Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo

Introducción

Cuando se estudian campos vectoriales u otras estructuras algebraicas primero se definen ciertas propiedades básicas y después, otras propiedades importantes que se desprenden de las primeras. Ahora, vamos a ver propiedades de los grupos. Dentro de los grupos mencionamos la existencia de un neutro, asociatividad e inverso. Pero de ahí se desprenden otras propiedades que vamos a usar como la cancelación, la unicidad de los neutros, etc.

Propiedades de grupos

Propiedades. Sea $(G,*)$ un grupo, entonces

  1. Para cualesquiera $x, a, b \in G$, se tiene que $$x*a = x*b \Rightarrow a = b,$$ también se vale del otro lado, $$a*x = b*x \Rightarrow a = b.$$ Estas propiedades son conocidas como las leyes de cancelación.
  2. El neutro en $(G,*)$ es único.
  3. Cada $a \in G$ tiene un único inverso y se denota por $a^{-1}$.
  4. Para toda $a \in G$, $(a^{-1})^{-1} = a$.

Demostración. 1. Sean $x,a,b \in G$.
Supongamos que $x*b = x*b$. Sea $\tilde{x} \in G$ inverso de $x$. Tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
\tilde{x} * (x * a) = \; & \tilde{x} * (x * b) & \text{ }\\
(\tilde{x} * x) * a = \; & (\tilde{x} * x) * b & \text{por la asociatividad}\\
e* a = \; & e * b & \text{por ser $\tilde{x}$ el inverso de $x$}\\
a = \;& b & \text{por ser $e$ el neutro}
\end{align*}$

La cancelación por la derecha es análoga y se deja como ejercicio.

2. Sean $e, e’ \in G$ neutros

$\begin{align*}
e \;{=}\; & e * e’ & \text{ por ser $e’$ un neutro}\\
{=}\; & e’ & \text{ por ser $e$ un neutro}\\
\end{align*}$

$\therefore \; e= \; e’$

3. Sea $a\in G$. Supongamos que $\hat{a}, \tilde{a} \in G$ son inversos de a, entonces:

$\begin{align*}
\hat{a} \;{=}\; & e * \hat{a} & \text{ por ser $e$ el neutro}\\
= \; &(\tilde{a} * a)* \hat{a} & \text{ por ser $\tilde{a}$ un inverso de $a$}\\
=\; & \tilde{a} * a * \hat{a} & \text{ por la asociatividad}\\
=\; & \tilde{a} * (a * \hat{a}) & \text{ por la asociatividad}\\
=\; & \tilde{a} * e & \text{por ser $\hat{a}$ un inverso de $a$}\\
=\; &\tilde{a} & \text{ por ser $e$ el neutro}
\end{align*}$

$\therefore \hat{a} = \tilde{a}$

4. Sea $a \in G$.
Como $(a^{-1})^{-1}$ es el inverso de $a^{-1}$ tenemos que

$a^{-1} * (a^{-1})^{-1} = e$

Como $a^{-1}$ es el inverso de $a$ tenemos que

$a^{-1} * a = e$

Así $a^{-1}*(a^{-1})^{-1} = a^{-1} *a$, entonces por la propiedad 1 podemos cancelar el elemento $a^{-1}$ por la izquierda y concluir que $(a^{-1})^{-1} = a$.

$\square$

Definición débil de grupo

Teorema. Sea $G$ un conjunto, $*$ una operación binaria en $G$. Supongamos que

  1. $*$ es asociativa,
  2. existe $e \in G$ tal que $e*a = a $ para toda $a \in G$ y
  3. $\forall a \in G$ existe $ \tilde{a} \in G$ tal que $\tilde{a}*a=e$,

entonces $(G,*)$ es un grupo. A partir de ahora, a las propiedades $2$ y $3$ de la definición débil de grupo las denotaremos como $2’$ y $3’$ respectivamente. Para dejar que los números $2$ y $3$ denoten las propiedades de la definición de grupo.

