Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para ecuaciones lineales de primer orden

Por Eduardo Vera Rosales

Introducción

En las entradas anteriores hemos estudiado las soluciones a ecuaciones de primer orden desde dos distintos puntos de vista, el cualitativo y el analítico. En el camino hemos encontrado un comportamiento similar en las soluciones, como es el que el problema de condición inicial tenga una solución, o que las curvas solución no se intersectan en el plano. Estos comportamientos no son una casualidad, y están justificados por el teorema de existencia y unicidad que nos dice que el problema de condición inicial tiene una y sólo una solución definida en un intervalo $(a,b)$. Este teorema, en su versión para ecuaciones lineales sustenta el trabajo que hemos realizado en los últimos videos.

Teorema de existencia y unicidad para ecuaciones lineales de primer orden

En el video demostramos la versión del teorema de existencia y unicidad para ecuaciones lineales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(t_{0})=y_{0}$, con $t_{0}\neq 0$, $y_{0}\neq 0$.
  • Resuelve el problema de condición inicial inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=0$.
  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=y_{0}$, con $y_{0}\neq 0$.
  • ¿Contradicen las soluciones de los ejercicios anteriores el Teorema de existencia y unicidad?
  • Esboza las soluciones a la ecuación diferencial.

Más adelante

Con esta entrada terminamos el estudio a las ecuaciones lineales de primer orden. En la siguiente entrada comenzaremos a estudiar ecuaciones diferenciales no lineales de primer orden. En particular veremos un caso especial de estas ecuaciones, a las que llamaremos ecuaciones separables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Transformaciones normales, simétricas y antisimétricas

Por Ayax Calderón

Introducción

A partir de la noción de adjunción que definimos en la entrada anterior, es posible definir ciertos tipos especiales de transformaciones lineales: las transformaciones normales, las simétricas y las antisimétricas.

Primero veremos las transformaciones lineales simétricas y antisimétricas. Estos nombres quizás te recuerden a las matrices simétricas y antisimétricas. Existe una relación importante entre ambos conceptos, aunque no es tan directo enunciarla. Veremos esto con calma.

Después, hablaremos de las transformaciones normales. Este tipo de transformaciones están motivadas por la pregunta de qué sucede cuando una transformación conmuta con su adjunta. Definiremos esto de manera adecuada y demostraremos algunas propiedades que cumplen las transformaciones normales.

En esta entrada $V$ es un espacio euclidiano. En particular, estaremos trabajando únicamente en espacios vectoriales sobre los reales. Más adelante discutiremos los análogos complejos de los resultados que veremos.

Transformaciones simétricas y antisimétricas

Comencemos con las siguientes dos definiciones.

Definición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Diremos que $T$ es:

  • Simétrica o auto-adjunta si $T^*=T$.
  • Antisimétrica o alternante si $T^*=-T$.

Tal vez estos nombres te parezcan familiares. El siguiente problema nos ayudará a explicar la relación entre las transformaciones simétricas y las matrices que llevan el mismo nombre.

Problema. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal simétrica. Sea $A$ la forma matricial de $T$ en alguna base ortonormal de $T$. Demuestra que $A$ es una matriz simétrica.

Solución. Por una proposición de la entrada anterior, por elegir una base ortonormal se tiene que la matriz correspondiente a $T^\ast$ es $^t A$. Pero como $T$ es una matriz simétrica, se tiene que $T^\ast=T$. De este modo, $^t A= A$, y por lo tanto $A$ es una matriz simétrica.

$\square$

Sucede algo análogo con las matrices antisimétricas, lo cual queda como tarea moral.

Transformaciones normales

Introduzcamos una definición más.

Definición. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Diremos que $T$ es normal si $T$ conmuta con su transformación adjunta, es decir, si $$TT^*=T^*T.$$

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es normal si $$A{}^tA={}^tAA.$$

Ejemplo. La matriz $\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$ es normal. En efecto, puedes verificar que:

$$\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}\begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}.$$

$\triangle$

Las definiciones de transformaciones y matrices normales están conectadas mediante el siguiente resultado sencillo de demostrar.

Proposición. Si $T:V\to V$ es una transformación es normal con $V$ espacio euclideano y tomamos una base ortonormal $\beta$ de $V$, entonces $\text{Mat}_\beta(T)$ es normal.

