Archivo de la etiqueta: grupo abeliano

Álgebra Moderna I: Teorema de Cauchy

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hemos llegado a uno de los resultados más importantes del curso: el Teorema de Cauchy. Éste nos asegura la existencia de un elemento de determinado orden en el grupo. De forma más precisa nos dice que para cada primo que divida al orden del grupo, existe un elemento con orden exactamente ese primo.

Con este resultado nos nace una nueva pregunta: ¿cómo se relaciona esto con los $p$-grupos? y otra más: ¿se puede relacionar esto con el centro de un grupo? Tal vez no parezcan preguntas que te harías directamente después de ver el teorema, pero igual las responderemos. Es especialmente interesante lo del centro de un grupo porque en ocasiones podemos concluir que ciertos grupos deben ser abelianos.

Uno de los resultados más importantes del curso

Teorema de Cauchy.
Sea $G$ un grupo finito, $p\in\z^+$ un primo que divida a $|G|.$ Entonces existe $g\in G$ de orden $p.$

Demostración.
Sea $G$ un grupo finito, $p\in \z^+$ un primo tal que $p\Big| |G|.$

P.D. Existe un elemento $g \in G$ de orden $p$.

Para esta demostración, queremos usar el último teorema de la entrada anterior. Pero este sólo aplica para un conjunto finito y un $p$-grupo. Por lo que comenzaremos definiendo un conjunto finito a partir de $G$.

Consideremos
\begin{align*}
X = \{(g_1,\cdots, g_p) \,|\, g_1, \cdots, g_p \in G, g_1\cdots g_p = e\}
\end{align*}
el conjunto de las $p-$adas cuyo producto dé el neutro.

Observemos que podemos elegir las primeras $p-1$ entradas de un elemento en $X$ como sea, pero la última no porque la condición $g_1\cdots g_p = e$ nos indica que $g_p = (g_1\cdots g_{p-1})^{-1}.$ Así $\# X = |G|^{p-1}$ y como $p$ divide al orden de $G$, entonces $p|\#X$.

Sea $H = \left< (1\,2\cdots p)\right> \leq S_p$, el cual es un $p$-grupo. $H$ actúa en $X$ permutando los subíndices, es decir,
\begin{align*}
(1\;2\cdots \;p)\cdot (g_1,\cdots, g_p) = (g_2,g_3,\cdots, g_p, g_1)
\end{align*}
y en general, si $\sigma = (1\; 2 \cdots p)$, entonces para toda $j\in\z$
\begin{align*}
\sigma^j \cdot (g_1,\cdots,g_p) = (g_{\sigma^j(1)}, \cdots, g_{\sigma^j(p)}).
\end{align*}

Tenemos que observar que la acción está bien definida. Esto sucede ya que si $(g_1, \cdots, g_p) \in X$ tenemos que $g_1 = (g_2, \cdots, g_p)^{-1}$ y así $$(g_2 \cdots g_p)g_1 = e.$$

Entonces $(1\;2\cdots p)\cdot (g_1,\cdots,g_p) = (g_2,\cdots,g_p,g_1)\in X.$ Así, $H$ manda elementos de $X$ en elementos de $X$.

Por otro lado,
\begin{align*}
\text{id}\cdot (g_1,\cdots,g_p) = (g_{\text{id}(1)}, \cdots, g_{\text{id(p)}}) = (g_1,\cdots, g_p)
\end{align*}
y además
\begin{align*}
\sigma^j\cdot (\sigma^t \cdot (g_1,\cdots,g_p)) & = \sigma^j\cdot (g_{\sigma^t(1)}, \cdots, g_{\sigma^t(p)}) & \text{Aplicamos } \sigma^t\\
&= (g_{\sigma^j(\sigma^t(1))}, \cdots, g_{\sigma^j(\sigma^t(p))}) & \text{Aplicamos } \sigma^j\\
&=(g_{\sigma^{j+t}(1)}, \cdots, g_{\sigma^{j+t}(p)})\\
&=\sigma^{j+t} \cdot (g_1,\cdots, g_p) =( \sigma^j\sigma^t )\cdot (g_1,\cdots, g_p).
\end{align*}

Así, efectivamente tenemos una acción de $H$ en $X$.

