Archivo de la etiqueta: Propiedades de los números

Cálculo Diferencial e Integral I: Propiedades de orden de los números reales

Por Karen González Cárdenas

Introducción

Comenzaremos a revisar un conjunto de propiedades muy particular que nos permitirán ordenar a los números reales. De acuerdo a este orden podremos decir para un par de números reales, quién es mayor o menor que otro. Así a la lista de propiedades vista previamente le agregaremos las siguientes.

Noción de orden en $\r$

O1.-Existe un subconjunto $P\subseteq \r$ tal que para todo $a\in\r$ ocurre una y sólo una de las siguientes afirmaciones:

  • $a=0$,
  • $a\in P$,
  • $-a\in P \text{.}$

O2.-Si $a,b \in P$ entonces $a+b \in P$.

O3.-Si $a,b \in P$ entonces $a\cdot b \in P$.

Los elementos de $P$ son llamados números reales positivos.

Definición: Decimos que:

  • $a>b \quad$ si $\quad a-b \in P$.
  • $a<b \quad$ si $\quad b>a$.
  • $a\geq b \quad$ si $\quad a-b \in P \quad$ o $\quad a=b$.
  • $a\leq b \quad$ si $\quad b-a \in P\quad$ o $\quad a=b$.

Tricotomía

Proposición (Tricotomía): Para cualesquiera $a,b \in \r$, tenemos que cumple una y sólo una de las siguientes afirmaciones:

  1. $a=b$
  2. $a>b$
  3. $b>a$

Demostración:

Sean $a,b\in\r$. Como por la cerradura de la suma S1 tenemos que: $$a+(-b)= a-b\in\r$$

Por O1 se cumple una y sólo una de las siguientes afirmaciones:

  • $a-b=0$,
  • $a-b\in P$,
  • $-(a-b)\in P$.

Aplicando las definiciones anteriores nos quedaría:

  • $a-b=0 \Rightarrow a=b$,
  • $a-b\in P \Rightarrow a>b$,
  • $-(a-b)\in P\Rightarrow b-a\in P \Rightarrow b>a \text{.}$

$\square$

Leyes de los signos

Definición: Diremos que $a$ es positivo si $a\in P$ y que es negativo si $-a\in P$.

Proposición (Leyes de los signos): Sean $a,b\in\r$. Se cumplen las siguientes afirmaciones:

  1. Si $a,b >0$ entonces $a\cdot b >0$.
  2. Si $a,b < 0$ entonces $a\cdot b >0$.
  3. Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
  4. Si $a<0$, $b>0$ entonces $a\cdot b < 0$.

Demostración:

  1. Consideremos $a>0$ y $b>0$. Así tenemos que $a\in P$ y $b\in P$ entonces por O3 $a\cdot b \in P$.
    $$\therefore \quad a\cdot b > 0$$
  2. Ahora tomemos $a< 0$ y $b<0$. Por lo que $-a\in P$ y $-b\in P$ entonces por O3 $(-a)\cdot( -b) \in P$.
    $$\therefore \quad a\cdot b > 0$$

$\square$

Algunos resultados importantes

Proposición: Sean $a,b,c,d \in \r$. Tenemos que se cumplen los siguientes resultados:

  1. Si $a>b$ entonces $a+c>b+c$.
  2. Si $a<b$ y $c<0$ entonces $ac>bc$.
  3. Si $a<b$ y $c>0$ entonces $ac<bc$.
  4. Si $a<b$ y $c<d$ entonces $a+c<b+d$.
  5. Si $a<b$ y $c>d$ entonces $a-c<b-d$.
  6. Si $a<b$ entonces $-b<-a$.

Demostración:
Demostraremos los puntos 1,3,4 y 5, mientras que dejaremos como ejercicios al lector los puntos 2 y 6.