Caracterización geométrica de transformaciones normales

Las matrices normales tienen algunas propiedades geométricas que las caracterizan. El siguiente enunciado formaliza esto.

Problema. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$. Demuestra que los siguientes incisos son equivalentes:

  1. $||T(x)||=||T^*(x)||$ para todo $x\in V$.
  2. $\langle T(x),T(y)\rangle=\langle T^*(x),T^*(y) \rangle$.
  3. $T$ es normal.

Solución. $(1)\Rightarrow (2)$. Supongamos $(1)$. Usando la identidad de polarización dos veces y la linealidad de $T$ y $T^*$ obtenemos
\begin{align*}
\langle T(x),T(y) \rangle &=\frac{||T(x+y)||^2-||T(x)||^2-||T(y)||^2}{2}\\
&=\frac{||T(x+y)^*||^2-||T(x)^*||^2-||T(y)^*||^2}{2}\\
&=\langle T(x)^*,T(y)^* \rangle.
\end{align*} lo cual prueba $(2)$.

$(2)\Rightarrow (3)$. Supongamos ahora $(2)$. Entonces para cualesquiera $x,y\in V$ se tiene que
\begin{align*}
\langle (T\circ T^* – T^*\circ T)(x), y \rangle &=\langle T(T^*(x)),y\rangle- \langle T^*(T(x)) ,y\rangle \\
&=\langle T^*(x),T^*(y) \rangle – \langle y,T^*(T(x))\rangle\\
&=\langle T(x),T(y) \rangle – \langle T(y),T(x)\rangle\\
&=0.
\end{align*}
Como la igualdad anterior se da para todo $y$, en particular se cumple, por ejemplo, para los $y$ de una base. Así, $(T\circ T^*-T^*\circ T)(x)=0$ para cualquier $x\in V$, lo que precisamente significa que $T\circ T^*= T^*\circ T$, es decir, que $T$ es normal.

$(3)\Rightarrow (1)$. Finalmente, supongamos $(3)$. Entonces
\begin{align*}
||T(x)||^2&=\langle T(x),T(x)\rangle\\
&=\langle x,T^*(T(x))\rangle \\
&= \langle T(T^*(x)),x \rangle\\
&=\langle T^*(x),T^*(x) \rangle \\
&= ||T^*(x)||^2,
\end{align*}
y por lo tanto $||T(x)||=||T^*(x)||$ para todo $x\in V$, lo que prueba $(1)$.

$\square$

Más adelante…

Por la proposición que enunciamos para transformaciones normales, tenemos que si $T$ es de este tipo, entonces $||T(x)||=||T^*(x)||$. Esto es una propiedad geométrica, pues está relacionando dos normas. Sin embargo, una cosa que nos interesa mucho estudiar es cuándo sucede algo parecido: $||T(x)||=||x||$. Esto lo que nos estaría diciendo es que «$T$ preserva las normas». En la siguiente entrada motivaremos y exploraremos este tipo de transformaciones lineales, a las que llamaremos ortogonales.

Tarea moral

  1. Demuestra que la forma matricial de una transformación antisimétrica, bajo una base ortonormal, es una matriz antisimétrica.
  2. Demuestra que cualquier transformación lineal $T$ en un espacio euclideano puede ser escrita de la forma $T=S+A$, donde $S$ es transformación lineal simétrica y $A$ es transformación lineal antisimétrica. Demuestra que esta manera de escribir a $T$ es única.
  3. Hemos platicado mucho de qué sucede cuando representamos transformaciones lineales en un espacio euclideano $V$ mediante bases ortonormales. Pero, ¿qué pasa si no hacemos esto? Determina si lo siguiente es verdadero o falso cuando elegimos una base $\beta$ de $V$ que no sea ortonormal.
    • Si $A$ es la matriz de una transformación $T$ en la base $\beta$, entonces $^tA$ es la matriz de $T^\ast$ en la base $\beta$.
    • Si $T$ es simétrica, entonces su matriz $A$ en la base $\beta$ es simétrica.
    • Si $T$ es normal, entonces su matriz $A$ en la base $\beta$ es normal.
  4. Sea $T:\mathbb{R}^2\to \mathbb{R}^2$ un rotación de ángulo $\theta\in(0,\pi)$. La representación matricial de $T$ en la base canónica está dada por
    $$\begin{pmatrix}
    \cos\theta &-\sin\theta\\
    \sin\theta &\cos\theta
    \end{pmatrix}.$$
    Verifica que $T$ es normal.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal normal. Prueba que $T-c\text{id}$ es normal para todo real $c$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Propiedades de orden de los números reales

