Álgebra Superior I: Condicionales y dobles condicionales

Introducción

Hemos hablado en las últimas entradas de tres conectores muy importantes: la negación, la conjunción y la disyunción. Sin embargo, como recordarás en la introducción al tema, mencionamos más de tres conectores. Ha llegado el momento en que veamos a los dos conectores restantes: la implicación y la doble implicación.

Pensar en consecuencias

Para introducir mejor la implicación, pensemos en qué significa la palabra sin algún contexto matemático. ¿Qué se te viene a la mente cuando oyes la palabra «implicación»? Quizá se te venga a la mente «consecuencia», que a su vez significa cosas o acciones que derivan otras más.

Un ejemplo es el siguiente: ¿qué implicación tiene que se acabe la pila de un celular? Pues en principio se apaga el teléfono. Entonces podríamos decir «Si se acaba la pila del celular entonces se apagará». Otro ejemplo: ¿qué consecuencias tiene llegar tarde a una cita médica? Pues muy probablemente se cancelará. Esto mismo lo podemos decir así: «Si llego tarde a una cita médica entonces la cancelarán». Un último ejemplo sería el siguiente: «Si sube el nivel de dióxido de carbono en la atmósfera entonces los polos se derretirán».

Todas estas oraciones son ejemplos de condicionales, y para entender su estructura, volvamos al primer ejemplo. Pensemos en las proposiciones
\begin{align*}
P &= \text{El celular se queda sin pila.}\\
Q &= \text{El celular se apaga.}
\end{align*}

Podemos reescribir la oración «Si se acaba la pila del celular entonces se apagará» como «Si pasa $P$ entonces pasa $Q$». Observa que siempre que pase $P$, entonces pasará $Q$. Esto lo escribiremos como $P \Rightarrow Q$ y se lee «$P$ implica $Q$». Lo que estamos diciendo con esta oración es que si el valor de verdad de $P$ es verdadero entonces el valor de verdad de $Q$ es verdadero.

Observa que si al celular no se le acaba la pila, entonces no tendría porqué apagarse, entonces si $P$ es falso, $Q$ puede ser falso y no hay problema. También puede pasar que apagues el celular, pero no necesariamente sea porque se le acabó la pila, entonces si $P$ es falso, $Q$ también puede ser verdadero y no hay algún problema con ello. El único problema sería decir que se le acabó la pila al celular y sigue prendido, eso sería algo que no puede suceder, porque sabemos que «Si se acaba la pila del celular entonces se apagará».

Todo esto lo resumimos en la tabla de verdad de la siguiente sección.

Tabla de verdad de la implicación

$P$$Q$$P \Rightarrow Q$
$0$$0$$1$ 
$0$$1$$1$ 
$1$$0$ $0$
$1$$1$ $1$

Quizá sigas teniendo dificultades para entender porqué si $P$ es falso, $Q$ puede tener cualquier valor y seguir haciendo la expresión verdadera. Para ello, piensa en lo siguiente: lo que dice la implicación es que siempre que pase la primera condición $P$, también llamada hipótesis, ocurrirá $Q$, también conocida como tesis. Puede ser que se cumpla $Q$ y no se cumpla $P$, pero eso no contradice lo que dice la implicación, o puede que igual no se cumpla ni $Q$ ni $P$. Lo único que nos dice la implicación es que siempre que se cumpla $P$ va a tener como consecuencia que se cumpla $Q$. Entonces el único caso en donde desobedecemos a la implicación (donde es falsa), es cuando pasa $P$ y no pasa $Q$, que corresponde al penúltimo renglón de la tabla de verdad.

Condiciones suficientes y necesarias

El siguiente y último conector que vamos a ver es la doble implicación. A diferencia de la implicación, asumimos que para que una proposición sea verdadera, es necesaria que la otra también y viceversa. Para esto, refiramos a la doble implicación como una equivalencia lógica $P \Leftrightarrow Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$. En otras palabras decimos que hay una doble implicación entre $P$ y $Q$ si $P$ implica $Q$ y además $Q$ implica $P$.

Además de este nombre, algunas formas de referirse a la doble implicación que encontrarás serán:

  • «$P$ es equivalente a $Q$»
  • «Una condición necesaria y suficiente para $Q$ es $P$»
  • «$P$ si y sólo si $Q$»

Esta última se utiliza mucho en enunciados matemáticos como proposiciones y teoremas.

