Álgebra Lineal I: Ángulos, norma, distancia y desigualdad de Minkowski

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para hablar de varias nociones geométricas como ángulo, norma, distancia y de la desigualdad de Minkowski. Antes de hacer eso, hagamos un breve repaso de qué hemos hecho en estas últimas entradas.

Primero, hablamos de formas bilineales y de su formas cuadráticas asociadas. Segundo, vimos cómo a través de la identidad de polarización podemos asignar una única forma bilineal simétrica a una forma cuadrática. Finalmente, en la última entrada nos enfocamos en las formas bilineales simétricas que cumplían cierta condición de positividad.

En esa misma entrada definimos producto interior, que simplemente es una forma bilineal simétrica y positiva definida. También definimos la norma de un vector en un espacio con producto interior $\langle \cdot, \cdot \rangle$, que era $$\Vert x \Vert = \sqrt{\langle x, x \rangle}.$$

Finalmente, en la entrada anterior probamos la siguiente versión general de la desigualdad de Cauchy-Schwarz:

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se da la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Ángulos

Fijemos $V$ un espacio vectorial sobre los reales con producto interior. En la entrada anterior vimos que la desigualdad de Cauchy-Schwarz implica que para cualesquiera vectores $x$ y $y$ en $V$ tenemos que $$|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert.$$

Si $x$ y $y$ son vectores distintos de cero, podemos reescribir la desigualdad anterior como $$-1\leq \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}\leq 1.$$ Esto justifica la siguiente definición.

Definición. Sean $x$ y $y$ vectores no nulos. Definimos al ángulo entre $x$ y $y$ como el único ángulo $\theta$ en el intervalo $[0,\pi]$ tal que $$\cos \theta = \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}.$$

Observa que $\theta=\frac{\pi}{2}$ si y sólo si $\frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}=0$. Esto ocurre si y sólo si $\langle x, y \rangle=0$. Este caso es particularmente importante, y por ello recibe una definición especial.

Definición. Decimos que $x$ y $y$ son ortogonales si $\langle x, y \rangle=0$.

Para empezar, veamos un ejemplo sencillo de ortogonalidad.

Ejemplo 1. Tomemos $\mathbb{R}^5$ con el producto interior canónico, es decir, el producto punto. Los vectores $u=(1,0,-4,0,5)$ y $v=(0,3,0,-2,0)$ tienen producto punto $$\langle u, v \rangle=1\cdot 0 + 0\cdot 3 + (-4)\cdot 0 + 0 \cdot (-2) + 5 \cdot 0=0,$$ así que son ortogonales.

$\triangle$

Ahora, veamos un ejemplo un poco más elaborado, del cálculo de un ángulo en un espacio vectorial de funciones.

Ejemplo 2. Anteriormente vimos que $\mathcal{C}[0,1]$ tiene un producto interior $$\langle f, g \rangle=\int_0^1 f(x)g(x)\, dx.$$ Calculemos el ángulo entre $f(x)=x^2$ y $g(x)=x^3$ con este producto interior. Primero, calculamos $\Vert f \Vert$ y $\Vert g \Vert$ como sigue
\begin{align*}
\Vert f \Vert^2 &= \int_0^1 x^4 \,dx = \frac{1}{5}\\
\Vert g \Vert^2 &= \int_0^1 x^6 \,dx = \frac{1}{7},
\end{align*}

de donde $\Vert f \Vert = \frac{1}{\sqrt{5}}$ y $\Vert g \Vert = \frac{1}{\sqrt{7}}$.

Luego, calculamos
\begin{align*}
\langle f,g \rangle &=\int_0^1 f(x)g(x) \, dx\\
&=\int_0^1 x^5 \, dx\\
&=\frac{1}{6}.
\end{align*}

Como esperaríamos por la desigualdad de Cauchy-Schwarz, tenemos la siguiente desigualdad:
\begin{align*}
\langle f,g \rangle &= \frac{1}{6}\leq \frac{1}{\sqrt{35}}=\Vert f \Vert \Vert g \Vert.
\end{align*}

El ángulo entre $f$ y $g$ es entonces
\begin{align*}
\theta &= \arccos\left(\frac{\langle f, g \rangle}{\Vert f \Vert \cdot \Vert g \Vert}\right)\\
&=\arccos\left(\frac{1/6}{1/\sqrt{35}}\right)\\
&=\arccos\left(\frac{\sqrt{35}}{6}\right).
\end{align*}

$\triangle$

Desigualdad de Minkowski

Hay una forma un poco distinta de escribir la desigualdad de Cauchy-Schwarz. La enunciamos a continuación.