Por Karen González Cárdenas

Introducción

Comenzaremos a revisar un conjunto de propiedades muy particular que nos permitirán ordenar a los números reales. De acuerdo a este orden podremos decir para un par de números reales, quién es mayor o menor que otro. Así a la lista de propiedades vista previamente le agregaremos las siguientes.

Noción de orden en $\r$

O1.-Existe un subconjunto $P\subseteq \r$ tal que para todo $a\in\r$ ocurre una y sólo una de las siguientes afirmaciones:

  • $a=0$,
  • $a\in P$,
  • $-a\in P \text{.}$

O2.-Si $a,b \in P$ entonces $a+b \in P$.

O3.-Si $a,b \in P$ entonces $a\cdot b \in P$.

Los elementos de $P$ son llamados números reales positivos.

Definición: Decimos que:

  • $a>b \quad$ si $\quad a-b \in P$.
  • $a<b \quad$ si $\quad b>a$.
  • $a\geq b \quad$ si $\quad a-b \in P \quad$ o $\quad a=b$.
  • $a\leq b \quad$ si $\quad b-a \in P\quad$ o $\quad a=b$.

Tricotomía

Proposición (Tricotomía): Para cualesquiera $a,b \in \r$, tenemos que cumple una y sólo una de las siguientes afirmaciones:

  1. $a=b$
  2. $a>b$
  3. $b>a$

Demostración:

Sean $a,b\in\r$. Como por la cerradura de la suma S1 tenemos que: $$a+(-b)= a-b\in\r$$

Por O1 se cumple una y sólo una de las siguientes afirmaciones:

  • $a-b=0$,
  • $a-b\in P$,
  • $-(a-b)\in P$.

Aplicando las definiciones anteriores nos quedaría:

  • $a-b=0 \Rightarrow a=b$,
  • $a-b\in P \Rightarrow a>b$,
  • $-(a-b)\in P\Rightarrow b-a\in P \Rightarrow b>a \text{.}$

$\square$

Leyes de los signos

Definición: Diremos que $a$ es positivo si $a\in P$ y que es negativo si $-a\in P$.

Proposición (Leyes de los signos): Sean $a,b\in\r$. Se cumplen las siguientes afirmaciones:

  1. Si $a,b >0$ entonces $a\cdot b >0$.
  2. Si $a,b < 0$ entonces $a\cdot b >0$.
  3. Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
  4. Si $a<0$, $b>0$ entonces $a\cdot b < 0$.

Demostración:

  1. Consideremos $a>0$ y $b>0$. Así tenemos que $a\in P$ y $b\in P$ entonces por O3 $a\cdot b \in P$.
    $$\therefore \quad a\cdot b > 0$$
  2. Ahora tomemos $a< 0$ y $b<0$. Por lo que $-a\in P$ y $-b\in P$ entonces por O3 $(-a)\cdot( -b) \in P$.
    $$\therefore \quad a\cdot b > 0$$

$\square$

Algunos resultados importantes

Proposición: Sean $a,b,c,d \in \r$. Tenemos que se cumplen los siguientes resultados:

  1. Si $a>b$ entonces $a+c>b+c$.
  2. Si $a<b$ y $c<0$ entonces $ac>bc$.
  3. Si $a<b$ y $c>0$ entonces $ac<bc$.
  4. Si $a<b$ y $c<d$ entonces $a+c<b+d$.
  5. Si $a<b$ y $c>d$ entonces $a-c<b-d$.
  6. Si $a<b$ entonces $-b<-a$.

Demostración:
Demostraremos los puntos 1,3,4 y 5, mientras que dejaremos como ejercicios al lector los puntos 2 y 6.