  1. Como $a>b$ esto significa que $a-b \in P$.
    Así se sigue que:
    \begin{align*}
    a-b &= a +0 -b\\
    &= a + (c -c)-b\\
    &= (a +c) – (c+b) \quad\text{.}\\
    \end{align*}
    De lo anterior concluimos que $(a +c) – (c+b) \in P$, es decir, $a +c > c+b$.
  2. Tarea moral.
  3. Por hipótesis tenemos que $a<b$ y $c>0$ por lo que ocurre: $b-a \in P$ y $c \in P$.
    Por O3 afirmamos que $c (b-a) \in P$. Observemos que: $c (b-a) = cb – ca = bc – ac$.
    $$\therefore \quad bc – ac \in P\text{.}$$
    $$\therefore \quad bc>ac \text{.}$$
  4. Ya que $a<b$ y $c<d$ se sigue que $b-a \in P$ y $d-c \in P$. Así por O2 tenemos:
    $$(b-a)+(d-c) \in P\text{.}$$
    Notemos que:
    \begin{align*}
    (b-a)+(d-c) &= b-a+d-c\\
    &= b+d -a-c\\
    &= (b+d) – (a+c)\quad\text{.}\\
    \end{align*}
    $$\therefore \quad (b+d) – (a+c) \in P\quad\text{.}$$
    $$\therefore \quad b+d > a+c\quad\text{.}$$
  5. Tenemos que $a<b$ y $c>d$ $\Rightarrow b-a \in P$ y $c-d \in P$.
    Por O2 se sigue que $(b-a) + (c-d) \in P$. Y como tenemos lo siguiente:
    \begin{align*}
    (b-a) + (c-d)&= b-a + c-d\\
    &= (b-d) + (-a +c)\\
    &= (b-d) – (a-c)\quad\text{.}\\
    \end{align*}
    Así concluimos que: $(b-d) – (a-c)\in P$.
    $$ \therefore b-d > a-c\quad\text{.}$$
  6. Tarea moral.

$\square$

Transitividad

Proposición (Transitividad): Para $a,b \in \r$ se cumplen las siguientes propiedades:

  1. Si $a>b$ y $b>c \Rightarrow a>c$.
  2. Si $a< b$ y $b<c \Rightarrow a<c$.

Demostración:

  1. Cómo $a>b$ y $b>c$ sabemos que $a-b \in P$ y $b-c \in P$.
    Entonces tenemos por O2 $(a-b)+(b-c)\in P$. Y como:
    $$(a-b)+(b-c) = a+(-b+b)-c = a-c \quad\text{.}$$
    Así $a-c \in P$ y por lo tanto $a>c$.
  2. Ya que $b>a$ y $c>b$. Aplicando el punto anterior se sigue que:
    $$c> a \Rightarrow a < c \quad\text{.}$$

$\square$

El cuadrado de un número real

Proposición: Para todo $a\in \r$ se cumple lo siguiente:

$$a^{2} \geq 0 \text{.}$$

Demostración: Tomemos $a\in \r$. Por la propiedad O1 debemos considerar los siguientes tres casos.

  • Caso $a =0$:
    Como $a=0$, al multiplicar por $a$ en ambos lados de la igualdad tenemos:
    \begin{align*}
    &\Rightarrow a\cdot a = 0\cdot a\\
    &\Rightarrow a\cdot a = 0\cdot 0\\
    &\Rightarrow a^{2} = 0 \quad \text{.}\\
    \end{align*}
    Concluimos así $a^{2} \geq 0$.
  • Caso $a>0$
    Así $a\in P$ y por O3 tenemos que $a \cdot a \in P$. Por lo que $a^{2} \in P$, es decir, $a^{2}> 0$. Se concluye $a^{2} \geq 0$.
  • Caso $a< 0$
    Ahora tenemos que $-a\in P$ y por O3 que $-a \cdot -a \in P$. Así $a^{2}= (-a)(-a) \in P$, por lo que $a^{2} \geq 0$.

De los casos anteriores probamos que $a^{2} \geq 0$ para todo $a\in \r$

$\square$

Más adelante

Ya que hemos definido las propiedades de orden y varios de sus resultados más importantes. En la siguiente entrada comenzaremos por definir a los intervalos en los reales y a resolver desigualdades apoyándonos en todo lo visto en esta entrada.

Tarea moral

Demuestra los puntos 3 y 4 de las Leyes de los signos.

  • Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
    • Sugerencia: Prueba $a\cdot (-b)$ es inverso aditivo de $ab$, es decir, $ab + a\cdot (-b) =0$
  • Si $a<0$, $b>0$ entonces $a\cdot b < 0$.
    • Sugerencia: Aplica o prueba el resultado $(-a)(b)=-(ab)$.

