Cálculo Diferencial e Integral I: Propiedades de orden de los números reales

Por Karen González Cárdenas

Introducción

Comenzaremos a revisar un conjunto de propiedades muy particular que nos permitirán ordenar a los números reales. De acuerdo a este orden podremos decir para un par de números reales, quién es mayor o menor que otro. Así a la lista de propiedades vista previamente le agregaremos las siguientes.

Noción de orden en $\r$

O1.-Existe un subconjunto $P\subseteq \r$ tal que para todo $a\in\r$ ocurre una y sólo una de las siguientes afirmaciones:

  • $a=0$,
  • $a\in P$,
  • $-a\in P \text{.}$

O2.-Si $a,b \in P$ entonces $a+b \in P$.

O3.-Si $a,b \in P$ entonces $a\cdot b \in P$.

Los elementos de $P$ son llamados números reales positivos.

Definición: Decimos que:

  • $a>b \quad$ si $\quad a-b \in P$.
  • $a<b \quad$ si $\quad b>a$.
  • $a\geq b \quad$ si $\quad a-b \in P \quad$ o $\quad a=b$.
  • $a\leq b \quad$ si $\quad b-a \in P\quad$ o $\quad a=b$.

Tricotomía

Proposición (Tricotomía): Para cualesquiera $a,b \in \r$, tenemos que cumple una y sólo una de las siguientes afirmaciones:

  1. $a=b$
  2. $a>b$
  3. $b>a$

Demostración:

Sean $a,b\in\r$. Como por la cerradura de la suma S1 tenemos que: $$a+(-b)= a-b\in\r$$

Por O1 se cumple una y sólo una de las siguientes afirmaciones:

  • $a-b=0$,
  • $a-b\in P$,
  • $-(a-b)\in P$.

Aplicando las definiciones anteriores nos quedaría:

  • $a-b=0 \Rightarrow a=b$,
  • $a-b\in P \Rightarrow a>b$,
  • $-(a-b)\in P\Rightarrow b-a\in P \Rightarrow b>a \text{.}$

$\square$

Leyes de los signos

Definición: Diremos que $a$ es positivo si $a\in P$ y que es negativo si $-a\in P$.

Proposición (Leyes de los signos): Sean $a,b\in\r$. Se cumplen las siguientes afirmaciones:

  1. Si $a,b >0$ entonces $a\cdot b >0$.
  2. Si $a,b < 0$ entonces $a\cdot b >0$.
  3. Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
  4. Si $a<0$, $b>0$ entonces $a\cdot b < 0$.

Demostración:

  1. Consideremos $a>0$ y $b>0$. Así tenemos que $a\in P$ y $b\in P$ entonces por O3 $a\cdot b \in P$.
    $$\therefore \quad a\cdot b > 0$$
  2. Ahora tomemos $a< 0$ y $b<0$. Por lo que $-a\in P$ y $-b\in P$ entonces por O3 $(-a)\cdot( -b) \in P$.
    $$\therefore \quad a\cdot b > 0$$

$\square$

Algunos resultados importantes

Proposición: Sean $a,b,c,d \in \r$. Tenemos que se cumplen los siguientes resultados:

  1. Si $a>b$ entonces $a+c>b+c$.
  2. Si $a<b$ y $c<0$ entonces $ac>bc$.
  3. Si $a<b$ y $c>0$ entonces $ac<bc$.
  4. Si $a<b$ y $c<d$ entonces $a+c<b+d$.
  5. Si $a<b$ y $c>d$ entonces $a-c<b-d$.
  6. Si $a<b$ entonces $-b<-a$.

Demostración:
Demostraremos los puntos 1,3,4 y 5, mientras que dejaremos como ejercicios al lector los puntos 2 y 6.

  1. Como $a>b$ esto significa que $a-b \in P$.
    Así se sigue que:
    \begin{align*}
    a-b &= a +0 -b\\
    &= a + (c -c)-b\\
    &= (a +c) – (c+b) \quad\text{.}\\
    \end{align*}
    De lo anterior concluimos que $(a +c) – (c+b) \in P$, es decir, $a +c > c+b$.
  2. Tarea moral.
  3. Por hipótesis tenemos que $a<b$ y $c>0$ por lo que ocurre: $b-a \in P$ y $c \in P$.
    Por O3 afirmamos que $c (b-a) \in P$. Observemos que: $c (b-a) = cb – ca = bc – ac$.
    $$\therefore \quad bc – ac \in P\text{.}$$
    $$\therefore \quad bc>ac \text{.}$$
  4. Ya que $a<b$ y $c<d$ se sigue que $b-a \in P$ y $d-c \in P$. Así por O2 tenemos:
    $$(b-a)+(d-c) \in P\text{.}$$
    Notemos que:
    \begin{align*}
    (b-a)+(d-c) &= b-a+d-c\\
    &= b+d -a-c\\
    &= (b+d) – (a+c)\quad\text{.}\\
    \end{align*}
    $$\therefore \quad (b+d) – (a+c) \in P\quad\text{.}$$
    $$\therefore \quad b+d > a+c\quad\text{.}$$
  5. Tenemos que $a<b$ y $c>d$ $\Rightarrow b-a \in P$ y $c-d \in P$.
    Por O2 se sigue que $(b-a) + (c-d) \in P$. Y como tenemos lo siguiente:
    \begin{align*}
    (b-a) + (c-d)&= b-a + c-d\\
    &= (b-d) + (-a +c)\\
    &= (b-d) – (a-c)\quad\text{.}\\
    \end{align*}
    Así concluimos que: $(b-d) – (a-c)\in P$.
    $$ \therefore b-d > a-c\quad\text{.}$$
  6. Tarea moral.

