Archivo de la etiqueta: grado

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Álgebra Superior II: Ecuaciones cuadráticas complejas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya platicamos acerca de la construcción de los números complejos. Vimos que, con las operaciones de suma y resta que definimos, $\mathbb{C}$ es un campo. Además, introdujimos las nociones de conjugación compleja y de norma compleja. Como ya entendemos un poco de las operaciones que tenemos en $\mathbb{C}$, podemos empezar a hablar de otro de los temas que interesa al álgebra: resolver ecuaciones. Comenzaremos hablando acerca de ecuaciones cuadráticas complejas.

En entradas posteriores de este parcial, y del siguiente, veremos cómo resolver otro tipo de ecuaciones en los números complejos:

  • Sistemas de ecuaciones lineales complejos.
  • Ecuaciones de la forma $z^n=w$.
  • La ecuación cúbica $ax^3+bx^2+cx+d=0$.
  • La ecuación de grado 4 $ax^4+bx^3+cx^2+dx+e=0$.

En realidad, los números complejos son la estructura numérica correcta para resolver todo tipo de polinomios, es decir, expresiones como las de los últimos tres incisos anteriores. Esto se debe al teorema fundamental del álgebra, que dice lo siguiente.

Teorema (fundamental del álgebra). Sea $n$ un entero positivo y $a_0,\ldots,a_n$ en $\mathbb{C}$ con $a_n\neq 0$. La ecuación en números $$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0$$ tiene por lo menos una solución $x$ en $\mathbb{C}$.

La demostración de este teorema en el curso será optativa, y la veremos sólo si tenemos tiempo suficiente. Antes de poder hacer esto, tenemos que seguir discutiendo sobre los números complejos (en esta unidad) y a los polinomios (en la siguiente unidad). Si en algún momento llevas un curso de análisis complejo, también demostrarás el teorema fundamental del álgebra, con ideas un poco más profundas.

Otra aclaración. Si el teorema fundamental del álgebra dice que toda ecuación polinomial tiene solución, ¿por qué sólo estudiamos hasta la ecuación de grado cuatro? La razón es que para grados dos, tres y cuatro podemos dar las soluciones a estas ecuaciones de manera algebraica, es decir, podemos expresar las soluciones con una fórmula (de cierto tipo) en términos de los coeficientes de la ecuación. En el caso de que la ecuación sea de grado 5 en adelante, en cierto sentido matemático no se puede. La demostración de esto la puedes ver en un curso de álgebra moderna intermedio, en el que se discuta teoría de Galois.

Raíces cuadradas en los complejos

Las ecuaciones cuadráticas complejas se resuelven de una forma parecida a lo que hacemos en $\mathbb{R}$: usando la fórmula cuadrática. Es decir, si tenemos la ecuación $ax^2+bx+c=0$ con $a,b,c$ en $\mathbb{C}$ y $a\neq 0$, veremos más abajo que la podemos resolver mediante la fórmula $$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.$$

Esta expresión necesita que podamos encontrar la raíz cuadrada de un número complejo arbitrario. Vamos a mostrar que esto siempre es posible. Comencemos notando que el único complejo $z$ tal que $z^2=0$ es el $0$: si hubiera uno $z\neq 0$, multiplicando en ambos lados por $z^{-1}$ tendríamos que $z=0\cdot z^{-1}=0$, una contradicción.

Teorema. Sea $w\neq 0$ un número complejo. Entonces la ecuación $$z^2=w$$ tiene exactamente dos soluciones para $z$ en $\mathbb{C}$ y son inversos aditivos entre ellas.

Demostración. Tomemos $w=a+bi$ un número complejo. Supongamos que $z=x+yi$ es tal que $z^2=w=a+bi$. Tenemos que
\begin{align*}
a+bi=z^2=(x+iy)^2=(x^2-y^2)+2xyi,
\end{align*}

de donde $x^2-y^2=a$ y $2xy=b$. Elevando al cuadrado y sumando ambas ecuaciones, tenemos que
\begin{align*}
a^2+b^2&=(x^2-y^2)^2+(2xy)^2\\
&=(x^2+y^2)^2.
\end{align*}

Como $a$ y $b$ son números reales, tenemos que $a^2+b^2$ es un número real no negativo. Del mismo modo, $x^2+y^2$ es un real no negativo. De esta forma, sacando raíz cuadrada en la ecuación anterior, obtenemos que $$x^2+y^2=\sqrt{a^2+b^2}=\Vert w \Vert.$$

Sabemos además que $x^2-y^2=a=\text{Re}(w)$. Si sumamos ambas ecuaciones obtenemos $$x^2=\frac{\Vert w\Vert + \Rea(w)}{2}$$ y restándolas obtenemos $$y^2=\frac{\Vert w\Vert – \Rea(w)}{2}.$$