Prueba los puntos 2 y 6 de la sección Algunos resultados importantes:

  • Si $a<b$ y $c<0$ entonces $ac>bc$.
  • Si $a<b$ entonces $-b<-a$.

Muestre que para $a,b \in \r$ se cumplen las siguientes propiedades:

  • Si $a>1$ entonces $a^{2} > a$.
  • Si $0<a<1$ entonces $a^{2} < a$.
  • Consideremos $0<a<b$, demostrar que se cumple la siguiente desigualdad:
    $$a< \sqrt{ab}< \frac{a+b}{2} <b$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Propiedades algebraicas de los números reales (Parte 2)

Por Karen González Cárdenas

Introducción

Continuaremos revisando resultados derivados de las Propiedades básicas de los números reales vistas en la entrada anterior.

Resultados relacionados a la multiplicación

Proposición. Demostraremos lo siguiente:

  1. Sean $a,b \in\RR$. Si $ab=0 \Rightarrow a=0 $ ó $b=0$.
  2. Sea $a\in \RR, a\neq 0$. Si $ax=a$, entonces $x=1$.
  3. Sean $a,b,c \in \RR$ con $a \neq 0$. Si $ab = ac \Rightarrow b=c$.

Demostración:

  1. Procederemos a demostrar por contradicción. Así suponemos que $ab=0$, $a\neq 0$ y $b\neq 0$. Entonces por la propiedad M5 existen $a^{-1},b^{-1}\in\RR$ tales que $a\cdot a^{-1}=1$ y $b\cdot b^{-1}=1$.
    Y como $ab=0$ se sigue:
    \begin{align*}
    &\Rightarrow (ab)\cdot b^{-1}=0\cdot b^{-1}\tag{por multiplicar $b^{-1}$}\\
    &\Rightarrow a (b\cdot b^{-1}) = 0\cdot b^{-1}\tag{por M3}\\
    &\Rightarrow a (1) = 0\cdot b^{-1}\tag{por M5}\\
    &\Rightarrow a = 0\cdot b^{-1}\tag{por M4}\\
    &\Rightarrow a = b^{-1}\cdot 0 \tag{por M2}\\
    &\Rightarrow a = 0 \contradiccion \tag{por resultado $a\cdot 0=0$}\\
    \end{align*}
    Lo anterior es una contradicción, pues supusimos que $a\neq 0$.
    $\therefore \quad a=0 \quad \text{o}\quad b=0$.

    Observación: Utilizaremos el símbolo $\contradiccion$ para referirnos a una contradicción en las pruebas.

    Otra alternativa de demostración para este punto 1 es la siguiente:
    Vamos a suponer que $ab=0$ y $a\neq 0$. Por M5 sabemos que existe $a^{-1}\in\RR$ inverso multiplicativo de $a$, así tenemos que:
    \begin{align*}
    &\Rightarrow a^{-1}\cdot (ab)=a^{-1}\cdot 0 \tag{por multiplicar $a^{-1}$}\\
    &\Rightarrow (a^{-1}\cdot a)b=a^{-1}\cdot 0 \tag{por M3}\\
    &\Rightarrow 1\cdot b=a^{-1}\cdot 0 \tag{por M5}\\
    &\Rightarrow b=a^{-1}\cdot 0 \tag{por M4}\\
    &\Rightarrow b = 0 \tag{por resultado $a\cdot 0=0$}\\
    \end{align*}
    Análogamente, si consideramos $b\neq 0$ obtendríamos que $a=0$.
    $\therefore a=0 $ ó $b=0$
  2. Como por hipótesis tenemos que $ax=a$.
    \begin{align*}
    &\Rightarrow ax + (-a)=a + (-a)\tag{por sumar $-a$}\\
    &\Rightarrow ax + (-a) = 0\tag{por S5}\\
    &\Rightarrow ax + (-1)(a)=0\tag{por $-a = (-1)(a)$}\\
    &\Rightarrow ax +(a)(-1)=0\tag{por M2}\\
    &\Rightarrow a (x + (-1))=0\tag{por D}\\
    \end{align*}

    Por el punto anterior 1 tenemos que $a=0$ ó $x + (-1)=0$. Pero como por hipótesis tenemos que $a\neq 0$ entonces $x + (-1)=0$.