Teorema (desigualdad de Minkowski). Sean $x$ y $y$ vectores de un espacio vectorial $V$ con una forma cuadrática positiva $q$. Entonces $$\sqrt{q(x)}+\sqrt{q(y)}\geq \sqrt{q(x+y)}.$$

Demostración. Sea $b$ la forma polar de $q$. Recordemos que $$q(x+y)=q(x)+2b(x,y)+q(y).$$

Como $q$ es forma cuadrática positiva, la desigualdad que queremos mostrar es equivalente a la siguiente desigualdad obtenida de elevar ambos lados al cuadrado:

\begin{align*}
q(x)+2\sqrt{q(x)q(y)}+q(y)&\geq q(x+y)\\
&=q(x)+2b(x,y)+q(y).
\end{align*}

Cancelando $q(x)+q(y)$ de ambos lados y dividiendo entre $2$, obtenemos la desigualdad equivalente
\begin{align*}
\sqrt{q(x)q(y)}\geq b(x,y).
\end{align*}

Si $b(x,y)<0$, esta desigualdad es claramente cierta. Si $b(x,y)\geq 0$, esta desigualdad es equivalente a la obtenida de elevarla al cuadrado, es decir, $$q(x)q(y)\geq b(x,y)^2,$$ que es precisamente la desigualdad de Cauchy-Schwarz.

$\square$

De producto interior a norma

Estamos listos para mostrar algunas propiedades importantes de la noción de norma que definimos para espacios vectoriales reales con producto interior.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior con norma asociada $\Vert \cdot \Vert$. Se cumple que

  1. $\Vert v \Vert \geq 0$ para todo $v$ en $V$, con igualdad si y sólo si $v=0$.
  2. $\Vert cv \Vert =|c|\Vert v \Vert$ para todo $v$ en $V$ y real $c$.
  3. (Desigualdad del triángulo) $\Vert v \Vert + \Vert w \Vert \geq \Vert v+w \Vert$ para todo par de vectores $v$ y $w$ en $V$.

Demostración. Sea $b$ el producto interior de $V$. El punto 1 se sigue de que $b$ es positiva definida. El punto 2 se sigue de que $b$ es bilineal, pues $b(cv,cv)=c^2b(v,v)$, de modo que $$\Vert cv \Vert = \sqrt{c^2} \Vert v \Vert =|c| \Vert v \Vert.$$ El punto 3 es la desigualdad de Minkowski.

$\square$

En general, si tenemos un espacio vectorial $V$ sobre los reales y una función $\Vert \cdot \Vert:V \to \mathbb{R}$ que satisface los puntos 1 a 3 de la proposición anterior, decimos que $\Vert \cdot \Vert$ es una norma para $V$. Hay algunas normas que no se pueden obtener a través de un producto interior.

Ejemplo. Consideremos $V=M_n(\mathbb{R})$. El producto de Frobenius de las matrices $A$ y $B$ está dado por $$\langle A,B\rangle = \text{tr}(^tA B).$$ Se puede mostrar que el producto de Frobenius es un producto interior. La norma de Frobenius es la norma inducida por este producto, es decir, $$\Vert A \Vert = \sqrt{\text{tr}(^tAA)}.$$

Por la desigualdad de Minkowski, tenemos que para cualesquiera dos matrices $A$ y $B$ tenemos que $$\sqrt{\text{tr}(^t(A+B)(A+B))}\leq \sqrt{\text{tr}(^tAA)} + \sqrt{\text{tr}(^tBB)}.$$

En particular, si tomamos a la identidad $I$, tenemos que su norma de Frobenius es $\sqrt{n}$. Esto muestra la siguiente desigualdad, válida para cualquier matriz $A$ en $M_n(\mathbb{R})$:

$$\sqrt{\text{tr}((^tA+I)(A+I))}\leq \sqrt{\text{tr}(^tAA)}+ \sqrt{n}.$$

$\triangle$

De norma a distancia

Podemos pensar a la norma de un vector $v$ como qué tan lejos está del vector $0$. También nos gustaría poder hablar de qué tan lejos están cualesquiera dos vectores de un espacio vectorial con producto interior. Por esta razón, introducimos la siguiente definición.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior de norma $\Vert \cdot \Vert$. La distancia asociada a este producto interior es la función $d:V\times V\to \mathbb{R}$ tal que $d(x,y)=\Vert x-y\Vert.$ A $d(x,y)$ le llamamos la distancia entre $x$ y $y$.

El siguiente resultado se sigue de las propiedades de la norma de un producto interior. Su demostración queda como tarea moral.

Proposición. Si $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior de distancia $d$, entonces:

  1. $d(x,y)\geq 0$ para todos $x$ y $y$ en $V$ y es igual a $0$ si y sólo si $x=y$.
  2. $d(x,y)=d(y,x)$ para todos $x$ y $y$ en $V$.
  3. $d(x,z)+d(z,y)\geq d(x,y)$ para todos $x$, $y$ y $z$ en $V$.

En general, si tenemos cualquier conjunto $X$ (no hace falta que sea un espacio vectorial), a una función $d$ que satisface los puntos 1 a 3 de la proposición anterior se le conoce como una métrica para $X$. Cualquier norma en un espacio vectorial $V$ (no sólo las de producto interior) induce una métrica en $V$. Sin embargo, hay métricas de espacios vectoriales que no vienen de una norma.

Más adelante…

Retomando conceptos ya definidos como la norma de un vector, en esta entrada vimos cómo encontrar el ángulo entre dos vectores no-nulos y se llegó a una forma natural de introducir la ortogonalidad entre dos vectores. Así mismo, se demostraron algunas propiedades de la norma asociada a un producto interior, siendo la última una forma distinta de expresar la desigualdad de Cauchy-Schwarz, usando la desigualdad de Minkowski. Finalmente, se definió el concepto de distancia entre dos vectores.

