Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para ecuaciones lineales de primer orden

Introducción

En las entradas anteriores hemos estudiado las soluciones a ecuaciones de primer orden desde dos distintos puntos de vista, el cualitativo y el analítico. En el camino hemos encontrado un comportamiento similar en las soluciones, como es el que el problema de condición inicial tenga una solución, o que las curvas solución no se intersectan en el plano. Estos comportamientos no son una casualidad, y están justificados por el Teorema de existencia y unicidad que nos dice que el problema de condición inicial tiene una y sólo una solución definida en un intervalo $(a,b)$. Este teorema, en su versión para ecuaciones lineales sustenta el trabajo que hemos realizado en los últimos videos.

Teorema de existencia y unicidad para ecuaciones lineales de primer orden

En el video demostramos la versión del Teorema de existencia y unicidad para ecuaciones lineales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(t_{0})=y_{0}$, con $t_{0}\neq 0$, $y_{0}\neq 0$.
  • Resuelve el problema de condición inicial inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=0$.
  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=y_{0}$, con $y_{0}\neq 0$.
  • ¿Contradicen las soluciones de los ejercicios anteriores el Teorema de existencia y unicidad?
  • Esboza las soluciones a la ecuación diferencial.

Más adelante

Con esta entrada terminamos el estudio a las ecuaciones lineales de primer orden. En la siguiente entrada comenzaremos a estudiar ecuaciones diferenciales no lineales de primer orden. En particular veremos un caso especial de estas ecuaciones, a las que llamaremos ecuaciones separables.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.