    Como ya vimos que el inverso aditivo es único $\Rightarrow x$ es el inverso aditivo de $-1$, que por el resultado $-(-a)=a$ usando $a=1$, sabemos que es 1.
    $$\therefore \quad x=1$$
  3. Como por hipótesis tenemos que $a\neq 0$ entonces existe $a^{-1}\in\RR$ por M5.
    Así multiplicando por $a^{-1}$ en ambos lados de la igualdad $ab=ac$ tenemos:
    \begin{align*}
    &\Rightarrow a^{-1}(ab)=a^{-1}(ac)\\
    &\Rightarrow (a^{-1}a)b=(a^{-1}a)c\tag{por M3}\\
    &\Rightarrow 1\cdot b= 1\cdot c\tag{por M5}\\
    &\Rightarrow b=c\tag{por M4}\\
    \end{align*}
    $$\therefore \quad b=c$$

$\square$

Como vimos en las pruebas anteriores, conforme vayamos probando más propiedades los resultados que obtendremos se volverán más interesantes. A continuación demostraremos algunos con los que seguramente ya estás familiarizado.

Algunos productos notables

Notación: Definimos $x-y:=x + (-y)$.

Proposición: Para $x,y \in \RR$ se cumple lo siguiente:

  1. Diferencia de cuadrados: $x^{2} – y^{2} =(x – y)(x+y)$ .
  2. Si $x^{2} = y^{2}$ entonces $x=y \quad$ o $\quad x=-y$ .
  3. Diferencia de cubos: $x^{3} – y^{3}=(x-y)(x^{2} +xy+ y^{2})$ .
  4. Suma de cubos: $x^{3} + y^{3}=(x-y)(x^{2} -xy+ y^{2})$ .

Demostración:

  1. Partiremos de $(x – y)(x+y)$, así obtenemos lo siguiente:
    \begin{align*}
    (x – y)(x+y)&= (x-y)x + (x-y)y\tag{por D}\\
    &=x(x-y)+y(x-y)\tag{por M2}\\
    &=x(x+(-y))+y(x+(-y))\\
    &=x\cdot x + x\cdot (-y)+y\cdot x+y\cdot (-y)\tag{por D}\\
    &= x^{2} – xy+yx-y^{2}\tag{por $-xy=x(-y)$}\\
    &= x^{2} – xy+xy-y^{2}\tag{por M2}\\
    &= x^{2} +0-y^{2}\tag{por S5}\\
    &= x^{2} -y^{2}\tag{por S4}\\
    \therefore \quad(x – y)(x+y)&=x^{2} -y^{2}
    \end{align*}
  2. Sabemos que $x^{2} =y^{2}$. Veamos que si sumamos $-y^{2}$ en ambos lados obtenemos:
    $$x^{2} – y^{2}=y^{2}- y^{2} \Rightarrow x^{2} – y^{2}=0$$
    Aplicando el punto anterior se sigue que:
    $$(x – y)(x+y)=0$$
    Recordando la proposición vista al principio de la entrada decimos que: $x-y=0$, o bien, $x+y=0$.
    Por un lado tenemos que al sumar $y$ en $x-y=0$:
    \begin{align*}
    (x-y)+y&=0+y\\
    x+((-y)+y)&=y\tag{por S3 y S4}\\
    x&=y\tag{por S5}\\
    \end{align*}
    $$\therefore \quad x=y$$

    Y por otro tenemos que al sumar $-y$ en $x+y=0$:
    \begin{align*}
    (x+y)-y&=0-y\\
    x+(y+(-y))&=-y\tag{por S3 y S4}\\
    x&=-y\tag{por S5}\\
    \end{align*}
    $$\therefore \quad x=-y$$
    De lo anterior concluimos que $x=y$, ó $x=-y$.

    Los incisos 3 y 4 se dejarán como ejercicios en la Tarea moral.

$\square$

Propiedades relacionadas a los inversos multiplicativos

Notación: Denotaremos al inverso multiplicativo de $a\in\RR$ como $a^{-1}=\frac{1}{a}$. Consecuentemente, definimos $\frac{a}{b}:= a \cdot b^{-1}$.

