Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Introducción

¡Bienvenidos al curso de ecuaciones diferenciales I!. En esta primera clase conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que describan estos fenómenos, sin duda, la derivada será una herramienta fundamental que estará presente. Como seguramente sabrás, la derivada $\dfrac{dx}{dt} = f'(t)$ de la función $f$ es la razón a la cual la cantidad $x = f(t)$ está cambiando respecto de la variable independiente $t$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Definición: Una ecuación diferencial (ED) es cualquier ecuación que contiene las derivadas de una o más variables dependientes con respecto a una o más variables independientes.

Debido a que este es un curso de iniciación a las ecuaciones diferenciales se va a trabajar con ecuaciones que sólo contienen una variable independiente, estas ecuaciones tienen un nombre especial.

Definición: Una ecuación diferencial ordinaria (EDO) es una ecuación diferencial que contiene únicamente derivadas ordinarias de una o más variables dependientes con respecto a una sola variable independiente.

El reto que tenemos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función $y = f(x) = 2e^{x^{2}}$, esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada como $\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$, este resultado se puede reescribir como $\dfrac{dy}{dx} = 2x(2e^{x^{2}})$, podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado: $\dfrac{dy}{dx} = 2xy$. Este resultado corresponde a una ecuación diferencial ordinaria pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$. Ahora imagina que lo primero que ves es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y te pido que me des la función $f(x) = y$, ¿cómo la obtendrías?. ¡Ves el reto!.

Básicamente el objetivo del curso será desarrollar los distintos métodos que existen para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

A lo largo de curso utilizaremos la notación de Leibniz:

\begin{equation*}
\frac{dy}{dx}, \frac{d^{2}y}{dx^{2}}, \frac{d^{3}y}{dx^{3}}, …,
\end{equation*}

y en ocasiones para ser más compactos utilizaremos la notación prima:

$y^{\prime}$, $y^{\prime \prime}$, $y^{\prime \prime\prime}$,…

En el caso de la notación prima a partir de la cuarta derivada ya no se colocan primas sino números entre paréntesis, dicho número indica el grado de la derivada $y^{(4)}$, $y^{(5)}$, …, $y^{(n)}$. En este curso se hará mayor uso de la notación de Leibniz debido a que indica con mayor claridad las variables independientes y dependientes. Por ejemplo, en la ecuación $\dfrac{dx}{dt} + 8x = 0$ se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente mientras que $t$ es la variable independiente.

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las ecuaciones diferenciales ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinaras son:

\begin{equation*}
\frac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \frac{d^{2}y}{dx^{2}} -\frac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \frac{dx}{dt} + \frac{dy}{dt} = 2x + y
\end{equation*}

Otro tipo de ecuaciones diferenciales son las ecuaciones diferenciales parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

\begin{equation*}
\frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \frac{\partial^{2}z}{\partial x^{2}} = \frac{\partial^{2}z}{\partial t^{2}} -2\frac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \end{equation*}

Este tipo de ecuaciones se estudiarán en tus cursos de ecuaciones diferenciales posteriores a este.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

\begin{equation*}
\frac{d^{2} y}{dx^{2}} + 5 \left( \frac{dy}{dx}\right) ^{3} -4y = e^{x}
\end{equation*}

es una ecuación diferencial ordinaria de segundo orden. Ojo, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empelando la forma general

\begin{equation}
F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}
\end{equation}

donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, se puede resolver la siguiente ecuación

\begin{equation}
\frac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}
\end{equation}

donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

\begin{equation*}
\frac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \frac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime}) \end{equation*}

para representar ecuaciones diferenciales ordinarias de primero y segundo orden respectivamente.

Por ejemplo, la forma normal de la ecuación de primer orden $4x \dfrac{dy}{dx} + y = x$ es $\dfrac{dy}{dx} = \dfrac{x -y}{4x}$, en este caso la función $f$ sería: $f(x, y) = \dfrac{x -y}{4x}$.

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en la forma diferencial

\begin{equation}
M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}
\end{equation}

Por ejemplo, en la ecuación $(y -x) dx + 4x dy = 0$, $y$ es la variable dependiente, al derivarla se obtiene $y^{\prime} = \dfrac{dy}{dx}$, si volvemos a la ecuación y «dividimos» entre el diferencial $dx$ obtenemos la forma alternativa $4x\dfrac{dy}{dx} + y = x$ que como ya vimos se puede escribir en su forma normal como $\dfrac{dy}{dx} = \dfrac{x -y}{4x}$. Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial, veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, …, y^{(n)}$, es decir, una EDO es lineal si

\begin{equation}
a_{n}(x) \frac{d^{n}y}{dx^{n}} + a_{n – 1}(x) \frac{d^{n – 1}y}{dx^{n – 1}} + … + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}
\end{equation}

De acuerdo a esta ecuación se pueden concluir dos propiedades características de una EDO lineal:

  • La variable dependiente $y$ así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, …, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, …, a_{n}$ de $y^{\prime}, y^{\prime \prime}, …, y^{(n)}$ así como la función $g(x)$dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal.

Ejemplos: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

  • En la ecuación $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$ observamos que se trata de una ecuación diferencial ordinaria pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el grado de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal pues la potencia de los términos que involucran a $y$ es $1$ y además la función $e^{x}$ sólo depende de la variable independiente.
  • En la ecuación $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$ vemos que corresponde a una ecuación diferencial ordinaria de orden $2$ ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.
  • En la ecuación $(1-y) y^{\prime} + 2y = e^{x}$ se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que la función $(1 -y)$ se puede ver como un coeficiente de la ecuación (\ref{4}) y en este caso depende de la variable dependiente y como sabemos a lo sumo sólo debe depender de la variable independiente.

$\square$

Recuerda: Una ecuación de primer orden se puede escribir en su forma diferencial $M(x, y) dx + N(x, y) dy = 0$ así que si encuentras ecuaciones diferenciales en esta forma inmediatamente puedes deducir que es de primer orden. Por otro lado, para saber si una ecuación es lineal o no es conveniente que la ecuación la escribas en la forma de la ecuación (\ref{4}) y recuerdes las dos propiedades descritas en base a dicha ecuación.

De acuerdo a la ecuación (\ref{4}) las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden representar de forma general respectivamente como:

\begin{equation}
a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}
\end{equation}

y

\begin{equation}
a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}
\end{equation}

Hasta aquí concluimos con esta entrada, te invito a realizar los siguientes ejercicios para poner en práctica lo aprendido y comiences a familiarizarte con los conceptos vistos.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si es lineal o no lineal.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = cos (x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$; $\hspace{0.5cm}$ en $y$; $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$; $\hspace{0.5cm}$ en $v$; $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como la función solución a la ecuación diferencial. Antes de estudiar cómo obtener a las funciones solución de las ecuaciones diferenciales será conveniente primero estudiar las propiedades generales de éstas funciones solución. En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.