Como $|H| = p$, por el teorema de la entrada anterior
\begin{align*}
\# X \equiv \# X_H (\text{mód }p).
\end{align*}
Pero recordemos que $p\mid \#X$, entonces $p\mid \# X_H.$

Ahora vamos a analizar cómo es $\# X_H$. Comencemos por entender quién es el conjunto $X_H$,
\begin{align*}
X_H &= \{ (g_1,\cdots, g_p)\in X \;| \;\sigma^j\cdot (g_1,\cdots, g_p) = (g_1,\cdots, g_p) \, \forall j\}\\
&= \{(g_1,\cdots, g_p)\in X \;| \;\sigma\cdot (g_1,\cdots, g_p) = (g_1,\cdots, g_p)\} &\text{si $\sigma$ fija a un elemento, también $\sigma^j$}\\
&= \{(g_1,\cdots, g_p)\in X \;| \; (g_2, \cdots, g_p, g_1) = (g_1,\cdots, g_p)\} & \text{Definición de }\sigma\\
&= \{(g_1,\cdots, g_p)\in X \;| \; g_1 = \cdots = g_p\} &\text{Implicación directa}.
\end{align*}

En particular, $(e,\cdots, e)\in X_H$ por lo que $\#X_H \geq 1$. Pero no puede haber exactamente un elemento en $X_H$ porque $p \Big|\#X_H$, entonces $\#X_H > 1.$ Existe entonces $(g,\cdots, g) \in X_H$ con $g\in G$ tal que $g\neq e.$

Como $(g,\cdots, g)\in X$ se tiene que $g^p = g\cdots g = e$ con $g\in G$ con $g\neq e.$

Así $g$ es un elemento en $G$ de orden $p$.

$\blacksquare$

Corolario. Sea $p\in\z^+$ un primo, $G$ un grupo finito. $G$ es un $p$-grupo si y sólo si para todo $g\in G$ el orden $o(g)$ es una potencia de $p$.

Proposición. Sea $p\in\z^+$ un primo. Si $G$ es un $p$-grupo con $G\neq\{e\}$ (no trivial) entonces $Z(G) \neq \{e\}.$

Demostración.
Sea $p\in\z^+$ un primo, $G$ un $p$-grupo con $G\neq\{e\}.$ Por la ecuación de clase
\begin{align*}
|G| = |Z(G)| + \sum_{j=1}^k [G: C_G(x_j)]
\end{align*}
con $x_1,\cdots, x_k$ representantes de las distintas clases de conjugación con más de un elemento, por lo que
\begin{align*}
1 < \#x_j^G &= [ G: C_G(x_j) ] = \frac{|G|}{|C_G|}\Big|\; |G|.
\end{align*}

Como $|G| = p^t$, $t\in \n$, entonces $p\Big| [G: C_G(x_j)]$ para toda $j\in \{1,\cdots, k\}$.

Así
\begin{align*}
p \Big| |G| – \sum_{j = 1}^k [G: C_{G}(x_j) ]= |Z(G)|.
\end{align*}

Como $|Z(G)|$ es múltiplo de $p$ no nulo, no puede ser 1. Entonces $Z(G) \neq \{e\}.$

$\blacksquare$

¿Grupos abelianos de nuevo?

Lema. Sea $G$ un grupo. Si $G/ Z(G)$ es cíclico, entonces $G$ es abeliano.

Demostración.
Sea $G$ un grupo tal que $G/Z(G)$ es cíclico.

Entonces $G/Z(G) = \left<gZ(G)\right>$ con $g\in G.$

Sean $a,b\in G$. Como $aZ(G), bZ(G) \in G/Z(G) = \left<gZ(G)\right>$ entonces
\begin{align*}
aZ(G) &= g^kZ(G) & \\
bZ(G) &= g^tZ(G)& \text{con } k,t\in \z.
\end{align*}

Así,
\begin{align*}
a &= g^kz_1 &\\
b &= g^tz_2 & \text{con } k,t \in \z, z_1,z_2 \in Z(G).
\end{align*}

Entonces
\begin{align*}
ab &= (g^kz_1)(g^tz_2) = g^{k+t}z_1z_2 &\text{Como }z_1\in Z(G),\text{ entonces $z_1$ conmuta con $g^t$}\\
ba &= (g^tz_2)(g^kz_1) = g^{t+k}z_2z_1 &\text{Como }z_2\in Z(G), \text{ entonces $z_2$ conmuta con $g^k$}.
\end{align*}

Así $ab = ba$. Por lo tanto $G$ es abeliano.