Demostración. Supongamos que $(G,*)$ cumple $1, 2’$ y $3’$.
Sea $a \in G$, por $3’$, existe $\tilde{a} \in G$ tal que $\tilde{a} * a = e$.
Tenemos que $\tilde{a}$ es un inverso izquierdo de $a$. Veamos primero que $\tilde{a}$ es también un inverso derecho de $a$, es decir que $a * \tilde{a} = e$.

$\begin{align*}
\tilde{a} * (a * \tilde{a}) \;=\;& (\tilde{a} * a) * \tilde{a} & \text{por la asociatividad}\\
= \; & e * \tilde{a} & \text{por la propiedad }3’\\
= \;& \tilde{a} & \text{ por la propiedad } 2′
\end{align*}$

$\Rightarrow \tilde{a} * (a * \tilde{a}) = \tilde{a}$.

Por $3’$ existe $b \in G$ tal que $b*\tilde{a}=e$. Multiplicando $ \tilde{a} * (a * \tilde{a}) = \tilde{a}$ a la izquierda por $b$ tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
b * (\tilde{a} * (a * \tilde{a})) =\;& b * \tilde{a} & \text{ }\\
(b * \tilde{a}) * (a * \tilde{a}) = \;& b * \tilde{a} & \text{por la asociatividad}\\
e * (a * \tilde{a}) =\;& e & \text{ya que $b$ es un inverso izquierdo de $\tilde{a}$}\\
a * \tilde{a}=\;& e &\text{ya que $e$ es un neutro izquierdo.}
\end{align*}$

Así, $\tilde{a}$ es también un inverso derecho de $a$.

Por $2’$, $e*a=a$ para toda $a\in G$, es decir $e$ es un neutro izquierdo. Veamos ahora que $e$ también es un neutro derecho probando que $a * e = a$ para toda $a \in G$.

Sea $a \in G$, por $3’$ existe $\tilde{a} \in G$ tal que $\tilde{a} * a=e$, y por lo que acabamos de probar $a * \tilde{a} = e$. Usando estas igualdades y la propiedad asociativa tenemos que

$a * e = a * (\tilde{a} * a) = (a * \tilde{a}) * a = e * a$

y como $e$ es un neutro por la izquierda, $e * a = a$. Así $a * e = a$.

Por lo tanto $(G, *)$ es un grupo.

$\square$

Tarea moral

  1. Muestra que $G = \r^*$ con la operación $a * b = |a| b$, tiene un neutro izquierdo $e$ y para cada elemento $a$ existe $\tilde{a}$ tal que $a * \tilde{a} = e$ ¿qué puedes concuir con respecto a la definición débil de un grupo?
  2. Usando la Definición débil de grupo, determina cuáles de estos conjuntos es un grupo.
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  3. Para el conjunto $\mathcal{S}:= \{\bigstar, \blacktriangledown, \blacklozenge, \clubsuit \}$, considera las operaciones que creaste en la tarea moral de una entrada anterior.
    1. Si definiste una operación tal que $(\cS, *)$ es un grupo, comprueba las propiedades vistas en esta entrada y verifica la definición débil.
    2. Si no, observa si alguna de las propiedades analizadas se cumplen con tu operación.
  4. Si quieres conocer el grupo de transformaciones lee de la sección 3.1.1 del libro Introducción analítica a la geometría de Javier Bracho (página 112 a la 115).
  5. Si quieres conocer el grupo diédrico puedes ver el video Dihedral Group de Socratica. El video está en inglés. De todas maneras, lo usaremos más adelante, así que tendremos que definirlo.

Más adelante…

En la siguiente entrada generalizaremos la propiedad de la asociatividad porque hasta ahora sólo la manejamos con tres elementos. Además, seguiremos formalizando conceptos que ya conocemos intuitivamente: definiremos qué es una potencia, escribiremos las leyes de los exponentes y las demostraremos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.