En entradas posteriores, usaremos estos conceptos para estudiar bases ortogonales, que tienen usos en conceptos matemáticos más avanzados como el análisis de Fourier o la teoría de polinomios ortogonales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Toma $\mathbb{R}^4$ con el producto interior canónico (producto punto). Determina la norma de $(3,4,0,1)$. Encuentra el ángulo entre los vectores $(1,0,2,5)$ y $(4,5,0,-3)$.
  • Muestra que el producto de Frobenius es un producto interior en $M_n(\mathbb{R})$.
  • Demuestra la proposición de propiedades de la distancia

Considera $V=\mathbb{R}_3[x]$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $3$. Definimos $$\langle p,q \rangle = \sum_{j=1}^5 p(j)q(j).$$

  • Muestra que $\langle \cdot, \cdot \rangle$ así definido es un producto interior.
  • Encuentra el ángulo entre los polinomios $1+x^2$ y $2x-3x^3$.
  • Para cada entero positivo $n$, determina la norma del polinomio $1+nx^3$.
  • Determina la distancia entre los polinomios $1$ y $1+x+x^2+x^3$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de formas cuadráticas y producto interior

Por Blanca Radillo

Introducción

En las últimas sesiones, hemos introducido el tema de formas bilineales y formas cuadráticas. Más adelante, hablamos de positividad de formas cuadráticas y de producto interior. Ahora veremos algunos problemas de formas cuadráticas y producto interior.

Problemas resueltos de formas cuadráticas

Sabemos que si $T:V\times V\rightarrow \mathbb{R}$ es una transformación lineal, $T$ no necesariamente es una forma bilineal (durante la clase del viernes se discutió un ejemplo), entonces una pregunta interesante es ¿qué información tenemos sobre el núcleo de una forma cuadrática? Es fácil ver que una forma cuadrática no es una transformación lineal, pero está asociada a una forma bilineal. Interesadas en esta pregunta, analizaremos algunas propiedades del núcleo de una forma bilineal y de una forma cuadrática.

Problema 1. a) Si $q$ es una forma cuadrática en $\mathbb{R}^n$, ¿el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ es un subespacio de $\mathbb{R}^n$?
b) Describe ${ x\in \mathbb{R}^n:q(x)=0}$ si:
1) $q(x,y)=x^2+y^2$,
2) $q(x,y,z)=xy+yz+zx$
3) $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.

Solución. a) La respuesta es: no, el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ no necesariamente es un subespacio, ya que no necesariamente es cerrado bajo la suma. Daremos un ejemplo.

Sea $q:\mathbb{R}^2\rightarrow \mathbb{R}$ definido como $q((x,y))=x^2-y^2$. Sabemos que ésta es una forma cuadrática. Notemos que para todo $x,y \in\mathbb{R}$, si $v_1=(x,x),v_2=(y,-y)$, entonces $q(v_1)=x^2-x^2=0$ y $q(v_2)=y^2-(-y)^2=0$, entonces $v_1,v_2 \in \{ x\in \mathbb{R}^n: q(x)=0 \}$. Pero $v_1+v_2=(x+y,x-y)$ no pertenecen al núcleo de $q$, ya que $q(v_1+v_2)=q((x+y,x-y))=(x+y)^2-(x-y)^2=4xy\neq 0$ si $x,y\neq 0$.

b.1) Sea $(x,y)\in\mathbb{R}^2$ tal que $q((x,y))=x^2+y^2=0$. Como $x,y\in\mathbb{R}$, sabemos que la única posibilidad en que la suma de dos cuadrados sea cero es que ambos sean cero, por lo tanto $\{ x\in \mathbb{R}^2: q(x)=0 \}=\{(0,0)\}$.

b.2) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=xy+yz+zx=0$. Si $x=0$ entonces $yz=0$, esto es posible sólo si $y=0$ o $z=0$. Entonces el núcleo contiene a los ejes $(x,0,0)$, $(0,y,0)$ y $(0,0,z)$. Ahora, si $x=-y$, entonces $xy+yz+zx=-x^2-xz+zx=-x^2=0$, por lo tanto $x=0=y$, obteniendo nuevamente a los ejes. Ahora suponemos que $x+y\neq 0$. Entonces $xy+yz+zx=xy+z(x+y)=0$, obteniendo que $z=-\frac{xy}{x+y}$ (el cono elíptico). Por lo tanto el núcleo de $q$ son los ejes y el cono elíptico.

b.3) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=(x-y)^2+(y-z)^2+(z-x)^2=0$. Al igual que en el inciso (b.1), esto sólo es posible si $x-y=y-z=z-x=0$, entonces $x=y=z$. Por lo tanto, $\{ x\in \mathbb{R}^n: q(x)=0 \}=\{(x,x,x):x\in\mathbb{R}\}$.

$\triangle$

Problema 2. Sea $V=P_2(\mathbb{R})$ el espacio de polinomios en $[-1,1]$ con coeficientes reales de grado a lo más 2 y considera el mapeo $b:V\times V\rightarrow \mathbb{R}$ definido como

$b(f,g)=\int_{-1}^1 tf(t)g(t) dt.$

Prueba que $b$ es una forma bilineal simétrica de $V$. Si $q$ es la forma cuadrática asociada, encuentra las $f$ en $V$ tales que $q(f)=0$.

