langle x^2, \frac{1}{\sqrt{3}}\right\rangle &= \frac{2}{\sqrt{3}},\\
\left \langle x^2, \frac{x}{\sqrt{2}}\right\rangle &=0,\\
\left\langle x^2, \frac{3x^2-2}{\sqrt{6}} \right\rangle &=\frac{2}{\sqrt{6}}.
\end{align*}

De este modo, $$x^2= \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}}\cdot \frac{3x^2-2}{\sqrt{6}}.$$

$\triangle$

Norma usando la descomposición de Fourier

Cuando tenemos bases ortogonales u ortonormales, también podemos calcular la norma de un vector fácilmente.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortogonal con este producto interior, entonces para cualquier vector $$v=\alpha_1e_1+\ldots+\alpha_ne_n,$$ tenemos que $$\norm{v}^2 = \sum_{i=1}^n \alpha_i^2 \norm{e_i}^2.$$

En particular, si $B$ es una base ortonormal, entonces $$\norm{v}^2 = \sum_{i=1}^n \langle v, e_i \rangle^2.$$

Demostración. Usando la definición de norma y la bilinealidad del producto interior, tenemos que
\begin{align*}
\norm{v}^2 &= \langle v,v \rangle\\
&=\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle e_i, e_j\rangle.
\end{align*}

Como $B$ es base ortogonal, los únicos sumandos que quedan a la derecha son aquellos en los que $i=j$, es decir,
\begin{align*}
\norm{v}^2&=\sum_{i=1}^n \alpha_i^2 \langle e_i, e_i\rangle\\
&=\sum_{i=1}^n \alpha_i^2 \norm{e_i}^2\\
\end{align*}

como queríamos mostrar.

Si $B$ es base ortonormal, cada $\norm{e_i}^2$ es $1$, y por el teorema anterior, $\alpha_i=\langle v, e_i\rangle$. Esto prueba la última afirmación.

$\square$

Ejemplo. Continuando con el ejemplo anterior, como ya escribimos a $x^2$ en términos de la base ortogonal, podemos encontrar fácilmente su norma. Tendríamos que
\begin{align*}
\norm{x^2}^2&=\left(\frac{2}{\sqrt{3}}\right)^2+\left(\frac{2}{\sqrt{6}}\right)^2\\
&=\frac{4}{3}+\frac{4}{6}\\
&=2.
\end{align*}

De esta forma, $\norm{x^2}=\sqrt{2}$. En efecto, esto es lo que obtendríamos si hubiéramos calculado la norma de $x^2$ con la definición.

$\triangle$

Aplicación de descomposición de Fourier a polinomios

Vamos a continuar con un ejemplo que vimos en la entrada anterior. Recordemos que estábamos trabajando en $V=\mathbb{R}_n[x]$, que habíamos elegido $n+1$ reales distintos $x_0,\ldots,x_n$, y que a partir de ellos definimos $$\langle P, Q\rangle = \sum_{i=0}^n P(x_i)Q(x_i).$$ Mostramos que $\langle \cdot , \cdot \rangle$ es un producto interior y que para $j=0,\ldots,n$ los polinomios $$L_i=\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}$$ forman una base ortonormal de $V$.

Por el teorema de descomposición de Fourier, tenemos que cualquier polinomio $P$ de grado a lo más $n+1$ con coeficientes reales satisface que $$P=\sum_{i=0}^n \langle P, L_i \rangle L_i,$$ lo cual en otras palabras podemos escribir como sigue.

Teorema (de interpolación de Lagrange). Para $P$ un polinomio con coeficientes en los reales de grado a lo más $n$ y $x_0,x_1,\ldots,x_n$ reales distintos, tenemos que $$P(x)=\sum_{i=0}^n P(x_i) \left(\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}\right).$$

El teorema de interpolación de Lagrange nos permite decir cuánto vale un polinomio de grado $n$ en cualquier real $x$ conociendo sus valores en $n+1$ reales distintos. Ya habíamos mostrado este teorema antes con teoría de dualidad. Esta es una demostración alternativa con teoría de bases ortogonales y descomposición de Fourier.

Aplicación de ideas de Fourier en funciones periódicas

También ya habíamos visto que $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx$$ define un producto interior en el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$.

En ese ejemplo, definimos \begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*} y $C_0(x)=\frac{1}{\sqrt{2\pi}}$, y mostramos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ era un conjunto ortonormal.

No se puede mostrar que $\mathcal{F}$ sea una base ortonormal, pues el espacio $V$ es de dimensión infinita, y es bastante más complicado que los espacios de dimensión finita. Sin embargo, la teoría de Fourier se dedica a ver que, por ejemplo, la familia $\mathcal{F}$ es buena aproximando a elementos de $V$, es decir a funciones continuas y periódicas de periodo $2\pi$. No profundizaremos mucho en esto, pero daremos algunos resultados como invitación al área.

