Cálculo Diferencial e Integral I: Propiedades algebraicas de los números reales (Parte 1)

Introducción

En esta entrada comenzaremos revisando las propiedades básicas de los números reales relacionadas con las operaciones suma y multiplicación. Daremos un vistazo a los resultados derivados de ellas.

Propiedades básicas de los números reales

A continuación enlistaremos una serie de propiedades que cumplen respectivamente la suma y la multiplicación en el conjunto de números reales $\mathbb{R}$. 

Definición (Propiedades básicas): Consideremos $\mathbb{R}$ y las operaciones suma ($+$) y multiplicación ($\cdot$) se cumple que:

S1.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a+b \in \mathbb{R}$  (Cerradura de la suma)

S2.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a+b = b+a$    (Conmutatividad de la suma)

S3.- Para cualesquiera $a,b,c\in \mathbb{R}$ se cumple que:
$a + (b+c) = (a+b)+c$    (Asociatividad de la suma)

S4.- Existe $0\in \mathbb{R}$ tal que para cualquier $a\in \mathbb{R}$ :
$a + 0 =0+a=a$    (Neutro aditivo)

S5.- Para cualquier $a\in \mathbb{R}$ existe $-a\in \mathbb{R}$ tal que:
$a + (-a) = (-a)+ a = 0$    (Inverso aditivo)

M1.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a\cdot b \in \mathbb{R}$    (Cerradura de la multiplicación)

M2.- Para cualesquiera $a,b\in \mathbb{R}$ se cumple que:
$a\cdot b = b\cdot a$    (Conmutatividad de la multiplicación)

M3.- Para cualesquiera $a,b,c \in \mathbb{R}$ se cumple que:
$a \cdot (b\cdot c) = (a\cdot b)\cdot c$    (Asociatividad de la multiplicación)

M4.- Existe $1\in \mathbb{R}$ tal que para cualquier $a\in \mathbb{R}$:
$a \cdot 1 = 1\cdot a=a$    (Neutro multiplicativo)

M5.- Para cualquier $a \in \mathbb{R}$ con $a\neq 0$, existe $a^{-1} \in X$ tal que:
$a \cdot a^{-1} = a^{-1}\cdot a = 1$    (Inverso multiplicativo)

A.- $1\neq 0$    (El neutro aditivo es distinto del neutro multiplicativo)

D.- Para cualesquiera $a,b,c \in \mathbb{R}$ se cumple que:
$a\cdot (b+c) = a \cdot b + a\cdot c$    (Ley distributiva) 

Esta lista de propiedades serán nuestras «reglas del juego» con las cuales iremos probando los siguientes resultados. Aconsejamos tenerla disponible ya que haremos referencia a ella en todas las demostraciones siguientes.

Primeras observaciones

Proposición: Los neutros e inversos son únicos en $\mathbb{R}$. Es decir:

  1. $0$ es único
  2. $1$ es único
  3. Para todo $a \in\mathbb{R}$, $-a$ es único
  4. Para todo $a \in\mathbb{R}$, $a^{-1}$ es único

En esta ocasión demostraremos sólo los puntos 1 y 3.
Demostración punto 1:
Sea $a \in \mathbb{R}$. Supongamos que el $0$ no es único, entonces existe un $0^{*} \in \mathbb{R}$ tal que cumple lo siguiente: $a + 0^{*} = a$
Y como $ a + 0 = a$ $$\Rightarrow a + 0 = a + 0^{*}$$
Así tenemos que:
\begin{align}
&\Rightarrow (-a) + (a + 0) = (-a) + (a + 0^{*})\\
&\Rightarrow ((-a )+ a) + 0 = ((-a )+ a) + 0^{*}\\
&\Rightarrow 0 + 0 = 0 + 0^{*}\\
&\Rightarrow 0 = 0 + 0^{*}\\
&\Rightarrow 0 = 0^{*}\\
\end{align}

En $(1)$ sumamos $-a$ en ambos lados de la igualdad. Para $(2)$ aplicamos S3. Por la propiedad S5 en ambos lados de la igualdad se sigue $(3)$. Aplicando S4 para $0 +0$ en $(4)$.  Volvemos a aplicamos S4 para $0 +0^{*}$ en $(5)$.
$\therefore 0$ es único.

Demostración punto 3: Sea $a \in \mathbb{R}$. Supongamos que el $-a$ no es único, entonces existe un $-a^{*} \in \mathbb{R}$ tal que cumple lo siguiente: $a + (-a^{*}) = 0$
Y como $ a + (-a) = 0$ $$\Rightarrow a + (-a) = a + (-a^{*})$$
Así tenemos que:
\begin{align}
& \Rightarrow (-a) + (a + (-a)) = (-a) + a + (-a^{*})\\
& \Rightarrow ((-a )+ a) + (-a) = ((-a )+ a) + (-a^{*})\\
& \Rightarrow 0 + (-a) = 0 +(-a^{*})\\
&\Rightarrow -a = – a ^{*}\\
\end{align}

En $(6)$ sumamos $-a$ en ambos lados de la igualdad. Para $(7)$ aplicamos S3. Por la propiedad S5 en ambos lados de la igualdad se sigue $(8)$. Aplicando S4 en ambos lados en $(9)$.  
$\therefore -a$ es único.