Solución. Mostrar que $b$ es bilineal es sencillo, y queda como tarea moral. Es fácil ver que es simétrica, ya que

\begin{align*}
b(f,g)&=\int_{-1}^1 tf(t)g(t) dt \\
&=\int_{-1}^1 tg(t)f(t)dt=b(g,f).
\end{align*}

Ahora, queremos encontrar las funciones $f$ tales que $q(f)=b(f,f)=\int_{-1}^1 tf^2(t)dt=0$. Como $f$ es un polinomio de grado $2$, es de la forma $f(x)=ax^2+bx+c$ para reales $a,b,c$ y entonces

\begin{align*}
0&=q(f)\\
&=\int_{-1}^1 tf^2(t)dt \\
&=\int_{-1}^1 t(at^2+bt+c)^2dt \\
& = \int_{-1}^1 t(a^2t^4+2abt^3+(b^2+2ac)t^2+2bct+c^2)dt \\
&=\int_{-1}^1 (a^2t^5+2abt^4+(b^2+2ac)t^3+2bct^2+c^2t)dt \\
&=\frac{4ab}{5}+\frac{4bc}{3}=0
\end{align*}

Esto implica que $4b(3a+5c)=0$, entonces $b=0$ o $3a+5c=0$. Por lo tanto $$\{f\in V:q(f)=0\}=\{ax^2+c \}\cup \{ax^2+bx-\frac{3a}{5}\}.$$

$\square$

Problemas resueltos de producto interior

Ahora recordemos que en la clase de ayer, definimos formas bilineales y cuadráticas positivas y definidas positivas, y a partir de ello, definimos qué es un producto interior. Así, en los siguientes problemas, veremos algunos ejemplos de estas definiciones.

Problema 3. Determina cuáles de las siguientes formas cuadráticas son positivas. ¿Cuáles también son definidas positivas?

  1. $q(x,y,z)=xy+yz+zx$.
  2. $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.
  3. $q(x,y,z)=x^2-y^2+z^2-xy+2yz-3zx$.

Solución. Sea $v=(x,y,z)\in\mathbb{R}^3$, recordemos que para cada uno de los incisos $q$ es positiva si $q(v)\geq 0$ para toda $v$ y es definida positiva si es positiva y $q(v)=0$ si y sólo si $v=0$.

1) Si escogemos a $v$ como $v=(1,-2,1)$ tenemos que
\begin{align*}q(v)&=q(1,-2,1)\\&=1(-2)+(-2)(1)+1(1)\\&=-2-2+1\\&=-3.\end{align*} Por lo tanto no es positiva ni definida positiva.

2) Dado que para todo $x,y,z$, tenemos que $(x-y)^2,(y-z)^2,(z-x)^2\geq 0$, entonces $q(v)\geq 0$ para todo $v\in\mathbb{R}^3$. Pero si $q(v)=0$, entonces $x=y=z$, pero no necesariamente son iguales a cero. Por lo tanto, $q$ es positiva pero no es definida positiva.

3) Si tomamos $v=(3,0,3)$, obtenemos que \begin{align*}q(v)&=(3)^2+(3)^2-3(3)(3)\\&=9+9-27\\&=-9\\&<0.\end{align*} Por lo tanto no es positiva ni definida positiva.

$\triangle$

Problema 4. Sea $V=C([a,b],\mathbb{R})$. Prueba que el mapeo $\langle \cdot , \cdot \rangle$ definido por $$\langle f,g \rangle = \int_a^b f(x)g(x) dx$$ es un producto interior en $V$.

Solución. Por lo visto en la clase de ayer, tenemos que un producto interior es una forma bilineal simétrica y definida positiva.
Es fácil ver que es forma bilineal simétrica. Basta con probar que es una forma definida positiva. Entonces $\langle f,f\rangle=\int_0^1 f^2(x)dx \geq 0$ ya que $f^2(x)\geq 0$ para toda $x$. Por lo tanto $\langle \cdot, \cdot \rangle$ es positiva. Como $f^2$ es continua y positiva, si $\int_0^1 f^2(x)dx=0$, implica que $f^2=0$, entonces $f=0$. Por lo tanto, $\langle \cdot , \cdot \rangle$ es definida positiva, y por ende, es un producto interior.

$\triangle$

Para finalizar, el siguiente problema es un ejemplo que pareciera ser producto interior, pero resulta que no serlo.

Problema 5. Sea $C^\infty([0,1],\mathbb{R})$ es el espacio de funciones suaves (funciones continuas cuyas derivadas de cualquier orden existen y son continuas). Definimos el espacio $V={ f\in C^\infty([0,1],\mathbb{R}): f(0)=f(1)=0 }$. Si definimos $$\langle f,g \rangle:=\int_0^1 (f(x)g'(x)+f'(x)g(x))dx,$$ ¿es $\langle \cdot , \cdot \rangle$ un producto interior en $V$?