Para empezar, restringimos a la familia $\mathcal{F}$ a una familia más pequeña:

$$\mathcal{F}_n:=\{C_m:0\leq m \leq n\}\cup \{S_m:1\leq m \leq n\}$$

Motivados en la descomposición de Fourier para espacios Euclideanos, definimos a la $n$-ésima serie parcial de Fourier de una función $f$ en $V$ a la expresión $$S_n(f)=\sum_{g\in \mathcal{F}_n} \langle f, g \rangle g.$$ Haciendo las cuentas, se puede mostrar que $$S_n(f)=\frac{a_0(f)}{2}+\sum_{k=1}^n \left(a_k(f)\cos(kx)+b_k(f)\sin(kx)\right),$$ en donde para $k\geq 1$ tenemos $$a_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(kx)\, dx$$ y $$b_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(kx)\, dx.$$

A los números $a_k$ y $b_k$ se les conoce como los $k$-ésimos coeficientes de Fourier. Aunque $\mathcal{F}$ no sea una base para $V$, sí es buena «aproximando» a elementos de $V$. Por ejemplo, un resultado lindo de Dirichlet dice que si $f$ y su derivada son continuas, entonces $$\lim_{n\to \infty} S_n(f)(x) = f(x).$$ Este tipo de teoremas de aproximación se estudian con más a detalle en un curso de análisis matemático avanzado o de análisis de Fourier.

Considera ahora $W_n$ el subespacio de $V$ generado por $\mathcal{F}_n$. Tomemos una función $f$ cualquiera en $V$. La $n$-ésima serie de Fourier de $f$ es un elemento de $W_n$. De hecho, es precisamente la proyección de $f$ en $W_n$. Por esta razón, $$\norm{f_n}^2\leq \norm{f}^2<\infty$$

Podemos calcular la norma de $f_n$, usando el resultado para espacios Euclideanos en el espacio (de dimensión finita) $W_n$. Haciendo esto, podemos reescribir la desigualdad anterior como sigue:

$$\frac{a_0(f)^2}{2}+\sum_{k=1}^n(a_k(f)^2+b_k(f)^2)\leq \frac{1}{\pi} \norm{f}^2.$$

El lado derecho es constante, y en el lado izquierdo tenemos una suma parcial de la serie $$\sum_{k\geq 1}(a_k(f)^2+b_k(f)^2).$$ Los términos son positivos y la sucesión de sumas parciales es acotada, así que la serie converge. Entonces, necesariamente la sucesión de términos debe converger a cero. Acabamos de esbozar la demostración del siguiente teorema.

Teorema (de Riemann-Lebesgue). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\lim_{n\to \infty} a_n(f) = \lim_{n\to \infty} b_n(f) = 0.$$

De hecho, se puede mostrar que la desigualdad que mostramos se convierte en igualdad cuando $n\to \infty$. Este es un resultado bello, profundo y cuya demostración queda fuera del alcance de estas notas.

Teorema (de Plancherel). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\frac{a_0(f)^2}{2}+\sum_{k=1}^\infty(a_k(f)^2+b_k(f)^2)= \frac{1}{\pi} \int_{-\pi}^\pi f(x)^2\, dx.$$

Aunque no daremos la demostración de este resultado, en una entrada posterior veremos cómo podemos aplicarlo.

Más adelante…

En esta entrada seguimos estudiando las bases ortogonales. Usamos este concepto para hacer una descomposición de Fourier, para conocer propiedades de V y obtener otra manera de calcular la norma de un vector. Así mismo, vimos aplicaciones de la descomposición a polinomios, viendo el teorema de la interpolación de Lagrange ya previamente demostrado mediante teoría de dualidad.

Hasta ahora solo hemos hablado de cómo ver si una base es ortonomal y algunas propiedades de estas bases y conjuntos, en la siguiente entrada hablaremos de un método pata encontrar estas bases ortonormales usando el proceso de Gram-Schmidt.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que los tres polinomios del ejemplo de descomposición de Fourier en efecto forman una base ortogonal.
  • Calcula la norma de $x^2$ con el producto interior del ejemplo de descomposición de Fourier usando la definición, y verifica que en efecto es $\sqrt{2}$.
  • Con la misma base ortonormal $B$ de ese ejemplo, calcula las coordenadas y la norma del polinomio $1+x+x^2$.
  • Verifica que todo lo que mencionamos se cumple con el producto punto en $\mathbb{R}^n$ y con la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\triangle$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\triangle$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Producto interior y desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, platicamos acerca de formas bilineales y de formas cuadráticas. Ahora veremos un tipo de formas bilineales especiales: las positivas y las positivas definidas. Las formas positivas definidas nos ayudan a definir qué es un producto interior. Esta es una noción fundamental que más adelante nos ayudará a definir distancias y ángulos.