Proposición: Para $a,b,c,d \in \RR$ se cumple lo siguiente:

  1. Para $a,b\neq 0$, $$(ab)^{-1} = a^{-1}b^{-1}\quad \text{.}$$
  2. Para $b,c\neq 0$, $$\frac{a}{b}=\frac{ac}{bc}\quad \text{.}$$
  3. Para $b,d \neq 0$, $$\frac{a}{b} + \frac{c}{d} =\frac{ad+bc}{bd}\quad \text{.}$$
  4. Para $b,d \neq 0$, $$\frac{a}{b} \cdot \frac{c}{d}=\frac{ac}{bd}\quad \text{.}$$
  5. Para $b,c,d \neq 0$, $$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}\quad \text{.}$$
  6. Para $b,d \neq 0$, $$\frac{a}{b}=\frac{c}{d} \Rightarrow ad=bc \quad \text{.}$$

Demostración:

  1. Observemos que por la propiedad de cerradura M1, $ab\in\RR$ y $ab\neq 0$. Así por M5 se sigue que: $$(ab)(ab)^{-1}=1 \tag {1}\quad \text{.}$$
    De este modo, lo que queremos probar es: $$(ab)(a^{-1}b^{-1})=1\quad \text{.}$$
    Comenzando por el lado izquierdo de la igualdad tenemos:
    \begin{align*}
    (ab)(a^{-1}b^{-1})&=a(b(a^{-1}b^{-1}))\tag{por M3}\\
    &=a(b(b^{-1}a^{-1}))\tag{por M2}\\
    &=a((bb^{-1})a^{-1})\tag{por M3}\\
    &=a((1)a^{-1})\tag{por M5}\\
    &=aa^{-1}\tag{por M4}\\
    &=1 \quad \text{.}\tag{por M5}
    \end{align*}
    Concluimos que $(ab)(a^{-1}b^{-1})=1 \tag{2}$. Al igualar con $(1)$ nos queda: $$(ab)(ab)^{-1}=(ab)(a^{-1}b^{-1})\quad\text{.}$$ Y aplicando el punto 3 de la primera sección de esta entrada tenemos: $$(ab)^{-1}=a^{-1}b^{-1}\quad\text{.}$$
  2. Recordemos que por la definición $\frac{a}{b}=ab^{-1}$. Por lo que tendríamos:
    \begin{align*}
    \frac{ac}{bc} &=(ac)(bc)^{-1}\\
    &=(ac)(b^{-1}c^{-1})\tag{ por el punto anterior}\\
    &=((ac)b^{-1})c^{-1}\tag{por M3}\\
    &=(a(cb^{-1}))c^{-1}\tag{por M3}\\
    &=(a(b^{-1}c))c^{-1}\tag{por M2}\\
    &=(ab^{-1})c)c^{-1}\tag{por M3}\\
    &=(ab^{-1})(cc^{-1})\tag{por M3}\\
    &=(ab^{-1})(1)\tag{por M5}\\
    &=ab^{-1} \quad \text{.}\tag{por M4}\\
    \end{align*}
    $$\therefore \quad \frac{a}{b}=\frac{ac}{bc}\quad \text{.}$$
  3. La propiedad 3 queda como ejercicio para nuestro lector.
  4. Procedamos a demostrar la propiedad 4, comenzaremos por $$\frac{ac}{bd}=\frac{ac}{bd}\quad\text{.}$$
    Así por definición tenemos lo siguiente:
    \begin{align*}
    \frac{ac}{bd}&=(ac)(bd)^{-1}\\
    &= (ac)(b^{-1}d^{-1})\tag{por el primer punto}\\
    &= ((ac)b^{-1})d^{-1}\tag{por M3}\\
    &=(a(cb^{-1}))d^{-1}\tag{por M3}\\
    &=(a(b^{-1}c))d^{-1}\tag{por M2}\\
    &=((ab^{-1})c)d^{-1}\tag{por M3}\\
    &=(ab^{-1})(cd^{-1})\tag{por M3}\\
    &=\frac{a}{b}\cdot \frac{c}{d}\quad\text{.}
    \end{align*}
    $$\therefore \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{ac}{bd}\quad\text{.}$$
  5. La propiedad 5 queda como ejercicio para nuestro lector.
  6. Sean $b,d \neq 0$. Supongamos que: $$\frac{a}{b}=\frac{c}{d}\quad\text{.}$$
    $P.d.$ $ad = bc$.
    Ya que $$\frac{a}{b}=\frac{c}{d}\quad\text{,}$$ por definición tenemos $ab^{-1}=cd^{-1}$.
    Multiplicando por $b$ se sigue que:
    \begin{align*}
    &\Rightarrow(ab^{-1})b =(cd^{-1})b\\
    &\Rightarrow a(b^{-1}b) =c(d^{-1}b)\tag{por M3}\\
    &\Rightarrow a(1) =c(bd^{-1})\tag{por M5 y M2}\\
    &\Rightarrow a =(cb)d^{-1}\quad\text{.}\tag{por M4 y M3}\\
    \end{align*}