$\square$

Algunos resultados

Proposición: Para $a,b \in \mathbb{R}$ se cumple lo siguiente:

  1. $a \cdot 0 = 0$
  2. $-a = (-1)(a)$
  3. $-(-a) = a$
  4. $(-a)(b)= – (ab)$
  5. $(-a)(-b)= ab$
    Nota: Escribiremos $ab$ para referirnos al producto $a \cdot b$.

Demostración:
1. $P.d.$ $a \cdot 0 = 0$

Comencemos con el lado izquierdo de la igualdad:
\begin{align*}
a \cdot 0 = a \cdot (0+0) &\Rightarrow a \cdot 0 = a \cdot 0 + a \cdot 0\tag{por S4 y D}\\
&\Rightarrow a \cdot 0 + (-a\cdot 0) = (a \cdot 0 + a \cdot 0) + (-a \cdot 0)\tag{por sumar $-a\cdot 0$}\\
&\Rightarrow 0 = (a \cdot 0 + a \cdot 0) + (-a \cdot 0)\tag{por S5}\\
&\Rightarrow 0 = a \cdot 0 + (a \cdot 0 + (-a \cdot 0))\tag{por S3}\\
&\Rightarrow 0 = a \cdot 0 + 0\tag{por S5}\\
&\Rightarrow 0 = a \cdot 0\tag{por S4} \\
\end{align*}
$$\therefore a \cdot 0 = 0$$

2. $P.d.$ $-a = (-1)(a)$
Observemos que si probamos que $a + ((-1)(a)) =0$ implicaría que $(-1)(a)$ es el inverso aditivo de $a$ que por lo visto anteriormente sabemos es único.

Así a partir del lado izquierdo de la igualdad tenemos:

\begin{align*}
a + ((-1)(a)) &= a\cdot 1 + ((-1)(a))\tag{por M4}\\
&= a\cdot 1 + (a)(-1)\tag{por M2}\\
&= a (1+(-1))\tag{por D}\\
&= a\cdot 0\tag{por S5}\\
&= 0\tag{por 1.}
\end{align*}

Por lo que ya tenemos $a + ((-1)(a))=0$ . Y como ya probamos que el inverso aditivo es único concluimos $$-a = (-1)(a)$$.

3. $P.d.$ $-(-a) = a$
Vemos que si probáramos que $-(-a)$ es el inverso aditivo de $-a$ terminaríamos.
\begin{align*}
(-a)+(-(-a)) &= (-a)\cdot 1 + (-1)(-a)\tag{por M4 y 2.}\\
&= (-a)\cdot 1 + (-a)(-1)\tag{por M2}\\
&= (-a)(1+(-1)\tag{por D}\\
&=(-a)(0)\tag{por S5}\\
&=0\tag{por 2.}\\
\end{align*}
Así obtenemos que: $$(-a)+(-(-a)) =0 \Rightarrow ((-a)+(-(-a)))+a= 0+a$$.

Por lo anterior se sigue que:
\begin{align*}
&\Rightarrow ((-a)+(-(-a)))+a= a\tag{por S4}\\
&\Rightarrow ((-(-a))+(-a))+a =a\tag{por S2}\\
&\Rightarrow (-(-a))+((-a)+a)=a\tag{por S3}\\
&\Rightarrow (-(-a))+ 0=a\tag{por S5}\\
&\Rightarrow -(-a)=a\tag{por S4}
\end{align*}
$$\therefore -(-a)=a$$

$\square$

El resto de los incisos se dejarán como ejercicios en la Tarea moral. Recuerda que para realizarlos puedes hacer uso de todos los resultados probados en esta entrada, a menos que se indique lo contrario.

Tarea moral

Demuestra las siguientes propiedades.:

  • $1$ es único en $\RR$.
  • Para todo $a \in\mathbb{R}$, $a^{-1}$ es único.
  • Sin usar el resultado $-(-a) = a$, demuestra que $-(-1) = 1$.

Para $a,b \in \mathbb{R}$ se cumple lo siguiente:

  • $(-a)(b)= – (ab)$
  • $(-a)(-b)= ab$

Más adelante

En la siguiente entrada continuaremos viendo resultados derivados de las propiedades de la suma y la multiplicación de los números reales por lo que nuestra primer lista será de suma utilidad.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.