Formas bilineales positivas y positivas definidas

Para hablar de geometría en espacios vectoriales, la siguiente noción es fundamental. Es importante notar que es una definición únicamente para formas bilineales simétricas.

Definición. Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo vector $x$ de $V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo vector $x\neq 0$ de $v$.

Tenemos una noción análoga para formas cuadráticas.

Definición. Sea $q:V\to \mathbb{R}$ una forma cuadrática con forma polar $b$. Diremos que $q$ es positiva si $b$ lo es, y diremos que es positiva definida si $b$ lo es.

Ejemplo 1. Como ya vimos antes, el producto punto de $\mathbb{R}^n$ es una forma bilineal simétrica. También es positiva definida, pues si tenemos $x=(x_1,\ldots,x_n)$, tenemos que $$x\cdot x = x_1^2+\ldots+x_n^2\geq 0,$$ y esta es una igualdad si y sólo si $x_1=\ldots=x_n=0$, lo cual sucede si y sólo si $x=0$.

$\triangle$

Ejemplo 2. Considera $V=\mathbb{R}_2[x]$ y consideremos la forma bilineal $b$ dada por $$b(p,q)=p(0)q(1)+p(1)q(0).$$ Esta es una forma bilineal simétrica pues \begin{align*}b(p,q)&=p(0)q(1)+p(1)q(0)\\&=q(0)p(1)+q(1)p(0)\\&=b(q,p).\end{align*} Notemos que $$b(p,p)=2p(0)p(1),$$ que no necesariamente es positivo. Por ejemplo, si tomamos el polinomio $p(x)=x-\frac{1}{2}$, tenemos que \begin{align*}b(p,p)&=2p(0)p(1)\\&=-2\cdot\frac{1}{2}\cdot\frac{1}{2}\\&=-\frac{1}{2}.\end{align*} Así, esta es una forma bilineal simétrica, pero no es positiva (y por lo tanto tampoco es positiva definida).

$\triangle$

Problema. Considera la forma cuadrática $Q$ en $M_{2}(\mathbb{R})$ que suma el cuadrado de las entradas de la diagonal de una matriz, es decir, aquella dada por $$Q\begin{pmatrix} a & b\\c & d\end{pmatrix}=a^2+d^2.$$ Determina su forma polar y si es positiva o positiva definida.

Solución. Para encontrar la forma polar $B$ de $Q$, usamos la identidad de polarización
\begin{align*}
B&\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},\begin{pmatrix} e & f\\ g & h \end{pmatrix}\right)\\
&=\frac{(a+e)^2+(d+h)^2-a^2-e^2-d^2-h^2}{2}\\
&=\frac{2ae+2dh}{2}\\
&=ae+dh.
\end{align*}

Como $Q\begin{pmatrix}a&b\\c&d\end{pmatrix}=a^2+d^2\geq 0$, tenemos que $Q$ (y $B$) son positivas. Sin embargo, $Q$ no es positiva definida (ni $B$), pues por ejemplo, $$Q\begin{pmatrix}0&1\\1&0\end{pmatrix} = 0.$$

Producto interior

Estamos listos para definir aquellos espacios sobre los que podemos hacer geometría.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$

  • Un producto interior en $V$ es una forma bilineal simétrica y positiva definida.
  • Decimos que $V$ es un espacio Euclideano si es de dimensión finita y está equipado con un producto interior.

Estamos siguiendo la convención del libro de Titu Andreescu, en donde es importante pedir que $V$ sea de dimensión finita para ser Euclideano.

Cuando estamos hablando de espacios con producto interior, o de espacios Euclideanos, tenemos una forma bilineal simétrica y positiva definida $b$. Sin embargo, en vez de usar constantemente $b(x,y)$, para simplificar la notación usaremos simplemente $\langle x, y\rangle$.

Definición. Si $V$ es un espacio con producto interior $\langle \cdot,\cdot \rangle$, definimos la norma de un vector $x$ como $$\Vert x \Vert =\sqrt{\langle x, x \rangle}.$$

Ejemplo. Como dijimos arriba, el producto punto en $\mathbb{R}^n$ es una forma bilineal simétrica, así que es un producto interior. Como $\mathbb{R}^n$ es de dimensión finita, entonces es un espacio Euclideano.

La norma de un vector $x=(x_1,\ldots,x_n)$ está dada por $\Vert x \Vert = \sqrt{x_1^2+\ldots+x_n^2},$ y geométricamente se interpreta como la distancia de $x$ al origen.