$\square$

Transitividad

Proposición (Transitividad): Para $a,b \in \r$ se cumplen las siguientes propiedades:

  1. Si $a>b$ y $b>c \Rightarrow a>c$.
  2. Si $a< b$ y $b<c \Rightarrow a<c$.

Demostración:

  1. Cómo $a>b$ y $b>c$ sabemos que $a-b \in P$ y $b-c \in P$.
    Entonces tenemos por O2 $(a-b)+(b-c)\in P$. Y como:
    $$(a-b)+(b-c) = a+(-b+b)-c = a-c \quad\text{.}$$
    Así $a-c \in P$ y por lo tanto $a>c$.
  2. Ya que $b>a$ y $c>b$. Aplicando el punto anterior se sigue que:
    $$c> a \Rightarrow a < c \quad\text{.}$$

$\square$

El cuadrado de un número real

Proposición: Para todo $a\in \r$ se cumple lo siguiente:

$$a^{2} \geq 0 \text{.}$$

Demostración: Tomemos $a\in \r$. Por la propiedad O1 debemos considerar los siguientes tres casos.

  • Caso $a =0$:
    Como $a=0$, al multiplicar por $a$ en ambos lados de la igualdad tenemos:
    \begin{align*}
    &\Rightarrow a\cdot a = 0\cdot a\\
    &\Rightarrow a\cdot a = 0\cdot 0\\
    &\Rightarrow a^{2} = 0 \quad \text{.}\\
    \end{align*}
    Concluimos así $a^{2} \geq 0$.
  • Caso $a>0$
    Así $a\in P$ y por O3 tenemos que $a \cdot a \in P$. Por lo que $a^{2} \in P$, es decir, $a^{2}> 0$. Se concluye $a^{2} \geq 0$.
  • Caso $a< 0$
    Ahora tenemos que $-a\in P$ y por O3 que $-a \cdot -a \in P$. Así $a^{2}= (-a)(-a) \in P$, por lo que $a^{2} \geq 0$.

De los casos anteriores probamos que $a^{2} \geq 0$ para todo $a\in \r$

$\square$

Más adelante

Ya que hemos definido las propiedades de orden y varios de sus resultados más importantes. En la siguiente entrada comenzaremos por definir a los intervalos en los reales y a resolver desigualdades apoyándonos en todo lo visto en esta entrada.

Tarea moral

Demuestra los puntos 3 y 4 de las Leyes de los signos.

  • Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
    • Sugerencia: Prueba $a\cdot (-b)$ es inverso aditivo de $ab$, es decir, $ab + a\cdot (-b) =0$
  • Si $a<0$, $b>0$ entonces $a\cdot b < 0$.
    • Sugerencia: Aplica o prueba el resultado $(-a)(b)=-(ab)$.

Prueba los puntos 2 y 6 de la sección Algunos resultados importantes:

  • Si $a<b$ y $c<0$ entonces $ac>bc$.
  • Si $a<b$ entonces $-b<-a$.

Muestre que para $a,b \in \r$ se cumplen las siguientes propiedades:

  • Si $a>1$ entonces $a^{2} > a$.
  • Si $0<a<1$ entonces $a^{2} < a$.
  • Consideremos $0<a<b$, demostrar que se cumple la siguiente desigualdad:
    $$a< \sqrt{ab}< \frac{a+b}{2} <b$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

2 comentarios en “Cálculo Diferencial e Integral I: Propiedades de orden de los números reales

  1. Alejandra Hermosillo

    Muchas gracias, en realidad aprendemos con más detenimiento con esta información que tan amablemente nos proporcionan. Ya que en la facultad enseñan muy rápido y sólo es copiar del pizarrón y no da tiempo ni siquiera de procesar la información. Nuevamente gracias.

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.