    Ahora multiplicaremos la igualdad anterior por $d$:
    \begin{align*}
    &\Rightarrow ad =((cb)d^{-1})d\\
    &\Rightarrow ad =(cb)(d^{-1}d)\tag{por M3}\\
    &\Rightarrow ad =(cb)(1)\tag{por M5}\\
    &\Rightarrow ad =cb\tag{por M4}\\
    &\Rightarrow ad =bc\quad\text{.}\tag{por M2}\\
    \end{align*}

$\square$

Más adelante

Durante las últimas dos entradas vimos las propiedades relacionadas con la suma y la multiplicación de los números reales. Sin embargo, no son las únicas propiedades que este conjunto de números cumple. En la siguiente entrada comenzaremos a ver las propiedades de orden de los números reales y algunas de sus consecuencias.

Tarea moral

Prueba los puntos 3 y 4 de la sección «Algunos productos notables».

  • Diferencia de cubos: $x^{3} – y^{3}=(x-y)(x^{2} +xy+ y^{2})$
  • Suma de cubos: $x^{3} + y^{3}=(x-y)(x^{2} -xy+ y^{2})$
    Sugerencia: Utiliza el punto anterior «Diferencia de cubos» y prueba que $y^{3}=-(-y)^{3}$.

Prueba los puntos 3 y 5 de la sección anterior:

  • Para $b,d \neq 0$, $$\frac{a}{b} + \frac{c}{d} =\frac{ad+bc}{bd}\quad\text{.}$$
  • Para $b,c,d \neq 0$, $$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}\quad\text{.}$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Propiedades algebraicas de los números reales (Parte 1)

Por Karen González Cárdenas

Introducción

El desarrollo del cálculo está basado en gran medida en el sistema de números reales. Los reales son aquellos que pueden ser expresados haciendo uso de decimales, como:

\begin{align*}
\frac{3}{4}&=0.75\\
\frac{1}{3}&=0.3333 \dots\\
\end{align*}

donde los puntos $\dots$ indican que la sucesión de decimales continúa expandiéndose para siempre. De este modo cada expansión decimal que nos podamos imaginar representa un número real.

Geométricamente los números reales pueden ser representados como puntos sobre una línea recta, la denominada recta real.

Sus propiedades se encuentran divididas en tres categorías: algebraicas, de orden y de completitud. En esta entrada comenzaremos revisando las propiedades algebraicas básicas relacionadas con las operaciones suma y multiplicación. Daremos un vistazo a los resultados derivados de ellas.

Propiedades básicas de los números reales

A continuación enlistaremos una serie de propiedades que cumplen respectivamente la suma y la multiplicación en el conjunto de números reales $\mathbb{R}$. 

Definición (Propiedades básicas): Consideremos $\mathbb{R}$ y las operaciones suma $(+)$ y multiplicación $(\cdot)$, se cumple que:

S1.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a+b \in \mathbb{R}$  (Cerradura de la suma).

S2.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a+b = b+a$    (Conmutatividad de la suma).

S3.- Para cualesquiera $a,b,c\in \mathbb{R}$ se cumple que:
$a + (b+c) = (a+b)+c$    (Asociatividad de la suma).

S4.- Existe $0\in \mathbb{R}$ tal que para cualquier $a\in \mathbb{R}$ :
$a + 0 =0+a=a$    (Neutro aditivo).

S5.- Para cualquier $a\in \mathbb{R}$ existe $-a\in \mathbb{R}$ tal que:
$a + (-a) = (-a)+ a = 0$    (Inverso aditivo).

M1.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a\cdot b \in \mathbb{R}$    (Cerradura de la multiplicación).