Un ejemplo más concreto es $\mathbb{R}^4$, en donde la norma del vector $(1,2,3,1)$ es $\sqrt{1^2+2^2+3^2+1^2}=\sqrt{15}$.

$\triangle$

La notación de producto interior quizás te recuerde la notación que se usa cuando hablamos de dualidad. Sin embargo, es muy importante que distingas los contextos. En el caso de dualidad, tenemos $$\langle \cdot, \cdot \rangle: V^\ast\times V \to \mathbb{R},$$ y en este contexto de producto interior tenemos $$\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}.$$ Más adelante, puede que te encuentres en tu preparación matemática con el teorema de representación de Riesz, a partir del cual tendrá sentido que se use la misma notación.

Desigualdad de Cauchy-Schwarz

A continuación presentamos un resultado fundamental es espacios con formas bilineales positivas y positivas definidas.

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se alcanza la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Demostración. Supongamos primero solamente que $b$ es positiva. Consideremos la función $f:\mathbb{R}\to \mathbb{R}$ dada por $f(t)=q(x+ty)$. Como $q$ es forma cuadrática positiva, tenemos que $f(t)\geq 0$ para todo real $t$. Por otro lado, expandiendo y usando que $b$ es simétrica, tenemos que
\begin{align*}
f(t)&=q(x+ty)\\
&=b(x+ty,x+ty)\\
&=b(x,x)+2b(x,y)\cdot t + b(y,y) \cdot t^2\\
&=q(x) + 2b(x,y)\cdot t + q(y) \cdot t^2.
\end{align*}

En esta expresión, $q(x)$, $2b(x,y)$ y $q(y)$ son reales, así que $f(t)$ es un polinomio cuadrático en $t$. Como $f(t)\geq 0$ para todo $t$ en $\mathbb{R}$, el discriminante de este polinomio es no positivo, en otras palabras, $$(2b(x,y))^2-4q(x)q(y)\leq 0.$$

Sumando $4q(x)q(y)$ y dividiendo entre $4$ ambos lados de la desigualdad, obtenemos que $$b(x,y)^2\leq q(x)q(y),$$ la cual es la desigualdad que queremos.

Si $x$ y $y$ son linealmente dependientes, podemos despejar a uno en términos del otro. Sin perder generalidad, podemos suponer que $x=\alpha y$. En este caso, $$b(\alpha y,y)^2=\alpha^2 b(y,y)=q(\alpha(y))q(y),$$ así que se da la igualdad.

Ahora, supongamos además que $b$ es positiva definida y que se da la igualdad. Si esto sucede, el discriminante del polinomio cuadrático de arriba es igual a $0$ y por lo tanto el polinomio tiene una raíz $t$. En otras palabras, $q(x+ty)=0$. Pero como $q$ es positiva definida, esto implica que $x+ty=0$, de donde $x$ y $y$ son linealmente dependientes. Así, si $x$ y $y$ son linealmente independientes, tenemos que la desigualdad es estricta.

$\square$

El siguiente caso particular es uno de los más importantes y los más usados, por lo cual amerita que lo enunciemos separadamente.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior $\langle \cdot, \cdot \rangle$. Para cualesquiera $x,y$ en $V$ se cumple $|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert$.

Puede que te preguntes por qué enfatizamos los resultados de desigualdades. En varias partes de tu formación matemática trabajarás con espacios vectoriales en donde quieres hacer cálculo. Ahí, se define la convergencia y los límites en términos de una norma. Las desigualdades que probemos para espacios vectoriales son útiles para cuando se quiere demostrar la validez de ciertos límites. Más adelante mencionaremos algunas cosas adicionales al respecto.

Más adelante…

En esta entrada definimos el concepto de producto interior y vimos cómo el producto interior induce una norma en el espacio vectorial. El concepto de norma nos permite generalizar la noción de distancia y esto nos permitirá ver cómo se puede hacer cálculo en espacios vectoriales.

En las siguientes entradas veremos cómo se define esta norma para diferentes espacios vectoriales con diferentes productos interiores. Podremos ver entonces cómo se generalizan otras nociones que ya hemos visto en cursos anteriores; como el concepto de ángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la función $q(w,x,y,z)=wx+yz$. Muestra que es una forma cuadrática en $\mathbb{R}^4$. Encuentra su forma polar y determina si es una forma cuadrática positiva y/o positiva definida.
  • Muestra que $$q(w,x,y,z)=x^2+y^2+z^2+xy+yz+zx$$ es una forma cuadrática en $\mathbb{R}^4$ y determina si es positiva y/o positiva definida.
  • Considera $V=\mathcal{C}[0,1]$ el espacio vectorial de funciones continuas en el intervalo $[0,1]$. Muestra que $$\langle f,g\rangle = \int_0^1 f(x)g(x)\, dx$$ define un producto interior en $V$. ¿Es $V$ un espacio Euclideano? Determina la norma de la función $f(x)=x^3$.
  • Sea $V=\mathbb{R}_2[x]$ el espacio vectorial de polinomios con coeficientes reales y de grado a lo más $1$. Muestra que $$\langle p,q\rangle = p(0)q(0)+p(1)q(1)+p(2)q(2)$$ hace a $V$ un espacio Euclideano.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de ortogonalidad, ecuaciones e hiperplanos