Recordemos que $\Vert w\Vert \geq |\Rea(w)|$ para todo complejo $w$, de modo que los términos del lado derecho de las igualdades anteriores son siempre positivos. Por esta razón, podemos sacar raíz de ambos lados. Pero ahora no hay nada que nos garantice que $x$ y $y$ sean positivos, así que hay que considerar dos casos en cada raíz, reflejados por el símbolo $\pm$ en las siguientes expresiones:

\begin{align*}
x&=\pm \sqrt{\frac{\Vert w\Vert + \Rea(w)}{2}}\\
y&=\pm \sqrt{\frac{\Vert w\Vert – \Rea(w)}{2}}.
\end{align*}

Hay que tener cuidado. No se valen las cuatro posibilidades de elecciones de signo. Notemos que de la ecuación $2xy=b$ tenemos que $xy$ tiene el mismo signo que $b=\Ima(w)$, así que si $\Ima(w)>0$ tienen que elegirse $x$ y $y$ con signos iguales y si $\Ima(w)<0$, tienen que elegirse con signos diferentes. Independientemente de la elección, las dos posibilidades dan dos soluciones para $z=x+iy$ que son inversas aditivas entre sí.

$\square$

Por notación. si tenemos un número complejo $w$, llamamos $\sqrt{w}$ a cualquiera de sus raíces cuadradas. Por el teorema anterior, su otra raíz es $-\sqrt{w}$.

Hay que tener cuidado. Para cuando $r$ es un real positivo, la notación $\sqrt{r}$ se refiere, por definición, a la raíz positiva. Cuando $w$ es un complejo arbitrario, no hay una forma «canónica» o «natural» de definir cuál de las dos raíces es «la correcta». Lo importante es que hay dos, y que son inversas aditivas entre sí.

Ejemplos de cómo obtener raíces cuadradas complejas

Antes de discutir cómo resolver ecuaciones cuadráticas complejas en general, veamos algunos ejemplos de cómo se usa el teorema anterior de manera práctica.

Problema. Encuentra las raíces cuadradas de $i$.

Solución. Tenemos que $\Vert i \Vert = 1$ y que $\Rea(i) = 0$, así que las soluciones $z=x+yi$ están dadas mediante

\begin{align*}
x&=\pm \sqrt{\frac{1}{2}}=\pm\frac{1}{\sqrt{2}}\\
y&=\pm \sqrt{\frac{1}{2}}=\pm\frac{1}{\sqrt{2}} .
\end{align*}

Como $\Ima(i)=1>0$, tenemos que elegir a $x$ y $y$ con los mismos signos entre sí, así que las soluciones son
\begin{align*}
z_1&=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i\\
z_2&=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i.
\end{align*}

$\square$

Problema. Encuentra las raíces cuadradas de $-21-20i$.

Solución. Tenemos que
\begin{align*}
\Vert -21-20i \Vert &= \sqrt{21^2+20^2}\\
&=\sqrt{841}\\
&=29,
\end{align*}

y que $\Rea(-21-20i)=-21$. Así, las soluciones $z=x+iy$ están dadas mediante

\begin{align*}
x&=\pm \sqrt{\frac{29-21}{2}}=\pm\sqrt{4}=\pm 2\\
y&=\pm \sqrt{\frac{29+21}{2}}=\pm\sqrt{25}=\pm 5.
\end{align*}

Como $\Ima(-21-20i)=-20<0$, debemos elegir $x$ y $y$ de distinto signo, de donde obtenemos las soluciones

\begin{align*}
z_1&=2-5i\\
z_2&=-2+5i.
\end{align*}

$\square$

Solución de ecuaciones cuadráticas complejas

Una vez que sabemos obtener la raíz cuadrada de un número complejo, tenemos todo lo necesario para resolver ecuaciones cuadráticas complejas en general. Consideremos $a,b$ y $c$ en $\mathbb{C}$ con $a\neq 0$. Veamos cómo resolver la ecuación $$ax^2+bx+c=0.$$

Para empezar, dividimos entre $a$ de ambos lados y restamos $\frac{c}{a}$, también, de ambos lados. Se obtiene que $$x^2+\frac{b}{a} x = -\frac{c}{a}.$$ El siguiente paso es un truco algebraico útil que se llama «completar el cuadrado». Pensamos a los términos del lado izquierdo como los primeros dos de un binomio cuadrado y nos preguntamos, ¿qué término faltaría? El término faltante es $\frac{b^2}{4a^2}$. Sumando este término en ambos lados, llegamos a $$x^2+\frac{b}{a} x + \frac{b^2}{4a^{2}} = \frac{b^2-4ac}{4a^2}.$$