$\blacksquare$

Corolario. Sea $p\in\z^+$ un primo. Si $G$ es un grupo de orden $p^2$, entonces $G$ es abeliano.

Demostración.
Sea $p\in\z^+$ un primo, $G$ un grupo con $|G| = p^2$.

$G$ es entonces un $p$-grupo con $G\neq \{e\}$, por la proposición previa $Z(G) \neq \{e\}.$

Como $Z(G) \leq G$, entonces $|Z(G)|\Big| |G| = p^2$, con $|Z(G)|\neq 1.$ Así que $|Z(G)| = p$ ó $|Z(G)| = p^2.$

Si $|Z(G)| = p,$ entonces
\begin{align*}
\left|G/Z(G)\right| = \frac{|G|}{|Z(G)|} = \frac{p^2}{p} = p,
\end{align*}
entonces $G/Z(G)$ es cíclico. Por el lema se tiene que $G$ es abeliano y entonces $Z(G) = G$. Esto es una contradicción porque $|G| = p^2$ y estamos suponiendo que $|Z(G)|= p$.

En consecuencia, obtenemos que $|Z(G)| = p^2$, entonces $Z(G) = G$ y así $G$ es abeliano.

$\blacksquare$

Tarea moral

  1. Demuestra el primer corolario de esta entrada: Sea $p\in\z^+$ un primo, $G$ un grupo finito. $G$ es un $p$-grupo si y sólo si para todo $g\in G$ el orden $o(g)$ es una potencia de $p$. (Sugerencia: Usa el Teorema de Cauchy).
  2. Sea $p$ un primo, prueba que cada grupo $G$ de orden $2p$ es cíclico o isomorfo a $D_{2p}.$
  3. Prueba o da un contraejemplo: Todo grupo de orden $p^3$ con $p\in \z^+$ un primo, es abeliano.
  4. Demuestra que si $G$ es un $p$-grupo finito no abeliano tal que $|G|=p^3.$ Entonces, $Z(G) \cong \z_p.$

Más adelante…

Nos estamos encaminando a demostrar los Teoremas de Sylow, para ello todavía nos faltan un par de definiciones. En la siguiente entrada definiremos a los $p$-subgrupos de Sylow y usaremos el Teorema de Cauchy para probar que estos subgrupos siempre existen.

Entradas relacionadas

Álgebra Moderna I: Permutaciones disjuntas

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Repasemos un poco el último ejemplo de la entrada anterior. En $S_5$ teníamos la composición $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5)$ y fijándonos en qué ocurre con cada elemento, concluimos que esta composición es igual a $(1 \; 2)(3 \; 4 \; 5)$. Entonces obtuvimos dos composiciones distintas para escribir a esa permutación. En el dibujo, es más claro que en la primera los dos ciclos se están entrelazando entonces es más difícil entender qué es lo que hace la permutación. Pero cuando vemos la representación de $(1 \; 2)(3 \; 4 \; 5)$ es más fácil entender qué es lo que está haciendo nuestra permutación. Así, es más conveniente trabajar con la segunda notación.

La representación de $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2)(3 \; 4 \; 5)$

A simple vista podemos observar que $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ comparten el 2, pero $(1 \; 2)$ y $(3 \; 4 \; 5)$ no comparten ningún elemento. En este caso, se dice que $(1 \; 2)$ y $(3 \; 4 \; 5)$ son ciclos disjuntos. Más aún, ¿será que cualquier permutación se puede descomponer en ciclos disjuntos? la respuesta es que , esto lo demostraremos también en esta entrada.