Por Ayax Calderón

Introducción

En esta entrada ejercitaremos los conceptos introducidos recientemente. Abordamos los temas de espacio ortogonal e hiperplanos. Para ello, resolveremos problemas de ortogonalidad relacionados con encontrar una base para el espacio ortogonal y de escribir subespacios en términos de ecuaciones e intersecciones de hiperplanos.

Problemas resueltos de espacio ortogonal

Problema 1. Sea $S=\{x^3+x, x^2+x ,-x^3+x^2+1\} \subseteq \mathbb{R}_3[x]$.
Describe $S^{\bot}$ dando una base de este espacio.

Solución. Una forma lineal $l$ sobre $\mathbb{R}_3[x]$ es de la forma

$l(a_0 + a_1x+a_2x^2+a_3x^3)=aa_0+ba_1+ca_2+da_3$

para algunos $a, b,c,d\in \mathbb{R}$, pues basta decidir quiénes son $a=l(1)$, $b=l(x)$, $c=l(x^2)$ y $d=l(x^3)$.

La condición $l\in S^{\bot}$ es equivalente a

$l(x^3+x)=l(x^2+x)=l(-x^3+x^2+1)=0.$

Esto es
\begin{align*}
l(x^3+x)&=b+d=0\\
l(x^2+x)&=b+c=0\\
l(-x^3+x^2+1)&=a+c-d=0.
\end{align*}

La matriz asociada al sistema es

$A=\begin{pmatrix}
0 & 1 & 0 & 1\\
0 & 1 & 1 & 0\\
1 & 0 & 1 & -1\end{pmatrix}$

y su forma escalonada reducida es

$A_{red}=\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 1\\
0 & 0 & 1 & -1\end{pmatrix}.$

Así, $d$ es variable libre y \begin{align*} a&=0\\ b&=-d\\ c&=d.\end{align*}

De aquí, el conjunto de soluciones del sistema es
$$\{(0,-u,u,u) : u\in \mathbb{R}\}.$$

Las correspondientes formas lineales son $$l_u(a_0+a_1x+a_2x^2+a_3x^3)=u(-a_1+a_2+a_3).$$

Este es un subespacio de dimensión $1$, así que para determinar una base para $S^{\bot}$, basta con elegir una de estas formas lineales con $u\neq 0$, por ejemplo, para $u=1$ tenemos
$$l_1(a_o+a_1x+a_2x^2+a_3x^3)=-a_1+a_2+a_3.$$

$\triangle$

Problema 2. Sea $V$ un espacio vectorial sobre un campo $F$, sea $V^\ast$ su espacio dual y tomemos subconjuntos $S, S_1, S_2\subseteq V^\ast$ tales que $S_1\subseteq S_2$. Prueba lo siguiente.

  1. $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. $S\subseteq (S^{\bot})^{\bot}$.

Solución.

  1. Sea $l\in S_2^{\bot}$. Por definición $l(s)=0$ para toda $s\in S_2$.
    Luego, si $s\in S_1$, entonces $s\in S_2$ y así $l(s)=0$. Por consiguiente $l\in S_1^{\bot}$. Concluimos $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. Sea $s\in S$. Para cualquier $l\in S^{\bot}$ se cumple que $l(s)=0$ y así $s\in (S^{\bot})^{\bot}$

$\square$

Observación. El problema anterior también es cierto si suponemos que $S, S_1, S_2\subseteq V$ tales que $S_1\subseteq S_2$ y la prueba es idéntica a la anterior.

Observación. Por muy tentador que sea pensar que la igualdad se da en el inciso 2 del problema anterior, esto es totalmente falso: $(S^{\bot})^{\bot}$ es un subespacio de $V$ (o de $V^\ast$), mientras que no hay razón para que $S$ lo sea, pues este es solamente un subconjunto arbitrario de $V$ (o $V^\ast$). Como vimos en una entrada anterior, la igualdad se da si $S$ es un subespacio de $V$ (o de $V^\ast$) cuando $V$ es un subespacio de dimensión finita.

Problemas resueltos de ecuaciones lineales y de hiperplanos

Veamos ahora problemas de ortogonalidad relacionados con encontrar expresiones para un subespacio en términos de ecuaciones lineales y de hiperplanos.