La razón por la cual completamos el cuadrado es para poder escribir la expresión anterior como

$$(x+\frac{b}{2a})^2= \frac{b^2-4ac}{4a^2},$$

y aquí llegamos al punto en el que necesitamos obtener raíces cuadradas. Afortunadamente, ya sabemos que podemos hacer esto siempre en $\mathbb{C}$ y obtener $$x+\frac{b}{2a}=\pm\sqrt{ \frac{b^2-4ac}{4a^2}},$$ de donde concluimos que las soluciones son

$$x=-\frac{b}{2a}\pm\sqrt{ \frac{b^2-4ac}{4a^2}}.$$

Todos estos pasos son reversibles. Resumimos toda esta discusión en el siguiente resultado.

Teorema. Para $a,b,c$ en $\mathbb{C}$ y $a\neq 0$, la ecuación compleja $ax^2+bx+c=0$ tiene dos soluciones en $\mathbb{C}$ dadas por
\begin{align*}
x_1&=-\frac{b}{2a}+\sqrt{ \frac{b^2-4ac}{4a^2}}\\
x_2&=-\frac{b}{2a}- \sqrt{ \frac{b^2-4ac}{4a^2}}.
\end{align*}

Estas soluciones son iguales si y sólo si $b^2=4ac$ y en otro caso son distintas.

Ejemplos sobre resolución de ecuaciones cuadráticas complejas

Problema. Resuelve en $\mathbb{C}$ la ecuación $$x^2-5x+(7+i)=0.$$

Solución. Para usar la fórmula cuadrática, necesitaremos obtener la raíz $$\sqrt{\frac{25-4(7+i)}{4}}= \sqrt{-\frac{3}{4}-i}.$$

Como $$\left \lVert -\frac{3}{4}-i\right\lVert=\frac{\sqrt{25}}{4}=\frac{5}{4}$$ y $$\Rea\left(-\frac{3}{4}-i\right)=-\frac{3}{4},$$ las raíces $a+bi$ están dadas por

\begin{align*}
a=\pm\sqrt{\frac{\frac{5}{4}-\frac{3}{4}}{2}}=\pm\frac{1}{2}\\
b= \pm\sqrt{\frac{\frac{5}{4}+\frac{3}{4}}{2}}=\pm 1.
\end{align*}

Como $\Ima\left(-\frac{3}{4}-i\right)=-1<0$, para obtener las raíces tenemos que elegir signos distintos, es decir, que las raíces son \begin{align*}&\frac{1}{2} – i\\-&\frac{1}{2} +i.\end{align*}

Continuando con el problema original, concluimos, por la fórmula cuadrática, que las dos raíces son

\begin{align*}
x_1&=\frac{5}{2} + \frac{1}{2} – i = 3-i\\
x_2&=\frac{5}{2} – \frac{1}{2} + i =2+i.
\end{align*}

$\square$

La fórmula cuadrática funciona siempre para resolver ecuaciones cuadráticas complejas, pero a veces es demasiado. No hay que olvidar que tenemos toda el álgebra de $\mathbb{C}$ a nuestra disposición.

Problema. Resuelve en $\mathbb{C}$ la ecuación $$x^2-(3+8i)x=0.$$

Solución. En vez de usar la fórmula cuadrática, factorizamos la expresión del lado izquierdo para obtener que $$x(x-(3+8i))=0.$$

Para que un producto en $\mathbb{C}$ sea $0$, uno de los factores debe ser $0$. Así, $x=0$ ó $x-(3+8i)=0$, de donde las soluciones son \begin{align*}x_1&=0\\x_2&=3+8i.\end{align*}

$\square$

Más adelante…

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Verifica que los números complejos que obtuvimos en los ejemplos de raíces cuadráticas en efecto satisfacen que su cuadrado es el número original.
  2. Encuentra las raíces de $3+4i$, de $8-5i$, de $\frac{1}{2}-\frac{1}{3}i$ y de $2-\sqrt{5}i$.
  3. Verifica que las soluciones que obtuvimos en los ejemplos de ecuaciones cuadráticas complejas en efecto satisfacen la ecuación cuadrática dada.
  4. Resuelve la ecuación cuadrática compleja $$ix^2+7x-7-i=0.$$
  5. Si $w$ y $z$ son números complejos, ¿quienes son las raíces de $wz$? Las raíces cuadradas de $w$ son dos, las de $z$ son dos, y los posibles productos de ellas son cuatro números. ¿Por qué esto no contradice que $wz$ tiene dos raíces?

Puedes practicar este tema con los videos y ejercicios disponibles en la página de Khan Academy. Para ello, visita su sección de ecuaciones cuadráticas en los complejos.

Entradas relacionadas