Definición de permutaciones disjuntas

Antes de definir lo que significa que dos permutaciones sean disjuntas, nos gustaría recordar la última observación de la entrada anterior.
Observación. Si $n \geq 3$, entonces $S_n$ no es abeliano.
Esto nos sirve para establecer que, en general, trabajaremos con grupos no abelianos.

Ahora sí definamos lo que son permutaciones disjuntas.
Definición. Sean $\alpha, \beta \in S_n$. Decimos que $\alpha$ y $\beta$ son disjuntas o ajenas si sop$\,\alpha \,\cap $ sop$\,\beta = \emptyset$, es decir, dado $i\in \{1,2,\dots, n\}$ se tiene que

\begin{align*}
\alpha(i) \neq i &\Rightarrow \beta(i) = i .\\
\end{align*}

En consecuencia también ocurre que si $\beta(i) \neq i$, entonces $\alpha(i) = i.$

Observación. Si $\alpha$ y $\beta$ son disjuntas, pueden fijar a un mismo elemento pero no mover a un mismo elemento.

En particular, si tenemos dos ciclos de longitud mayor a uno, podemos obtener la siguiente equivalencia.
Observación. Sean $\alpha = (i_1 \dots i_r)$ y $\beta = (j_1 \dots j_t)$ con $r,t > 1$. Entonces $\alpha$ y $\beta$ son disjuntas si y sólo si $\{i_1, \dots, i_r\} \cap \{j_1, \dots, j_t\} = \emptyset$.

Ejemplos.

  • $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ no son disjuntas.
  • $(1 \; 2)$ y $(3 \; 4 \; 5)$ son disjuntas.

Las permutaciones disjuntas conmutan

Lema. Sean $\alpha, \beta \in S_n$. Si $\alpha$ y $\beta$ son disjuntas, entonces conmutan.

P.D. $\alpha \beta = \beta \alpha$.
Sea $i \in \{1, \dots, n\}$.

Caso 1. Cuando $\alpha(i) = i$, $\beta(i) = i$. Ambas fijan al mismo elemento, esto es posible en permutaciones disjuntas. Entonces, al componer, no importará que permutación se aplique primero.
\begin{align*}
\alpha\beta(i) = \alpha(i) = i = \beta(i) = \beta\alpha(i).
\end{align*}

Caso 2. Cuando $\alpha(i) = i$, $\beta(i) \neq i$.
Si componemos, obtenemos $\beta\alpha(i) = \beta(i)$.
Como $\beta$ es inyectiva y $\beta(i) \neq i$, entonces $\beta(\beta(i)) \neq \beta(i)$. Así $\beta$ mueve a $\beta(i)$ y como $\alpha$ y $\beta$ son disjuntas $\alpha$ fija a $\beta(i)$. Entonces
\begin{align*}
\alpha\beta(i) = \alpha(\beta(i)) = \beta(i).
\end{align*}
Por lo tanto $\beta\alpha(i) = \alpha\beta(i)$.

Caso 3. Cuando $\alpha(i) \neq i$, $\beta(i) = i$.
Este es análogo al caso 2.

El caso $\alpha(i) \neq i$, $\beta(i) \neq i$ no se da pues $\alpha$ y $\beta$ son disjuntas.
Por lo tanto $\alpha\beta = \beta\alpha$.

$\blacksquare$

Toda permutación se puede descomponer en ciclos disjuntos

Comencemos como un ejemplo. Consideremos a la permutación $\alpha \in S_9$

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 4 & 1 & 7 & 8 & 6 & 2 & 9 & 5
\end{pmatrix}.
\end{align*}

  • El 1 va al 3 y el 3 regresa al 1, entonces tenemos una transposición $(1 \; 3)$.
  • Luego, observemos que el 2 va al 4, el 4 al 7 y el 7 al 4. Así tenemos un $3-$ciclo, $(2 \; 4 \; 7)$.
  • De los números que no han aparecido hasta ahora, podemos tomar el 5, este va al 8, el 8 al 9 y el 9 regresa al 5. Entonces tenemos otro $3-$ciclo $(5 \; 8 \; 9)$.
  • Por último, el 6 queda fijo.

Esto se puede dibujar de la siguiente manera:

Representación gráfica de $\alpha$.