Problema 1. Sea $W$ el subespacio de $\mathbb{R}^4$ generado por los vectores

$v_1=(1,1,0,1)$
$v_2=(1,2,2,1).$

Encuentra ecuaciones lineales en $\mathbb{R}^4$ cuyo conjunto solución sea $W$.

Solución. Necesitamos encontrar una base para $W^{\bot}$.
Recordemos que $W^{\bot}$ consiste de todas las formas lineales

$l(x,y,z,t)=ax+by+cz+dt$

tales que $l(v_1)=l(v_2)=0$, es decir
\begin{align*}
a+b+d&=0\\
a+2b+2c+d&=0.
\end{align*}

La matriz asociada al sistema anterior es

$A=\begin{pmatrix}
1 & 1 & 0 & 1\\
1 & 2 & 2 & 1\end{pmatrix}$

y por medio de reducción gaussiana llegamos a que su forma reducida escalonada es

$A_{red}=\begin{pmatrix}
1 & 0 & -2 & 1\\
0 & 1 & 2 & 0\end{pmatrix}.$

De aquí, $c$ y $d$ son variables libres y $a$ y $b$ son variables pivote determinadas por
\begin{align*}a&=2c-d\\b&=-2c.\end{align*}

Por lo tanto,
\begin{align*}
l(x,y,z,t)&=(2c-d)x-2cy+cz+dt\\
&=c(2x-2y+z)+d(-x+t).
\end{align*}

Así, deducimos que una base para $W^{\bot}$ está dada por

$l_1(x,y,z,t)=2x-2y+z$ y $l_2(x,y,z,t)=-x+t$

y por consiguiente $W=\{v\in \mathbb{R}^4 : l_1(v)=l_2(v)=0\}$, de donde $$l_1(v)=0, l_2(v)=0$$ son ecuaciones cuyo conjunto solución es $W$.

$\triangle$

Problema 2. Considera el espacio vectorial $V=\mathbb{R}_3[x]$. Escribe el subespacio vectorial generado por $p(x)=1-2x^2$ y $q(x)=x+x^2-x^3$ como la intersección de dos hiperplanos linealmente independientes en $V$.

Solución. Sea $\mathcal{B}=\{1,x,x^2,x^3\}=\{e_1,e_2,e_3,e_4\}$ la base canónica de $V$.

Entonces

\begin{align*}
p(x)&=e_1-2e_3\\
q(x)&=e_2+e_3-e_4.
\end{align*}

Escribir $W=\text{span}(p(x),q(x))$ como intersección de dos hiperplanos es equivalente a encontrar dos ecuaciones que definan a $W$, digamos $l_1(v)=l_2(v)=0$ pues entonces $$W=H_1 \cap H_2,$$ donde $H_1=\ker(l_1)$ y $H_2=\ker(l_2)$.

Así que sólo necesitamos encontrar una base $l_1,l_2$ de $W^{\bot}$.

Recordemos que una forma lineal en $\mathbb{R}_3[x]$ es de la forma $$l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)=ax_1+bx_2+cx_3+dx_4$$

para algunos $a,b,c,d \in \mathbb{R}$.

Esta forma lineal $l$ pertenece a $W^{\bot}$ si y sólo si $$l(p(x))=l(q(x))=0,$$ o bien

\begin{align*}
a-2c&=0\\
b+c-d&=0.
\end{align*}

Podemos fijar $c$ y $d$ libremente y despejar $a$ y $b$ como sigue:

\begin{align*}a&=2c\\b&=-c+d.\end{align*}

Por consiguiente

\begin{align*}
l(x_1e_1&+x_2e_2+x_3e_3+x_4e_4)\\
&=2cx_1+(-c+d)x_2+cx_3+dx_4\\
&=c2x_1-x_2+x_3)+d(x_2+x_4).
\end{align*}

Así deducimos que una base $l_1,l_2$ de $W^{\bot}$ está dada por

\begin{align*}
l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=2x_1-x_2+x_3\\
l_2(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=x_2+x_4.
\end{align*}

y así $W=H_1\cap H_2$, donde

\begin{align*}
H_1&=\ker(l_1)=\{a+bx+cx^2+dx^3\in V : 2a-b+c=0\}\\
H_2&=\ker(l_2)=\{a+bx+cx^2+dx^3\in V : b+d=0\}.
\end{align*}


$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices de cambio de base

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente platicamos de cómo al elegir una base ordenada $B$ de un espacio vectorial $V$ de dimensión finita $n$, podemos expresar a cada uno de sus vectores en términos de «coordenadas», que vienen de los coeficientes de la combinación lineal de elementos de $B$ que da el vector. Así mismo, vimos cómo podemos comenzar con una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ y de ahí obtener una «matriz que la represente». Para ello, necesitamos elegir bases ordenadas $B_V$ y $B_W$ de $V$ y $W$ respectivamente. Tanto las coordenadas, como las matrices que representan a transformaciones lineales, dependen fuertemente de las bases ordenadas elegidas. En esta entrada hablaremos de las matrices de cambio de base, pues nos ayudarán a pasar de unas coordenadas a otras.