Solución. Es claro ver que $\langle \cdot, \cdot \rangle$ es bilineal y simétrica, entonces falta demostrar si es o no es una forma definida positiva. Para $f\in V$, tenemos que $\langle f,f \rangle=\int_0^1 2f(x)f'(x)dx.$

Notemos que, por la regla de la cadena, $\frac{d}{dx}f^2(x)=2f(x)f'(x)$, entonces \begin{align*}\langle f,f \rangle&=\int_0^1 \frac{d}{dx} f^2(x) dx\\&=f^2(1)-f^2(0)\\&=0.\end{align*}

Por lo tanto $\langle f,f\rangle=0$ para toda $f$. Esto implica que no es definida positiva, y como consecuencia, no es producto interior de $V$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Problemas de ecuaciones lineales y cambios de coordenadas en los complejos

Por Claudia Silva

Introducción

En las entradas anteriores platicamos de cómo resolver sistemas de ecuaciones lineales complejos, y de como pasar de coordenadas polares a rectangulares y viceversa. Ahora veremos un método más para resolver problemas de ecuaciones lineales en los complejos en tres variables. Además, haremos problemas de práctica de estos temas.

La regla de Kramer para tres variables

Cuando platicamos de resolver problemas de ecuaciones lineales complejas en dos variables, vimos que si el determinante no era $0$, entonces podíamos dar la solución de manera explícita. A esto se le conoce como la regla de Kramer. Veremos ahora cuál es la versión de esta regla para tres variables. A continuación enunciamos el método, y más abajo, en el video, se explica un poco más a detalle.

Proposición. Consideremos el siguiente sistema lineal de ecuaciones complejas en variables $x$, $y$ y $z$.
\begin{align*}
ax+by+cz&=j\\
dx+ey+fz&=k\\
gx+hy+iz&=l.
\end{align*}

Supongamos que el determinante $\Delta=\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}$ no es $0$. Entonces, el sistema tiene una única solución, dada por
\begin{align*}
x&=\frac{\begin{vmatrix} j & b & c\\ k & e & f\\ l & h & i \end{vmatrix}}{\Delta},\\
y&=\frac{\begin{vmatrix} a & j & c\\ d & k & f\\ g & l & i \end{vmatrix}}{\Delta},\\
z&=\frac{\begin{vmatrix} a & b & j\\ d & e & k\\ g & h & l \end{vmatrix}}{\Delta}.
\end{align*}

No veremos la demostración de esta técnica, pues es uno de los temas que estudiarás en álgebra lineal con más generalidad. Sin embargo, veremos algunos ejemplos de cómo se aplica.

Problemas de ecuaciones lineales

Para comenzar, resolveremos un sistema de ecuaciones de dos variables.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones:
\begin{align*}
iz+2w&=3+4i\\
2z-iw&=6-3i.
\end{align*}

Pasemos ahora a un ejemplo con tres variables. El el ejemplo 328 del libro Álgebra Superior de Bravo, Rincón, Rincón.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones.
\begin{align*}
z_1+z_2+z_3&=6+4i\\
iz_1+(1+i)z_2+(1-i)z_3&=7+4i\\
z_i+iz_2-z_3&=2i.
\end{align*}

El problema está resuelto en los siguientes dos videos.

Problemas de cambio de coordenadas

Finalmente, veremos algunos problemas de cambio entre coordenadas polares y coordenadas rectangulares. Recordemos que la figura clave para cambiar entre coordenadas es la siguiente:

Cambios entre coordenadas polares y rectangulares
Cambio entre coordenadas polares y rectangulares

Problema. Calcula las coordenadas rectangulares del complejo cuyas coordenadas polares son $r=\sqrt{2}$ y $s=45^\circ$, y del complejo cuyas coordenadas polares son $r=3$ y $s=90^\circ$.

Problema. Expresa $7+7i$ y $4+2i$ en coordenadas polares.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Factorización de polinomios

Por Fabian Ferrari

Introducción

En la entradas anteriores se trataron algunos temas de identidades algebraicas y se profundizó en el binomio de Newton y la identidad de Gauss. En esta y la siguiente entrada hablaremos de polinomios. Por ahora, comenzaremos recordando las nociones básicas de la aritmética de polinomios y hablando un poco de la factorización de polinomios. Más adelante hablaremos del poderoso teorema de la identidad.

Recordatorio de polinomios

Tenemos que un polinomio de grado $n$, donde $n$ es un número entero no negativo, es una expresión algebraica de la forma

\begin{equation*}
a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0.
\end{equation*}

Dicha expresión también podemos denotarla como

\begin{equation*}
P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,
\end{equation*}

en donde $a_n$ es distinto de $0$.

Los elementos $\left\{ a_n, a_{n-1}, … , a_0\right\}$ se conocen como coeficientes. Si $a_n=1$, decimos que el polinomio es mónico.

Nota: El polinomio cuyos coeficientes son todos ceros, se le conoce como el polinomio cero y no tiene grado.

Si dos polinomios son idénticos coeficiente por coeficiente, decimos que dichos polinomios son iguales. Esta noción será de utilidad más adelante en la entrada del teorema de la identidad.

Si todos los coeficientes de un polinomio son enteros, decimos que es un polinomio sobre los enteros. Si los coeficientes son números reales, entonces es un polinomio sobre los reales. De manera similar definimos a los polinomios sobre los racionales, los complejos o incluso sobre $\mathbb{Z}_n$. Aunque parezca irrelevante, conocer las características de los coeficientes de un polinomio, nos da mucha información sobre su constitución. Hay resultados que, por ejemplo, se valen para los polinomios sobre los complejos, pero no para los polinomios sobre los reales.