Pero también se puede escribir algebraicamente como:

\begin{align*}
\alpha = (1 \; 3)\,(2 \; 4 \; 7)\,(5 \; 8 \; 9)\,(6).
\end{align*}

Ahora veremos que cualquier permutación se puede descomponer en un producto de ciclos disjuntos.

Veamos primero que cada número movido por una permutación da lugar a un ciclo.

Lema 1. Sea $\alpha\in S_n$, $i\in\{1,\dots , n\}$. Para cada $i\in\text{sop }\alpha$ existe $j\in\mathbb{N}^+$ tal que $\alpha ^{j}(i)=i$, más aún, si $t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ se tiene que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

Demostración.
Sea $\alpha \in S_n$, $i\in\text{sop }\alpha$ . Consideremos
\begin{align*}
i , \alpha(i), \alpha^2(i), \dots
\end{align*}

Sabemos que esta lista tiene elementos repetidos ya que consiste de números en el conjunto finito $\{1,2,\dots,n\}$. Existen entonces $r,s\in\mathbb{N}$ distintos tales que $\alpha^r(i) = \alpha^s(i)$, sin pérdida de generalidad $s < r,$ por lo cual $ \alpha^{r-s}(i) = i$ con $ r-s\in\mathbb{N}^+$ como se quería demostrar.

Así, el conjunto $\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ es no vacío, y por el principio del buen orden tiene un elemento mínimo, digamos $t_i$. Veamos ahora que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos. Por la elección de $t_i$ sabemos que $ \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos a $i$. Probemos que $ \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos. Supongamos que $\alpha^q(i) = \alpha^l(i)$ para algunos $0< q\leq l < t_i$, entonces $\alpha^{l-q}(i) = i$ con $ 0\leq l-q<t_i$ y por la elección de $t_i$ esto implica que $l-q=0$, es decir que $q=l$. Por lo tanto $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

$\blacksquare$

Gracias al lema anterior podemos considerar el ciclo $(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$:

Definición. Sea $\alpha\in S_n$, $i\in\text{sop }\alpha$ . Definamos el ciclo

$$\gamma_i=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))\text{ con }t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}.$$

Notemos que si $i\in\text{sop }\alpha$, entonces $$\gamma_i=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))= (\alpha (i)\cdots \alpha ^{t_i-1}(i)\;i)= (\alpha^2 (i)\cdots \alpha ^{t_i-1}(i)\;i\;\alpha(i))= \dots, \text{ etc.},$$ por lo que toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ define el mismo ciclo que $i$, es decir:

Observación. Si $i\in\text{sop }\alpha$, entonces para toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ se tiene que $\gamma_k=\gamma_i$ y $t_k=t_i.$

En consecuencia tenemos el siguiente resultado:

Lema 2. Sea $\alpha\in S_n$, $i,j\in\text{sop }\alpha$, y consideremos $\gamma_i,\gamma_j$ como en la definición anterior. Si $\gamma_i\neq \gamma_j,$ entonces $\gamma_i$ y $ \gamma_j$ son disjuntos.

Demostración.

Sea $\alpha \in S_n$, $i,j\in\text{sop }\alpha$, $\gamma_i,\gamma_j$ como en la definición anterior. Probemos el lema por contrapuesta. Supongamos que $\gamma_i$ y $ \gamma_j$ no son disjuntos. Existe entonces $k$ movido por ambos ciclos, es decir $k\in\{i, \alpha (i),\cdots \alpha ^{t_i-1}(i)\}\cap\{j, \alpha (j),\cdots ,\alpha ^{t_j-1}(j)\}.$ Por la observación previa tenemos que $\gamma_k=\gamma_i$ y $\gamma_k=\gamma_j$, de donde concluimos que $\gamma_i=\gamma_j$.

$\blacksquare$

Ahora veremos que al considerar todos los ciclos distintos del tipo $\gamma_i$ y componerlos, obtenemos una descomposición de la permutación inicial en ciclos disjuntos:

Teorema. Toda permutación en $S_n$ es un ciclo o un producto de ciclos disjuntos

Demostración.