Siento más concretos, es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación $T:V\to W$, y que los vectores de $V$ o los de $W$ los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases (ordenadas) $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases (ordenadas) $B_1$ y $B_2$ de $V$ y dos bases (ordenadas) $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

La herramienta que necesitamos para responder ambos problemas se le conoce como matrices de cambio de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también sirven para resolver el segundo.

Matrices de cambio de base

Definición. Sea $V$ un espacio vectorial de dimensión $n$ sobre el campo $F$. Sean $B=(v_1,\ldots,v_n)$ y $B’=(v_1′, \ldots, v_n’)$ dos bases ordenadas de $V$. La matriz de cambio de base de $B$ a $B’$ es la matriz $P=[p_{ij}]$ en $M_{n}(F)$ cuya columna $j$ tiene como entradas a las coordenadas de $v_j’$ escrito en términos de la base $B$. En otras palabras, las entradas $p_{1j},\ldots,p_{nj}$ de la $j$-ésima columna de $P$ son los únicos elementos de $F$ para los cuales $$v_j’=p_{1j}v_1+\ldots +p_{nj} v_n,$$ para toda $j=1,2,\ldots,n$.

Ejemplo. Considera la base ordenada $B=(1,x,x^2)$ de $\mathbb{R}_2[x]$, el espacio vectorial de polinomios de coeficientes reales grado a lo más $2$. Veremos que $B’=(3x^2,2x,1)$ es también una base de $\mathbb{R}_2[x]$. Encontraremos la matriz de cambio de base de $B$ a $B’$ y la matriz de cambio de base de $B’$ a $B$.

La dimensión de $\mathbb{R}_2[x]$ es $3$ y $B’$ tiene $3$ elementos, así que basta ver que los elementos de $B’$ son linealmente independientes para ver que $B’$ es base. Una combinación lineal $a(3x^2)+b(2x)+c(1)=0$ es equivalente a que $3ax^2+2bx+c=0$, lo cual sucede si y sólo si $a=b=c=0$. Esto muestra que $B’$ es base.

Para encontrar a la matriz de cambio de base de $B$ a $B’$ lo que tenemos que hacer es escribir a los elementos de $B’$ como combinación lineal de los elementos de $B$. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

\begin{align*}
3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\
2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\
1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.
\end{align*}

Como los coeficientes de $3x^2$ en la base ordenada $B$ son $0$, $0$ y $3$, entonces la primer columna de la matriz de cambio de base será $\begin{pmatrix} 0 \\ 0 \\ 3\end{pmatrix}$. Argumentando de manera similar para $2x$ y $1$, tenemos que la matriz de cambio de base de $B$ a $B’$ es $$\begin{pmatrix}
0 & 0 & 1\\
0 & 2 & 0 \\
3 & 0 & 0
\end{pmatrix}.$$

Para encontrar a la matriz de cambio de base de $B’$ a $B$, expresamos a los elementos de $B$ en términos de la base $B’$ como sigue:

\begin{align*}
1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\
x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\
x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.
\end{align*}

En este caso fue sencillo hacerlo, pero en otros problemas frecuentemente esto se hace resolviendo un sistema de ecuaciones.

De esta manera, tenemos que la matriz de cambio de base de $B’$ a $B$ es $$\begin{pmatrix}
0 & 0 & \frac{1}{3}\\
0 & \frac{1}{2} & 0 \\
1 & 0 & 0
\end{pmatrix}.$$

$\triangle$

Cambio de coordenadas usando matrices de cambio de base

Las matrices de cambio de base nos ayudan a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea $V$ un espacio vectorial de dimensión $n$, $B=(v_1,\ldots,v_n)$, $B’=(v_1′,\ldots,v_n’)$ bases ordenadas de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Supongamos que el vector $v$ de $V$ se escribe en base $B$ como $$v=c_1v_1+c_2v_2+\ldots+c_nv_n$$ y en base $B’$ como $$v=c_1’v_1’+c_2’v_2’+\ldots+c_n’v_n’.$$ Entonces: $$
P
\begin{pmatrix}
c_1′ \\
\vdots \\
c_n’
\end{pmatrix}=\begin{pmatrix}
c_1 \\
\vdots \\
c_n
\end{pmatrix} .$$

En otras palabras, la matriz $P$ de cambio de base de $B$ a $B’$ manda las coordenadas de un vector en base $B’$ a coordenadas en base $B$ al multiplicar por la izquierda. Ojo: para construir $P$ expresamos a $B’$ en términos de $B$, pero lo que hace $P$ es expresar a alguien de coordenadas en $B’$ a coordenadas en $B$.