  1. Como $a>b$ esto significa que $a-b \in P$.
    Así se sigue que:
    \begin{align*}
    a-b &= a +0 -b\\
    &= a + (c -c)-b\\
    &= (a +c) – (c+b) \quad\text{.}\\
    \end{align*}
    De lo anterior concluimos que $(a +c) – (c+b) \in P$, es decir, $a +c > c+b$.
  2. Tarea moral.
  3. Por hipótesis tenemos que $a<b$ y $c>0$ por lo que ocurre: $b-a \in P$ y $c \in P$.
    Por O3 afirmamos que $c (b-a) \in P$. Observemos que: $c (b-a) = cb – ca = bc – ac$.
    $$\therefore \quad bc – ac \in P\text{.}$$
    $$\therefore \quad bc>ac \text{.}$$
  4. Ya que $a<b$ y $c<d$ se sigue que $b-a \in P$ y $d-c \in P$. Así por O2 tenemos:
    $$(b-a)+(d-c) \in P\text{.}$$
    Notemos que:
    \begin{align*}
    (b-a)+(d-c) &= b-a+d-c\\
    &= b+d -a-c\\
    &= (b+d) – (a+c)\quad\text{.}\\
    \end{align*}
    $$\therefore \quad (b+d) – (a+c) \in P\quad\text{.}$$
    $$\therefore \quad b+d > a+c\quad\text{.}$$
  5. Tenemos que $a<b$ y $c>d$ $\Rightarrow b-a \in P$ y $c-d \in P$.
    Por O2 se sigue que $(b-a) + (c-d) \in P$. Y como tenemos lo siguiente:
    \begin{align*}
    (b-a) + (c-d)&= b-a + c-d\\
    &= (b-d) + (-a +c)\\
    &= (b-d) – (a-c)\quad\text{.}\\
    \end{align*}
    Así concluimos que: $(b-d) – (a-c)\in P$.
    $$ \therefore b-d > a-c\quad\text{.}$$
  6. Tarea moral.

$\square$

Transitividad

Proposición (Transitividad): Para $a,b \in \r$ se cumplen las siguientes propiedades:

  1. Si $a>b$ y $b>c \Rightarrow a>c$.
  2. Si $a< b$ y $b<c \Rightarrow a<c$.

Demostración:

  1. Cómo $a>b$ y $b>c$ sabemos que $a-b \in P$ y $b-c \in P$.
    Entonces tenemos por O2 $(a-b)+(b-c)\in P$. Y como:
    $$(a-b)+(b-c) = a+(-b+b)-c = a-c \quad\text{.}$$
    Así $a-c \in P$ y por lo tanto $a>c$.
  2. Ya que $b>a$ y $c>b$. Aplicando el punto anterior se sigue que:
    $$c> a \Rightarrow a < c \quad\text{.}$$

$\square$

El cuadrado de un número real

Proposición: Para todo $a\in \r$ se cumple lo siguiente:

$$a^{2} \geq 0 \text{.}$$

Demostración: Tomemos $a\in \r$. Por la propiedad O1 debemos considerar los siguientes tres casos.

  • Caso $a =0$:
    Como $a=0$, al multiplicar por $a$ en ambos lados de la igualdad tenemos:
    \begin{align*}
    &\Rightarrow a\cdot a = 0\cdot a\\
    &\Rightarrow a\cdot a = 0\cdot 0\\
    &\Rightarrow a^{2} = 0 \quad \text{.}\\
    \end{align*}
    Concluimos así $a^{2} \geq 0$.
  • Caso $a>0$
    Así $a\in P$ y por O3 tenemos que $a \cdot a \in P$. Por lo que $a^{2} \in P$, es decir, $a^{2}> 0$. Se concluye $a^{2} \geq 0$.
  • Caso $a< 0$
    Ahora tenemos que $-a\in P$ y por O3 que $-a \cdot -a \in P$. Así $a^{2}= (-a)(-a) \in P$, por lo que $a^{2} \geq 0$.

De los casos anteriores probamos que $a^{2} \geq 0$ para todo $a\in \r$

$\square$

Más adelante

Ya que hemos definido las propiedades de orden y varios de sus resultados más importantes. En la siguiente entrada comenzaremos por definir a los intervalos en los reales y a resolver desigualdades apoyándonos en todo lo visto en esta entrada.

Tarea moral

Demuestra los puntos 3 y 4 de las Leyes de los signos.

  • Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
    • Sugerencia: Prueba $a\cdot (-b)$ es inverso aditivo de $ab$, es decir, $ab + a\cdot (-b) =0$
  • Si $a<0$, $b>0$ entonces $a\cdot b < 0$.
    • Sugerencia: Aplica o prueba el resultado $(-a)(b)=-(ab)$.

Prueba los puntos 2 y 6 de la sección Algunos resultados importantes:

  • Si $a<b$ y $c<0$ entonces $ac>bc$.
  • Si $a<b$ entonces $-b<-a$.

Muestre que para $a,b \in \r$ se cumplen las siguientes propiedades:

  • Si $a>1$ entonces $a^{2} > a$.
  • Si $0<a<1$ entonces $a^{2} < a$.
  • Consideremos $0<a<b$, demostrar que se cumple la siguiente desigualdad:
    $$a< \sqrt{ab}< \frac{a+b}{2} <b$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su transformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Triangularizar y descomposición de Schur

Por Julio Sampietro

Introducción

En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Esto tiene muchas ventajas, puesto que las matrices triangulares superiores son relativamente fáciles de calcular. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

Matrices triangulares

Recordamos que una matriz $A=[a_{ij}]\in M_n(F)$ se dice triangular superior si $a_{ij}=0$ siempre que $i>j$, es decir si todas las entradas por debajo de la diagonal son cero. Las matrices triangulares gozan de algunas propiedades que ya hemos explorado. Por ejemplo, sus valores propios son fácilmente calculables: ¡son precisamente las entradas de la diagonal! Más explícitamente su polinomio característico es exactamente

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Además forman un subespacio cerrado bajo multiplicación del espacio de todas las matrices. Puesto que son matrices ‘sencillas’, es deseable poder escribir alguna otra matriz como una matriz triangular, tal vez mediante un cambio de base: esto es precisamente triangularizar. Tenemos entonces la siguiente definición.

Definición. Diremos que una matriz es triangularizable si es similar a una matriz triangular superior.

Primero, necesitaremos de un par de conceptos sobre polinomios.

Polinomios y sus raíces

Definición. Un polinomio $P\in F[X]$ se divide sobre F si es de la forma

\begin{align*}
P(X)=c(X-a_1)\cdots (X-a_n)
\end{align*}

para algunos escalares $c,a_1,\dots, a_n\in F$ no necesariamente distintos.

Por ejemplo el polinomio $X^2+1$ no se divide sobre $\mathbb{R}$ ya que sabemos que no tiene raíces reales. Sin embargo, el mismo polinomio si se divide sobre $\mathbb{C}$: en efecto

\begin{align*}
X^2+1=(X-i)(X+i).
\end{align*}

Por otro lado, el polinomio $X^2-3X+2$ si se divide sobre $\mathbb{R}$, puesto que lo podemos escribir como

\begin{align*}
X^2-3X+2=(X-1)(X-2).
\end{align*}

Nota que el polinomio también se divide sobre $\mathbb{C}$ puesto que $\mathbb{R}\subset \mathbb{C}$. De hecho, no existe ningún polinomio con coeficientes complejos que no se divida sobre $\mathbb{C}$, este es un sorprendente resultado de Gauss:

Teorema (fundamental del Álgebra). Cualquier polinomio $P\in \mathbb{C}[X]$ se divide sobre $\mathbb{C}$.

Este teorema también se enuncia diciendo que $\mathbb{C}$ es algebraícamente cerrado. Es decir, todo polinomio con coeficientes complejos tiene al menos una raíz compleja. Es un buen ejercicio verificar que ambas versiones son equivalentes.

Por lo que mencionamos al principio, el polinomio característico de una matriz triangular superior se divide sobre el campo. Como el polinomio de matrices similares es igual, se sigue que si una matriz es triangularizable, entonces su polinomio característico se divide sobre el campo.

Problema. Da un ejemplo de una matriz $A\in M_2(\mathbb{R})$ que no sea triangularizable en $M_2(\mathbb{R})$.

Solución. Puesto que el polinomio característico de una matriz triangularizable se divide sobre el campo, es suficiente con encontrar una matriz cuyo polinomio característico no se divida sobre $\mathbb{R}$: por ejemplo $X^2+1$. Enseguida proponemos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{align*}

Entonces $\chi_A(X)=X^2+1$, que ya aclaramos que no se divide sobre $\mathbb{R}$. Por tanto $A$ no es triangularizable.