Tabla de verdad de la doble implicación

$P$$Q$$P \Rightarrow Q$$Q \Rightarrow P$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$P\Leftrightarrow Q$
$0$$0$ $1$$1$$1$  $1$ 
$0$$1$$1$ $0$ $0$ $0$ 
$1$$0$  $0$$1$ $0$ $0$
$1$$1$  $1$$1$ $1$   $1$

Nota que la doble implicación es verdad cuando los valores de $P$ y $Q$ son ambos verdaderos o ambos falsos. Esto quiere decir que en este caso si alguno es verdadero, entonces los dos son verdaderos, mientras que si uno es falso, los dos lo serán.

La implicación en términos de otros conectores

El hecho de que hayamos aprendido los primeros tres conectores (negación, conjunción y disyunción) antes que estos no es coincidencia. Resulta que la implicación y la doble implicación se «pueden construir» a partir de los primeros tres. Con esto nos referimos a que la implicación es equivalente a una expresión hecha únicamente por los anteriores.

Para ello, primero recuerda cómo construimos la implicación. La única forma en que la implicación $P \Rightarrow Q$ sea falsa es que $P$ sea verdadero y $Q$ falso. Entonces si $P$ es falso, no importa qué valor tome $Q$. De esta forma, cada vez que $\neg P$ sea verdad, la implicación también será verdadera. Pero si $P$ es verdadero, entonces $Q$ debe serlo también. Eso lo podemos expresar como $\neg P \lor Q$ que quiere decir «$P$ no pasa o $Q$ es verdadero» y coincide con lo que acabamos de decir. Para convencerte de eso, revisa con cuidado la siguiente tabla.

$P$$Q$$\neg P$ $\neg P \lor Q$$P \Rightarrow Q$
$0$$0$ $1$$1$  $1$ 
$0$$1$$1$  $1$ $1$ 
$1$$0$  $0$ $0$ $0$
$1$$1$  $0$ $1$   $1$

Entonces $\neg P \lor Q = P \Rightarrow Q$. Entonces cada vez que digamos que «Una cosa implica la otra», podemos pensarlo como «La negación de la primera cosa o la otra». Siempre es útil regresar a ejemplos concretos. Piensa cuidadosamente por qué es lo mismo decir «si llueve el piso se moja» y decir «no llueve o el piso está seco».

La contrapositiva de una implicación

Una propiedad que más adelante nos servirá sobre la implicación es el hecho de que en ocasiones es más sencillo trabajar con las negaciones de las proposiciones que con las proposiciones normales. No te preocupes si no entiendes a qué nos referimos con esto, más adelante lo veremos con más calma.

Un ejemplo de esto es verificar la siguiente proposición: «Si un número al cuadrado es par, entonces el número es par». A primera vista no es tan fácil verificar directamente esta proposición que es de la forma $P \Rightarrow Q$. Resulta que la forma en que se comprueba esto es con una equivalencia de la implicación. Para llegar a esta equivalencia, como primer paso, notaremos que podemos poner a la implicación en términos de la negación. Para esto, vamos a usar el resultado anterior para encontrar lo que buscamos.

Recordemos que $\neg P \lor Q = P \Rightarrow Q$, y la conjunción es conmutativa, es decir $\neg P \lor Q = Q \lor \neg P$.

¿Podemos ver esto de otra forma?

Pues resulta que sí. Veamos a $Q$ como la negación de la negación de $Q$, dicho de otra forma, $Q = \neg \neg Q$. Esto último nos ayuda a ver la equivalencia de otra forma: $Q \lor \neg P =\neg \neg Q \lor \neg P$. El siguiente paso es pensar a $\neg Q$ como un término por sí mismo y a $\neg P$ como otro término. Dicho de otra forma agrupemos términos para ver la equivalencia de manera distinta: $$Q \lor \neg P =\neg (\neg Q) \lor (\neg P).$$ Ahora, pensemos a $\neg Q$ como una proposición y a $\neg P$ como otra. La expresión está diciendo «La negación de $\neg Q$ una cosa o $\neg P$» ¿Suena familiar? Esto justamente es la equivalencia de la implicación. Dicho de otra manera, fíjate que tenemos una equivalencia:

$$Q \lor \neg P =\neg (\neg Q) \lor (\neg P) = \neg Q \Rightarrow \neg P.$$

Es decir,

$$P \Rightarrow Q = \neg Q \Rightarrow \neg P.$$

Cuando tenemos una implicación de la forma $P\Rightarrow Q$, a la proposición equivalente $\neg Q \Rightarrow \neq P$ le llamamos la contrapositiva.