Otra cosa que es de nuestro interés son las operaciones en los polinomios, y es que al igual que los números enteros, podemos sumar, multiplicar y dividir polinomios.

Algoritmo de la división para polinomios

Para los polinomios, al igual que en los números enteros, existe un algoritmo de la división. Este nos ayudará posteriormente para cuando queramos hacer factorización en polinomios.

Teorema. Sean los polinomios $P(x)$ y $Q(x)$ definidos sobre un campo $\mathbb{K}$ con $Q(x)$ distinto de cero. Entonces existen dos únicos polinomios $C(x)$ y $R(x)$ tales que

\begin{equation*}
P(x)=C(x)Q(x)+R(x),
\end{equation*}

donde $C(x)$ y $R(x)$ son el coeficiente y el residuo respectivamente, resultado de dividir $P(x)$ entre $Q(x)$, y se tiene que $R(x)$ es el polinomio $0$ o bien tiene grado menor o igual al grado de $C(x)$.

Ejemplo. Dados los polinomios $P(x)=x^2-3x-28$ y $Q(x)=x-5$, tenemos que $C(x)=x+2$ y $R(x)=-18$.

En efecto,

\begin{equation*}
x^2-3x-28=(x+2)(x-5)-18.
\end{equation*}

$\square$

Algoritmo de Euclides para polinomios

Al igual que en los enteros, el algoritmo de la división es de ayuda para determinar el máximo común divisor entre dos polinomios: simplemente seguimos los pasos del algoritmo de Euclides. Es por ello que tenemos el siguiente resultado.

Teorema. Si tenemos dos polinomios $P(x)$ y $Q(x)$ sobre un campo $\mathbb{K}$, tenemos que existen polinomios $S(x)$ y $T(x)$ tales que

\begin{equation*}
\MCD{P, Q}= PS+QT.
\end{equation*}

Aquí $\MCD{P, Q}$ es el máximo común divisor de $P(x)$ y $Q(x)$.

Otra forma de ver o de entender el máximo común divisor entre dos polinomios es como el producto de todos aquellos factores que tienen en común.

Problema: Encuentra polinomios $F(x)$ y $G(x)$ tales que

\begin{equation*}
(x^8-1)F(x)+(x^5-1)G(x)=x-1.
\end{equation*}

Sugerencia pre-solución. Recuerda cómo encontrar el máximo común divisor de dos enteros usando el algoritmo de Euclides. Además, usa una factorización para cancelar el factor $x-1$ de la derecha.

Solución. Definamos

\begin{align*}
A(x)&=x^7+x^6+x^5+x^4+x^3+x^2+x+1\\
B(x)&=x^4+x^3+x^2+x+1.
\end{align*}

Notemos que la ecuación es equivalente a

\begin{equation*}
A(x)F(x)+B(x)G(x)=1.
\end{equation*}

Tendría que suceder entonces que $A(x)$ y $B(x)$ sean primos relativos.

Aplicando el algoritmo de la división repetidamente, tenemos lo siguiente:

\begin{align*}
A(x)&=x^3B(x)+(x^2+x+1)\\
B(x)&=x^2(x^2+x+1)+(x+1)\\
x^2+x+1&=x(x+1)+1.
\end{align*}

Esto muestra que $A(x)$ y $B(x)$ son primos relativos, así que la combinación lineal que buscamos debe existir. Para encontrarla de manera explícita, invertimos los pasos. Trabajando hacia atrás, tenemos que

\begin{equation*}
\begin{split}
1 & =(x^2+x+1)-x(x+1)\\
& =(x^2+x+1)-x(B(x)-x^2(x^2+x+1))\\
& =(x^2+x+1)(x^3+1)-xB(x)\\
& =(x^3+1)(A(x)-x^3(B(x))-xB(x)\\
& =(x^3+1)A(x)-x^3(x^3+1)B(x)-xB(x)\\
& =(x^3+1)A(x)+(-x^6-x^3-x)B(x)
\end{split}
\end{equation*}

Así que podemos tomar a $F(x)=x^3+1$ y $G(x)=-x^6-x^3-x$.

$\square$

El teorema del factor

Sea $P(x)$ un polinomio sobre un dominio entero $D$. Decimos que un elemento $a$ de $D$ es raíz del polinomio $P(x)$ si $P(a)=0$. Si aplicamos el algoritmo de la división en los polinomios $P(x)$ y $x-a$ obtenemos el siguiente teorema, que es fundamental en la factorización de polinomios.

Teorema El elemento $a$ es raíz de $P(x)$ si y solo si $(x-a)$ es factor de $P(x)$.

Veamos cómo aplicar este teorema en un ejemplo concreto.

Problema. Dado $\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)$, prueba que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

Sugerencia pre-solución. Recuerda los resultados básicos de aritmética de los números complejos.