Sea $\alpha\in S_n$. Consideremos todos los ciclos $\gamma_j$ con $j\in\text{sop }\alpha$ y eliminemos los ciclos repetidos, llamemos $\sigma_1,\sigma_2,\dots ,\sigma_r$ a los ciclos restantes. Afirmamos que $\alpha=\sigma_1\sigma_2\cdots \sigma_r$ es una descomposición de $\alpha$ en ciclos disjuntos. Por construcción $\sigma_1\sigma_2\cdots \sigma_r$ es un producto de ciclos, y por el lema 2, dado que $\sigma_1,\sigma_2,\dots ,\sigma_r$ son distintos, entonces son también disjuntos. Así, basta convencerse que $\alpha=\sigma_1\sigma_2\cdots \sigma_r$ para terminar la demostración.

Sea $i\in\{1,2,\dots ,n\}$. Si $i\in\text{sop }\alpha$ tenemos que $\gamma_i\in\{\gamma_j\mid j\in\text{sop }\alpha\}=\{\sigma_1,\sigma_2,\dots ,\sigma_r\}$, y entonces $\gamma_i=\sigma_j$ para alguna $j$. Así, $\sigma_j=\gamma_i=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$ y $$\sigma_1\sigma_2\cdots \sigma_r(i)=\sigma_j(i)=\alpha(i)$$ (donde la primera igualdad se debe a que $\sigma_1,\sigma_2,\dots ,\sigma_r$ son disjuntos). Si $i\notin\text{sop }\alpha$ tenemos que para toda $j\in\{1,\dots ,r\}$ $i\notin\text{sop }\sigma_j$, por lo que $\sigma_1\sigma_2\cdots \sigma_r(i)=i=\alpha(i)$. Por lo tanto $\alpha=\sigma_1\sigma_2\cdots \sigma_r$ .

$\blacksquare$

Ejemplo.
Sea $\alpha \in S_{10}$ como sigue

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 1 & 7 & 9 & 6 & 8 & 3 & 5 & 2 & 10
\end{pmatrix}.
\end{align*}

Veamos qué sucede con el $1 \in $ sop $\alpha$. Le aplicamos $\alpha$ varias veces para formar el primer ciclo.

\begin{align*}
1, \alpha(1) = 4, \alpha^2(1) = 9, \alpha^3(1) = 2, \alpha^4(1) = 1.
\end{align*}

Entonces, nombremos $\sigma_1$ a ese $4-$ciclo, $\sigma_1 = (1 \; 4 \; 9 \; 2)$.

Ahora, tomemos un elemento que no esté en $\sigma_1$, digamos $3$. De nuevo, aplicamos $\alpha$ varias veces para descubrir el ciclo al que pertenece.
\begin{align*}
3, \alpha(3) = 7, \alpha^2(3)=3.
\end{align*}

Tenemos así una transposición $\sigma_2=(3\; 7).$

Volvemos a tomar un número que no haya aparecido hasta ahora, digamos $5$. Aplicando $\alpha$ varias veces, podemos descubrir el ciclo,
\begin{align*}
5, \alpha(5) = 6, \alpha^2(5) = 8, \alpha^3(5) = 5,
\end{align*}

obteniendo el ciclo $\sigma_3=(5\;6\;8)$.

Así, nuestra permutación quedaría como
\begin{align*}
\alpha = (1 \; 4 \; 9 \; 2 ) (3 \; 7)( 5 \; 6 \; 8).
\end{align*}

$\blacksquare$

Tarea moral

  1. Demuestra la observación: Si $n \geq 3$, entonces $S_n$ no es abeliano.
  2. Encuentra dos permutaciones disjuntas $\alpha$ y $\beta$. Encuentra $\beta\alpha$ y $\alpha\beta$ ¿qué observas al comparar $\beta\alpha$? Intenta con otro ejemplo de dos permutaciones disjuntas $\alpha$ y $\beta$ y analiza lo que ocurre.
  3. Sean $\alpha$ y $\beta$ dos permutaciones que conmutan ¿podemos concluir entonces $\alpha$ y $\beta$ son disjuntas?
  4. Considera el siguiente elemento de $S_{11}$
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\\
    5 & 8 & 2 & 6 & 4 & 1 & 3 & 7 & 9 & 11 & 10
    \end{pmatrix}.
    \end{align*}
    Encuentra una factorización en ciclos disjuntos de $\alpha$, y de $\alpha^{-1}$.