Regresando al ejemplo inicial de esta sección, la proposición «Si un número al cuadrado es par, entonces el número es par» podemos pensarla como «Si un número es impar entonces su cuadrado es impar», lo cual es mucho más fácil de verificar. En entradas posteriores retomaremos esta forma de pensar. Por lo mientras es suficiente que entiendas que la implicación es equivalente a su contrapositiva.

El caso en donde todo es verdadero

Antes de terminar esta entrada, introduciremos un concepto que resultará útil cuando llegue el momento de estudiar inferencias. Para ello, observa la tabla de verdad de la proposición $((Q \Rightarrow P) \land Q) \Rightarrow P$:

$P$$Q$$Q \Rightarrow P$$Q \Rightarrow P \land Q$$(Q \Rightarrow P \land Q) \Rightarrow P$
$0$$0$ 1 0
$0$$1$ 0 0 1
$1$$0$ 1 0 1
$1$$1$ 1 1

¿Notas algo peculiar? Toda la columna de nuestra regla de inferencia es verdadera. Esto quiere decir que no importa qué valores tomen nuestras premisas, siempre es verdadera la expresión. A esto en matemáticas le llamamos una tautología.

Sucede algo que une aún más los conceptos de tautología y doble condicional. ¿Recuerdas que las proposiciones $\neg(P \land Q) = \neg P \lor \neg Q$ son equivalentes? Pues veamos ahora sus tablas de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$$\neg (P \land Q)\Leftrightarrow (\neg P \lor \neg Q)$
$0$$0$ 01 111
$0$$1$ 01 101 1
$1$$0$ 01 011 1
$1$$1$ 10000 1

Hemos agregado una última columna, la correspondiente a $\neg (P \land Q))\Leftrightarrow (\neg P \lor \neg Q)$. ¡Es una tautología! Esto sucede siempre: dos proposiciones o expresiones $P, Q$ son equivalentes siempre que $P \Leftrightarrow Q$ sea una tautología.

Tarea moral

  1. Escribe las siguientes frases en lógica proposicional:
    • Si hoy es lunes, entonces mañana será viernes.
    • El caos implica el orden.
    • Para que crezcan las plantas, tienes que regarlas.
    • Hoy es lunes si mañana es martes y mañana es martes si hoy es lunes.
    • Hoy es lunes si y sólo si mañana es martes.
  2. Verifica que siempre «Una cosa siempre se implica a sí misma», es decir, verifica que si $P$ es una proposición, entonces $P \Rightarrow P$ siempre es verdadera.
  3. Haz la tabla de verdad de la implicación $P\Rightarrow Q$ y de su contrapositiva $\neg Q \Rightarrow \neg P$ para convencerte de que en verdad son equivalentes.
  4. ¿Cómo verificarías que  $P \Leftrightarrow Q = (\neg Q \lor P)\land(\neg P \lor Q)$? Recuerda que la doble implicación $P \Leftrightarrow Q$ es equivalente a $(P \Rightarrow Q) \land (Q \Rightarrow P)$.
  5. Verifica que la doble condicional es conmutativa, es decir $P \Leftrightarrow Q = Q \Leftrightarrow P $. ¿La condicional es conmutativa?

Más adelante…

Recuerda el ejemplo que mencionamos anteriormente «Un número al cuadrado es par si el número es par», no especificamos de qué número se trataba, sin embargo hay una infinidad de números los cuales podemos tomar como ejemplo para verificar la propiedad. Entonces podemos decir «$1^2$ es par si $1$ es par» o «$38^2$ es par si $38$ es par», o en general podemos decir «$x^2$ es par si $x$ es par». ¿Pero quién es $x$? ¿Qué valores puede tomar? En la siguiente entrada veremos algo conocido como cuantificadores. Estos ampliarán el poder de las proposiciones introduciendo variables dentro de las proposiciones. Con ello, se puede cambiar el objeto al que se refiere una proposición y, dependiendo de esto, su valor de verdad.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.