Demostración. El vector de coordenadas de $v_j’$ escrito en base $B’$ es el vector canónico $e_j$ de $F^n$. Además, $Pe_j$ es la $j$-ésima columna de $P$, que por construcción es el vector de coordenadas de $v_j’$ en la base $B$. Así, el resultado es cierto para los vectores $v_j’$ de la base $B’$. Para cualquier otro vector $v$, basta expresarlo en términos de la base $B’$ y usar la linealidad de asignar el vector de coordenadas y la linealidad de $P$.

$\square$

Problema. Escribe a los vectores $v_1=(4,3,5,2)$, $v_2=(2,2,2,2)$ y $v_3(0,0,0,1)$ de $\mathbb{R}^4$ como combinación lineal de los elementos de la base $B$ de $\mathbb{R}^4$ conformada por los vectores $(1,0,0,0)$, $(1,1,0,0)$, $(1,1,1,0)$ y $(1,1,1,1)$.

Solución. Conocemos las coordenadas de $v_1,v_2,v_3$ en la base canónica $(1,0,0,0)$, $(0,1,0,0)$, $(0,0,1,0)$, $(0,0,0,1)$. De hecho, el vector de coordenadas de $v_1$ es exactamente $v_1$ (esto es algo que sucede pues estamos trabajando en $\mathbb{R}^4$). Lo que nos estan pidiendo son las coordenadas de $v_1,v_2,v_3$ en la base $B$. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de $B$ a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de $B$:

\begin{align*}
(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\
\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de $B$ a la base canónica:
$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Para encontrar las coordenadas de $v_1, v_2, v_3$ en términos de la base $B$, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
4 \\
3 \\
5 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
-2 \\
3\\
2
\end{pmatrix},$$

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
2 \\2 \\ 2 \\ 2
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ 0\\ 2
\end{pmatrix} $$ y

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ -1\\ 1
\end{pmatrix}. $$

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base $B$ que hacen a $v_1$, $v_2$ y $v_3$, por ejemplo, para $v_1$ tenemos: $$(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).$$

$\triangle$

Matrices de cambio de base como la forma matricial de una transformación lineal

A la matriz de cambio de base de $B$ a $B’$ la denotamos por $\text{Mat}_B(B’)$.

Una observación crucial es que podemos pensar a las matrices de cambio de base en un espacio vectorial $V$ justo como formas matriciales correspondientes a una transformación lineal específica. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad $\text{id}_V$ que manda a cada vector de $V$ a sí mismo.

De manera más concreta, si $B$ y $B’$ son bases de $V$ y $\text{Mat}_B(B’)$ es la matriz de cambio de base de $B$ a $B’$, entonces $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$ A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases $B$, $B’$ y $B»$ de $V$ y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

$$\text{Mat}_B(B»)=\text{Mat}_{B}(B’)\cdot \text{Mat}_{B’}(B»).$$

Finalmente, ¿qué sucede si en la igualdad anterior ponemos $B»=B$? Al lado izquierdo tenemos la matriz de cambio de base de $B$ a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de $B$ a $B’$ con la matriz de cambio de $B’$ a $B$. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean $B$, $B’$ y $B»$ bases del espacio vectorial de dimensión finita $V$.

  • La matriz de cambio de base de $B$ a $B’$ corresponde a la matriz de la transformación identidad de $V$ a $V$, en donde el primer $V$ lo pensamos con la base $B’$ y al segundo con la base $B$.
  • El producto de matrices de cambio de base de $B$ a $B’$ y de $B’$ a $B»$ es la matriz de cambio de base de $B$ a $B»$.
  • La matriz de cambio de base de $B$ a $B’$ es invertible, y su inversa es la de cambio de base de $B’$ a $B$.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Más adelante…

En esta entrada ya vimos cómo cambian las coordenadas de un vector cuando cambiamos de base. Lo que haremos en la siguiente entrada es estudiar cómo cambia la forma matricial de una transformación lineal cuando cambiamos las bases de su espacio vectorial origen y su espacio vectorial destino.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz $B$
  • Considera las cuatro matrices de $2\times 2$ que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base $B$ de $M_{2,2}(\mathbb{R})$. Determina la matriz de cambio de base de $B$ a la base canónica de $M_{2,2}(\mathbb{R})$. Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como $M_{2,2}(\mathbb{R})$ es de dimensión $4$, la matriz de cambio de base que tienes que determinar en realidad es de $4\times 4$.
  • Da una demostración de que, en efecto $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$
  • Verifica que la matriz de cambio de base $B$ a sí misma es la identidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»