Más adelante…

Ya conocemos qué son las permutaciones disjuntas y que cualquier permutación se puede ver como multiplicación de ciclos disjuntos. También, puede que hayas notado que comenzamos a escribir los $1-$ciclos de los elementos que se quedan fijos en las permutaciones. Esto nos encamina al tema principal de la siguiente entrada, la factorización completa, que no es más que la descomposición de una permutación en ciclos disjuntos incluyendo los $1-$ciclos.

Entradas relacionadas

Álgebra Moderna I: Definición de Grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Ahora sí, comenzaremos con el tema de este curso. Después de estudiar las operaciones binarias por fin veremos para qué nos sirven. Los grupos son una estructura algebraica. Están constituidos por dos partes, un conjunto y una operación ¿Puedes imaginarte de qué tipo de operación estamos hablando?

Para motivarlo, veamos cómo resolvemos esta ecuación:

\begin{align*}
x+8 & = 5\\
(x + 8) + (-8) &= 5 + (-8)\\
x + 0 &= -3\\
x &= -3
\end{align*}

Al resolver la ecuación, formalmente estamos usando las siguientes propiedades:

  • Asociatividad
  • Inverso aditivo
  • Neutro

En ese mismo orden.

En esta entrada definiremos formalmente a los grupos y daremos muchos ejemplos para que te empapes de la definición. Revisaremos los ejemplos que vimos en entradas anteriores y determinaremos cuáles son un grupo y cuáles no.

¿Qué es un grupo?

Definición. Sea $G$ un conjunto con una operación binaria $*$. Decimos que $(G,*)$ es un grupo si

  1. La operación $*$ es asociativa, es decir, $(a * b)*c = a*(b*c) \quad \forall a,b,c \in G$
  2. Existe $e \in G$ tal que $e*a = a*e = a \quad \forall a \in G$.
    A $e$ se le llama neutro en $G$.
  3. Para toda $a \in G$ existe $\tilde{a} \in G$ tal que $a*\tilde{a} = \tilde{a}*a=e$.
    En este caso, $\tilde{a}$ se llama inverso de a.

Si además * es conmutativa, es decir $a*b = b*a \quad \forall a,b \in G$, decimos que $(G,*)$ es un grupo abeliano.

Nota. Sea $G$ conjunto con una operación binaria $*$:

  • Si $G \neq \emptyset$, $(G,*)$ se llama magma.
  • Si $G\neq \emptyset$ y se cumple 1, $(G,*)$ se llama semigrupo.
  • Si se cumplen 1 y 2, $(G,*)$ se llama monoide.

Repaso de ejemplos anteriores

Veamos de nuevo algunos ejemplos de las entradas anteriores y comprobemos si cumplen con la definición de grupo.

  • $G : = \z^+$, $a*b = \text{máx}\{a,b\}$.
    • En la entrada anterior vimos que $*$ es asociativa y conmutativa.
    • $1$ es el neutro.
      Demostración. $1*a = a*1 = \text{máx}\{1,a\} = a \quad \forall a \in \z^+$. $\blacksquare$
    • $2$ no tiene inverso.
      Demostración. $2*a = \text{máx}\{2,a\} \geq 2 \quad \forall a \in \z^+$, por lo que $2 * a \neq 1 \quad a \in \z^+$.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $G:= \z^+$, $a*b = a$.
    • No tiene neutro, si existiera $e \in \z^+$ neutro, entonces para toda $a\in\z^+$, por la definción de la operación $e*a = e$, pero la definición de neutro requiere que $e*a = a$. Entonces, esto implica que $e = a$ y como esto no es necesariamente cierto, pues $a$ es un entero positivo cualquiera, obtenemos una contradicción.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano, la demostración queda como ejercicio.
  • $(\{ f \; | \; f:\r \to \r\}, \circ)$ no es un grupo, pues aunque $\mathrm{id}_{\r}$ es neutro, no todo elemento tiene inverso, como se ve en Álgebra Superior I.
  • $(S_3, \circ)$ es un grupo no abeliano. Generalizaremos este ejemplo más adelante y le llameremos grupo simétrico.
  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$4$$6$
$4$$4$$4$$6$
$6$$6$$6$$6$

Si observamos la tabla, podemos concluir que:

  • $2$ es neutro.
  • $4$ y $6$ no tienen inversos.

Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$2$$2$
$4$$4$$4$$4$
$6$$6$$6$$6$
  • No hay un neutro.

Como no hay neutro, ni siquiera tiene sentido pensar en la existencia de inversos. Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{1,-1\}$
$*$$1$$-1$
$1$$1$$-1$
$-1$$-1$$1$
  • El $1$ es el neutro.
  • La operación es asociativa.
  • $1$, $-1$ son sus propios inversos.
  • Además, la operación conmuta, porque la operación es el producto usual.

Por lo tanto es un grupo abeliano.

$\blacksquare$

  • $(\z, +)$ es un grupo.
  • Sea $K$ un campo y $K^* = K \setminus \{0_K\}$. Si consideramos $(K^*, \cdot)$ tenemos un grupo abeliano. Le quitamos el $0_K$ pues es el único número que no tiene inverso multiplicativo.
  • $\mathbb{S}’ = \{z \in \mathbb{C} \; |\; |z|= 1\}$. Es decir, los complejos con norma igual a $1$. Es un grupo abeliano con el producto.
Representación geométrica del conjunto.
  • Dentro de los complejos podemos considerar $$\Gamma_n = \left\{ \xi^k \; | \; 0 \leq k < n \right\},$$ con $\xi = e^{\frac{2\pi i}{n}}$. Geométricamente corresponden a los vértices de un polígono regular de $n$ lados y algebraicamente son las raíces $n$-ésimas de la unidad. Forman un grupo abeliano con el producto.
Representación geográfica del conjunto cuando $n= 6$.

Ejemplos importantes de matrices

Los siguientes son ejemplos de algunos grupos importantes. Recuérdalos porque son ejemplos que serán recurrentes en futuras entradas. Recuerda que no todas las matrices tienen inverso multiplicativo y que el producto de matrices no es conmutativo. Para refrescar tu memoria, puedes consultar las entradas de matrices inversas y operación de matrices.

  1. $$GL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A \neq 0\},$$ con el producto usual es un grupo no abeliano. Este par ordenado $(GL(n,r), \cdot)$ es conocido como el grupo lineal general.
  2. $$SL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A = 1\},$$ con el producto usual es un grupo no abeliano. Este es el grupo lineal especial.
  3. $$SO(n,\r) = \{A \in \cM_{n\times n}(\r) \; | \; AA^t = I_n, \; \det A = 1\},$$ con el producto usual es un grupo no abeliano. A éste se le conoce como grupo ortogonal especial.
  4. $$O(n, \r) = \{A \in \cM_{n\times n}(\r) \; |\; AA^t = I_n\},$$ con el producto usual es un grupo no abeliano. Este es conocido como el grupo ortogonal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina, en cada uno de los siguientes casos, si el sistema descrito es grupo o no. En caso negativo, señala cuál o cuáles de los axiomas de grupo no se verifican. En caso afirmativo demuestra que es un grupo:
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|r\text{ se puede expresar como }\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Demuestra la siguientes afirmaciones referentes a grupos, dadas en los ejemplos anteriores:
    • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano.
    • $(S_3, \circ)$ es un grupo no abeliano.
    • $(\z, +)$ es un grupo.
    • $(K^*, \cdot)$ con $K$ un campo, es un grupo abeliano.
    • $(\Gamma_n, \cdot)$ es un grupo abeliano, con $\cdot$ el producto.
  3. Demuestrá por qué los ejemplos importantes de matrices son grupos no abelianos.

Más adelante…

Después de tantas definiciones y ejemplos, comenzaremos a ver más teoremas y demostraciones. En la siguiente entrada profundizaremos en las propiedades de grupos derivadas de su definición. Además, veremos un teorema conocido como la «Definición débil de Grupo».

Entradas relacionadas