M2.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a\cdot b = b\cdot a$    (Conmutatividad de la multiplicación).

M3.- Para cualesquiera $a,b,c \in \mathbb{R}$ se cumple que:
$a \cdot (b\cdot c) = (a\cdot b)\cdot c$    (Asociatividad de la multiplicación).

M4.- Existe $1\in \mathbb{R}$ tal que para cualquier $a\in \mathbb{R}$:
$a \cdot 1 = 1\cdot a=a$    (Neutro multiplicativo).

M5.- Para cualquier $a \in \mathbb{R}$ con $a\neq 0$, existe $a^{-1} \in \r$ tal que:
$a \cdot a^{-1} = a^{-1}\cdot a = 1$    (Inverso multiplicativo).

A.- $1\neq 0$    (El neutro aditivo es distinto del neutro multiplicativo).

D.- Para cualesquiera $a,b,c \in \mathbb{R}$ se cumple que:
$a\cdot (b+c) = a \cdot b + a\cdot c$    (Ley distributiva).

Esta lista de propiedades serán nuestras «reglas del juego» con las cuales iremos probando los siguientes resultados. Aconsejamos tenerla disponible ya que haremos referencia a ella en todas las demostraciones siguientes.

Primeras observaciones

Proposición: Los neutros e inversos son únicos en $\mathbb{R}$. Es decir:

  1. $0$ es único.
  2. $1$ es único.
  3. Para todo $a \in\mathbb{R}$, $-a$ es único.
  4. Para todo $a \in\mathbb{R}$ y $a \neq 0$, $a^{-1}$ es único.

En esta ocasión demostraremos sólo los puntos 1 y 3. Se espera que el lector complete el resto de los puntos en la Tarea moral.


Demostración punto 1:
Sea $a \in \mathbb{R}$. Supongamos que el $0$ no es único, entonces existe un $0^{*} \in \mathbb{R}$ tal que cumple la propiedad S4, en particular que: $a + 0^{*} = a = 0^{*}+a$
Y como $ a + 0 = a$ $$\Rightarrow a + 0 = a + 0^{*}$$


Nota: Cabe mencionar que $-a$ es el inverso aditivo respecto a $0$, por lo que en un principio $-a$ no tiene que ser inverso aditivo respecto de $0^{*}.

Así tenemos que:
\begin{align}
&\Rightarrow (-a) + (a + 0) = (-a) + (a + 0^{*})\\
&\Rightarrow ((-a )+ a) + 0 = ((-a )+ a) + 0^{*}\\
&\Rightarrow 0 + 0 = 0 + 0^{*}\\
&\Rightarrow 0 = 0 + 0^{*}\\
&\Rightarrow 0 = 0^{*}\\
\end{align}

En $(1)$ sumamos $-a$ en ambos lados de la igualdad. Para $(2)$ aplicamos S3. Por la propiedad S5 en ambos lados de la igualdad se sigue $(3)$. Aplicando S4 para $0 +0$ en $(4)$.  Volvemos a aplicar S4 para $0 +0^{*}$ en $(5)$.
$\therefore \quad 0$ es único.

Demostración punto 3: Sea $a \in \mathbb{R}$. Supongamos que el $-a$ no es único, entonces existe un $-a^{*} \in \mathbb{R}$ tal que cumple lo siguiente: $a + (-a^{*}) = 0$
Y como $ a + (-a) = 0$ $$\Rightarrow a + (-a) = a + (-a^{*})$$
Así tenemos que:
\begin{align}
& \Rightarrow (-a) + (a + (-a)) = (-a) + a + (-a^{*})\\
& \Rightarrow ((-a )+ a) + (-a) = ((-a )+ a) + (-a^{*})\\
& \Rightarrow 0 + (-a) = 0 +(-a^{*})\\
&\Rightarrow -a = – a ^{*}\\
\end{align}

En $(6)$ sumamos $-a$ en ambos lados de la igualdad. Para $(7)$ aplicamos S3. Por la propiedad S5 en ambos lados de la igualdad se sigue $(8)$. Aplicando S4 en ambos lados en $(9)$.  
$\therefore \quad -a$ es único.