Solución. Por De Moivre tenemos que si

\begin{equation*}
\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)=e^{\frac{2\pi i}{n}}
\end{equation*}

entonces $ \{1, \omega, \omega^2,…,\omega^{n-1}\}$ son raíces de $x^n-1=0$. Además, como $e^{\pi i}=-1$, tenemos que $\omega^n=1$.

Así, tenemos que $\omega^{n+1}=\omega$ y de manera general $\omega^{n+k}=\omega^k$.

Por otro lado,

\begin{equation*}
x^n-1=(x-1)(x^{n-1}+\ldots+x+1)
\end{equation*}

Y como $ \{1, \omega, \omega^2,\ldots,\omega^{n-1}\}$ son raíces de $x^n-1$, tenemos entonces que $\{\omega, \omega^2,\ldots,\omega^{n-1}\}$ deben de ser las raíces de $$x^{n-1}+\ldots+x+1.$$

Aplicando repetidamente el teorema del factor, tenemos que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

$\square$

Un problema para números algebraicos

Un número real es algebraico si es raíz de un polinomio sobre los números enteros.

Problema. Prueba que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

Sugerencia pre-solución. Realiza operaciones de suma, resta y producto con $\sqrt{2}+\sqrt{3}$ y con enteros. Ve si puedes encontrar un patrón de cómo se comportan.

Solución. Tenemos que encontrar un polinomio $P(x)$ sobre los número enteros de tal forma que $P(\sqrt{2}+\sqrt{3})=0$.

Si consideramos $x=\sqrt{2}+\sqrt{3}$, entonces $x^2=5+2\sqrt{6}$

Para $P(x)=x^2-5$, tenemos que $P(\sqrt{2}+\sqrt{3})=2\sqrt{6}$

Así,

\begin{equation*}
(P(\sqrt{2}+\sqrt{3}))^2=(2\sqrt{6})^2=144.
\end{equation*}

Ahora, si consideramos el polinomio

\begin{equation*}
Q(x)=(P(x))^2-144.
\end{equation*}

Tenemos que

\begin{equation*}
Q(\sqrt{2}+\sqrt{3})=(P(\sqrt{2}+\sqrt{3}))^2-144=0.
\end{equation*}

Por lo tanto como el polinomio $Q(x)=x^4-10x^2-119$ es un polinomio sobre los enteros, y como $Q(\sqrt{2}+\sqrt{3})=0$ concluimos que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

$\square$

Más problemas

Puedes encontrar más problemas de aritmética y factorización de polinomios en la Sección 4.2 del libro Problem Solving through Problems de Loren Larson.

Álgebra Superior II: Forma polar y cambios de coordenadas de un complejo

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en $\mathbb{C}$. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos será resolver ecuaciones de la forma $z^n=w$, en donde $w$ en $\mathbb{C}$ y $n$ en $\mathbb{N}$ están dados y $z$ es la variable a determinar. Antes de resolver esta ecuación, necesitamos entender mejor la multiplicación en $\mathbb{C}$, y para ello vamos a estudiar la forma polar de un complejo.

En esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo, además definiremos sus coordenadas polares. Veremos cómo pasar de coordenadas rectangulares a polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación y exponenciación en $\mathbb{C}$. Esto será muy útil cuando queramos «sacar raíces $n$-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo $z^n=w$.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo $z=x+yi$ y pensémoslo como un punto del plano complejo, es decir, como el punto $(x,y)$ . Diremos que $(x,y)$ son las coordenadas rectangulares de $z$. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El número complejo $z$ tiene norma $r=\sqrt{x^2+y^2}$. Además, si $z\neq 0$, tenemos que $z$ define un ángulo $\theta$ con el eje real positivo, medido en el sentido contrario al avance de las manecillas del reloj a partir del eje real positivo, al cual le llamaremos el argumento de $z$ y lo denotaremos por $\text{arg}(z)$. Todos los ángulos que manejamos están en radianes.

Sin embargo, este ángulo no es único. El complejo $z$ define al ángulo $\theta$ pero, por ejemplo, también define al ángulo $\theta+2\pi$, pues la suma de $2\pi$ corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de $z$ toma todos los valores $$\{\theta+2k\pi:k\in \mathbb{Z}\}.$$ Así, $\text{arg}(z)$ es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento $\theta$, nos referiremos a $\theta$ o cualquier otro ángulo que difiera un múltiplo entero de $2\pi$ Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a $z$, hay uno único en el intervalo $[0,2\pi)$.

Definición. Definimos las coordenadas polares de un número complejo $z=x+yi$ como sigue:

  • Si $z=0$, sus coordenadas polares son $(0,0)$.
  • Si $z\neq 0$, entonces tomamos $r=\Vert z \Vert = \sqrt{x^2+y^2}$ y $\theta$ el único ángulo en $[0,2\pi)$ que hace $z$ con el eje real positivo. Las coordenadas polares de $z$ son $(r,\theta)$.

Observa que $r$ siempre es no negativo y es cero si y sólo si $z=0$. Además por trigonometría para el ángulo $\theta$ se cumple que \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*} lo cual nos da la siguiente forma práctica para encontrar $\theta$:

  • Calculamos $\frac{y}{r}$ o $\frac{x}{r}$ (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de $x$ o $y$.