$\triangle$

Un teorema sobre triangularizar

Ya vimos que si $A$ es una matriz triangularizable su polinomio característico se divide sobre el campo. El siguiente teorema nos dice que el converso también es cierto.

Teorema. Sea $A\in M_n(F)$. Las siguientes afirmaciones son equivalentes:

  1. El polinomio característico de $A$ se divide sobre $F$.
  2. $A$ es similar a una matriz triangular superior.

Demostración. La discusión previa ya nos mostró que $2$ implica $1$. Probaremos el converso por inducción sobre $n$. El resultado se cumple para $n=1$ (pues toda matriz es triangular superior), así que podemos asumir que $n\geq 2$ y que el resultado se cumple para $n-1$.

Sea $\lambda\in F$ una raíz de $\chi_A$. Nota que dicha raíz existe pues estamos suponiendo que $\chi_A$ se divide sobre $F$. También escogemos un vector no-cero $v$ tal que $Av=\lambda v$, es decir, un eigenvector asociado a $\lambda$. Como $v\neq 0$, podemos completar a una base $v=v_1,\dots, v_n$ de $V=F^n$. La matriz asociada a la transformación lineal $T$ asociada a $A$ se ve entonces de la forma

\begin{align*}
\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}
\end{align*}

para alguna $B\in M_{n-1}(F)$. Entonces podemos encontrar una matriz de cambio de base (y por tanto invertible) $P_1$ tal que

\begin{align*}
P_1 AP_1^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}.
\end{align*}

Puesto que matrices similares comparten el mismo polinomio característico, tenemos que

\begin{align*}
\chi_A(X)=\chi_{P_1AP_1^{-1}}(X)=(X-\lambda)\chi_B(X).
\end{align*}

Se sigue que $\chi_B$ se divide sobre el campo. Además, $B\in M_{n-1}(F)$, por lo que podemos aplicar la hipótesis de inducción para afirmar que existe una matriz invertible $Q\in M_{n-1}(F)$ tal que $QBQ^{-1}$ es triangular superior. Luego definiendo

\begin{align*}
P_2=\begin{pmatrix}
1 & 0\\
0 & Q
\end{pmatrix},
\end{align*}

se cumple no solo que $P_2$ es invertible (¿por qué?) pero además que

\begin{align*}
P_2(P_1AP_1^{-1})P_2^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & QBQ^{-1}\end{pmatrix}.
\end{align*}

Notamos que esta última matriz es triangular superior, puesto que $QBQ^{-1}$ lo es. Esto completa la prueba.

$\square$

Un corolario importante

Combinando el teorema fundamental del álgebra junto con el teorema pasado obtenemos un corolario importante, conocido como el teorema de descomposición de Schur. Lo enunciamos como teorema.

Teorema (descomposición de Schur). Para cualquier matriz $A\in M_n(\mathbb{C})$ podemos encontrar una matriz invertible $P\in M_n(\mathbb{C})$ y una matriz triangular superior $T\in M_n(\mathbb{C})$ tal que $A=PTP^{-1}$. Por tanto toda matriz con entradas complejas es triangularizable.

Demostración. Por el teorema fundamental del álgebra, tenemos que $\chi_A$ se divide sobre $\mathbb{C}$. Luego usando el teorema anterior concluimos que $A$ es triangularizable.

$\square$

Más adelante…

En la próxima entrada veremos un concepto parecido a triangularizar pero más fuerte: diagonalizar, que consiste en llevar a una matriz a una matriz diagonal similar.

Tarea moral

A continuación presentamos algunos ejercicios que sirven para repasar los temas vistos en esta entrada.

  1. ¿Es la matriz
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2 & 1\\ 3 & 2 & 2\\ 0 & 1 & 1\end{pmatrix}
    \end{align*}
    triangularizable sobre $\mathbb{R}$?
  2. Encuentra una matriz traingular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2\\ 3 & 2\end{pmatrix}.
    \end{align*}
  3. Encuentra una matriz triangular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}.
    \end{align*}
  4. ¿Por qué la matriz $P_2$ construida en la demostración del segundo teorema es invertible?
  5. Demuestra que una matriz $A\in M_n(F)$ es nilpotente si y sólo si es similar a una matriz triangular superior con entradas cero en la diagonal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»