$\square$

Algunos resultados

Proposición: Para $a,b \in \mathbb{R}$ se cumple lo siguiente:

  1. $a \cdot 0 = 0$ .
  2. $-a = (-1)(a)$ .
  3. $-(-a) = a$ .
  4. $(-a)(b)= – (ab)$ .
  5. $(-a)(-b)= ab$ .
    Nota: Escribiremos $ab$ para referirnos al producto $a \cdot b$.

Demostración:
1. $P.d.$ $a \cdot 0 = 0$ .

Comencemos con el lado izquierdo de la igualdad:
\begin{align*}
a \cdot 0 = a \cdot (0+0) &\Rightarrow a \cdot 0 = a \cdot 0 + a \cdot 0\tag{por S4 y D}\\
&\Rightarrow a \cdot 0 + (-a\cdot 0) = (a \cdot 0 + a \cdot 0) + (-a \cdot 0)\tag{por sumar $-a\cdot 0$}\\
&\Rightarrow 0 = (a \cdot 0 + a \cdot 0) + (-a \cdot 0)\tag{por S5}\\
&\Rightarrow 0 = a \cdot 0 + (a \cdot 0 + (-a \cdot 0))\tag{por S3}\\
&\Rightarrow 0 = a \cdot 0 + 0\tag{por S5}\\
&\Rightarrow 0 = a \cdot 0\tag{por S4} \\
\end{align*}
$$\therefore a \cdot 0 = 0$$

2. $P.d.$ $-a = (-1)(a)$
Observemos que si probamos que $a + ((-1)(a)) =0$ implicaría que $(-1)(a)$ es el inverso aditivo de $a$ que por lo visto anteriormente sabemos es único.

Así a partir del lado izquierdo de la igualdad tenemos:

\begin{align*}
a + ((-1)(a)) &= a\cdot 1 + ((-1)(a))\tag{por M4}\\
&= a\cdot 1 + (a)(-1)\tag{por M2}\\
&= a (1+(-1))\tag{por D}\\
&= a\cdot 0\tag{por S5}\\
&= 0\tag{por 1.}
\end{align*}

Por lo que ya tenemos $a + ((-1)(a))=0$ . Y como ya probamos que el inverso aditivo es único concluimos $$-a = (-1)(a)$$.

3. $P.d.$ $-(-a) = a$
Vemos que si probáramos que $-(-a)$ es el inverso aditivo de $-a$ terminaríamos.
\begin{align*}
(-a)+(-(-a)) &= (-a)\cdot 1 + (-1)(-a)\tag{por M4 y 2.}\\
&= (-a)\cdot 1 + (-a)(-1)\tag{por M2}\\
&= (-a)(1+(-1)\tag{por D}\\
&=(-a)(0)\tag{por S5}\\
&=0\tag{por 2.}\\
\end{align*}
Así obtenemos que: $$(-a)+(-(-a)) =0 \Rightarrow ((-a)+(-(-a)))+a= 0+a$$.

Por lo anterior se sigue que:
\begin{align*}
&\Rightarrow ((-a)+(-(-a)))+a= a\tag{por S4}\\
&\Rightarrow ((-(-a))+(-a))+a =a\tag{por S2}\\
&\Rightarrow (-(-a))+((-a)+a)=a\tag{por S3}\\
&\Rightarrow (-(-a))+ 0=a\tag{por S5}\\
&\Rightarrow -(-a)=a\tag{por S4}
\end{align*}
$$\therefore -(-a)=a$$

4. Tarea moral
5. Tarea moral

$\square$

Recuerda que el resto de los incisos se dejarán como ejercicios en la Tarea moral. Para realizarlos puedes hacer uso de todos los resultados probados en esta entrada, a menos que se indique lo contrario.

Tarea moral

Demuestra las siguientes propiedades:

  • $1$ es único en $\RR$.
  • Para todo $a \in\mathbb{R}$ y $a \neq 0$, $a^{-1}$ es único.
  • Sin usar el resultado $-(-a) = a$, demuestra que $-(-1) = 1$.

Para $a,b \in \mathbb{R}$ se cumple lo siguiente:

  • $(-a)(b)= – (ab)$
  • $(-a)(-b)= ab$

Más adelante

En la siguiente entrada continuaremos viendo resultados derivados de las propiedades de la suma y la multiplicación de los números reales por lo que nuestra primera lista será de suma utilidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»