Ejemplo. Tomemos al complejo $z=3-3\sqrt{3}i$. Vamos a pasarlo a forma polar. Su norma es $\sqrt{9+27}=\sqrt{36}=6$. Para determinar el ángulo $\theta$ que define con el eje real, podemos notar que $$\cos{\theta}=\frac{3}{6}=\frac{1}{2},$$ así que $\theta = \frac{\pi}{3}$ ó $\theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$, pues son los únicos ángulos en $[0,2\pi)$ con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de $z$ son $\left(6,\frac{5\pi}{3}\right)$.

$\triangle$

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo $r$ y consideremos la pregunta ¿quienes son los números complejos de norma $r$?

Por un lado, si $r=0$, necesitamos que $x^2+y^2=0^2=0$, de donde $x=y=0$, así que las coordenadas rectangulares deben ser $(0,0)$. Por otro lado, si $r>0$, se necesita que $$x^2+y^2=r^2,$$ lo cual, por el teorema de Pitágoras, define una circunferencia de radio $r$ con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma $r$

Si además elegimos un ángulo, $\theta$ en $[0,2\pi)$, que el complejo haga con el eje real, entonces queda determinado de manera única. Supongamos que este complejo es $z=x+yi$

Por trigonometría, tenemos que
\begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align*}

Problema. Determina en la forma $x+yi$ al número complejo cuyas coordenadas polares son $\left(7,\frac{3\pi}{4}\right)$.

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

\begin{align*}\\
x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\
y &= 7\sin \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.
\end{align*}

De este modo, el complejo buscado es el $$-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.$$

$\square$

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra como veremos en la siguiente:

Proposición. Si tomamos coordenadas polares $(r,\theta)$ de un complejo, las pasamos a coordenadas rectangulares $(x,y)$ y luego éstas las pasamos a coordenadas polares $(r’,\theta’)$ de nuevo, tenemos que $$(r,\theta)=(r’,\theta’).$$

Demostración. En el caso $r=0$, sólo definimos coordenadas polares con $\theta=0$. Al ir a coordenadas rectangulares vamos al punto $(0,0)$, que de nuevo regresa a polares $(0,0)$. Podemos suponer entonces que $r>0$.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a $(r,\theta)$ son exactamente $$(x,y)=(r\cos \theta,r\sin \theta).$$ Pasemos este complejo a coordenadas polares $(r’,\theta’)$. Usando la identidad pitagórica $\cos ^2\theta + \sin^2 \theta = 1$, la norma de este complejo es
\begin{align*}
\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\
&=r\sqrt{1}\\
&=r,
\end{align*}

lo que prueba $r=r’$. Además, como discutimos en la primer sección, tenemos que
\begin{align*}
\sin \theta’ = \frac{r\sin \theta}{r} = \sin \theta\\
\cos \theta’ = \frac{r\cos \theta}{r}=\cos \theta.
\end{align*}

De esta forma, $\theta$ y $\theta’$ son ángulos en $[0,2\pi)$ con el mismo seno y coseno, lo cual implica $\theta=\theta’$.

$\square$

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de $$\mathbb{R}\times \mathbb{R}$$ a $$(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}$$ es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma $x+yi$ de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo $z=x+yi$ es $z=r(\cos \theta + i\sin \theta)$, donde $(r,\theta)$ son las coordenadas polares de $(x,y)$.

Por costumbre, en la forma polar se pone $i$ antes de $\sin \theta$, a diferencia de la forma rectangular, en donde se pone $i$ después de $y$. A veces en expresiones como las de la forma polar aparecen ángulos $\theta$ fuera del rango $[0,2\pi)$. Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de $2\pi$ para caer en el rango $[0,2\pi)$. Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al número complejo.

Como la expresión $ \cos \theta + i\sin \theta$ se usa mucho, usualmente se abrevia.

Definición. Para un ángulo $\theta$ definimos $\text{cis}(\theta) = \cos \theta + i \sin \theta$.

Problema. Determina la forma polar de los complejos $1$, $-1$, $i$ y $-i$.

Solución. Todos estos números tienen norma $1$. Además, hacen ángulos $0, \pi, \frac{\pi}{2}, \frac{3\pi}{2}$ con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son
\begin{align*}
(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),
\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:
\begin{align*}
1&=\cos 0+i \sin 0=\text{cis} (0)\\
-1&=\cos \pi + i \sin \pi = \text{cis} (\pi) \\
i&=\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \text{cis} \left(\frac{\pi}{2}\right)\\
-i&= \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = \text{cis} \left( \frac{3\pi}{2}\right).
\end{align*}

$\triangle$

Una aclaración muy importante es que la forma polar de $z=x+yi$ no es $r+\theta i$. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina la forma polar de los siguientes complejos: $7-7i$ y $-2+2\sqrt{3}i$.
  2. Determina la forma rectangular de los complejos con coordenadas polares $\left(2,\frac{\pi}{3}\right)$ y $\left(1, \frac{11\pi}{6}\right)$.
  3. Si la forma polar del complejo $z$ es $r\text{cis} \theta$, ¿quién es la forma polar del conjugado?
  4. ¿Cuáles son aquellos números complejos que se obtienen al variar $\theta$ en la forma polar $3\text{cis}(\theta)$?
  5. ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar $r$ en la forma polar $r\text{cis}(\pi)$?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»