Álgebra Lineal II: Formas cuadráticas hermitianas

Por Diego Ligani Rodríguez Trejo

Introducción

El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades.

Al final enunciaremos una versión compleja del teorema de Gauss.

Formas cuadráticas hermitianas

Definición Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\varphi$ una forma sesquilineal hermitiana de $V$. La forma cuadrática hermitiana correspondiente a $\varphi$ es la función $\Phi: V\to \mathbb{C}$ tal que para cualquier $x$ en $V$ se tiene que

\begin{align*} \Phi(x)=\varphi (x,x) \end{align*}

Observa que aquí, de entrada, estamos pidiendo que $\varphi$ sea sesquilineal. Esto entra en contraste con el caso real, en donde no nos importaba si la forma bilineal que tomábamos inicialmente era simétrica o no. Como veremos un poco más abajo, dada la forma cuadrática hermitiana $\Phi$, hay una única forma sesquilineal hermitiana de la que viene. Por esta razón, llamaremos a la función $\varphi$ la forma polar de $\Phi$.

Problema 1. Sea $V=\mathbb{C}^n$ y $\Phi : V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(x_1, \ldots, x_n)= |x_1|^2 + \cdots + |x_n|^2.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. Recordemos que para cualquier $z \in \mathbb{C}$ se tiene $|z|^2=z \overline{z}$. Así propongamos $\varphi$ como sigue:

\begin{align*}
\varphi(x,y):= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n).
\end{align*}

Es sencillo mostrar que $\varphi$ así definida es una forma sesquilineal hermitiana, y queda como ejercicio.

$\square$

Problema 2. Sea $V$ el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{C}$ y $\Phi: V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(f)= \int_0^1|f(t)|^2 dt.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. La solución es muy parecida. Proponemos $\varphi$ como sigue:

\begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}

Es sencillo mostrar que $\varphi(f,f)=\Phi(f)$ y que $\varphi$ es forma sesquilineal hermitiana. Ambas cosas quedan como ejercicio.

$\square$

Propiedades básicas de formas cuadráticas hermitianas

Veamos algunas propiedades de las formas cuadráticas hermitianas.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$, $\varphi$ una forma sesquilinear hermitiana y $\Phi(x)$ su forma cuadrática asociada.

  1. Para todo $x\in V$, se tiene que $\Phi(x)=\varphi(x,x)$ siempre es un número real.
  2. Para todo $x\in V$ y $a\in \mathbb{C}$ se tiene que $\Phi(ax)=|a|\Phi(x)$.
  3. Para cualesquiera $x,y$ en $V$ se tiene que $\Phi(x+y)=\Phi(x)+\Phi(y)+2\text{Re}(\varphi(x,y))$.

Demostración. Los incisos 1) y 2) son consecuencia inmediata de los ejercicios de la entrada anterior. Para el inciso 3) usamos que la suma de un número con su conjugado es el doble de su parte real para obtener la siguiente cadena de igualdades:

\begin{align*}
\Phi(x+y)&=\varphi(x+y,x+y)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\varphi(y,x)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\overline{\varphi(x,y)}\\
&=\Phi(x) + \Phi(y) + 2\text{Re}(\varphi(x,y)).
\end{align*}

$\square$

Identidad de polarización compleja

Para demostrar que una función es una forma cuadrática hermitiana, usualmente necesitamos a una función que sea la candidata a ser la forma sesquilineal hermitiana que la induzca. Es decir, necesitamos un método para proponer la forma polar. Podemos hacer esto mediante la identidad de polarización compleja.

Proposición (Identidad de polarización). Sea $\Phi: V \rightarrow \mathbb{C}$ una forma cuadrática hermitiana. Existe una única forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{C}$ tal que $\Phi(x)=\varphi(x,x)$ para todo $x \in V$.

Más aún, ésta se puede encontrar de la siguiente manera:

\begin{align*} \varphi(x,y)= \frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Aquí $i$ es el complejo tal que $i^2=-1$. Esta suma tiene cuatro sumandos, correspondientes a las cuatro potencias de $i$: $1,i,-1,-i$.

Demostración. Por definición, como $\Phi$ es una forma cuadrática hermitiana, existe $s:V\times V\to \mathbb{C}$ una forma sesquilineal hermitiana tal que $\Phi(x)=s(x,x)$. Veamos que la fórmula propuesta en el enunciado coincide con $s$. La definición en el enunciado es la siguiente:

\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Como $\Phi(x)=s(x,x)$ podemos calcular $\varphi$ como sigue
\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k s(y+i^kx,y+i^kx)\end{align*}

Desarrollando los sumandos correspondientes a $k=0$ y $k=2$, y simplificando, se obtiene

\begin{align*}2s(y,x) + 2s(x,y).\end{align*}

Del mismo modo, los sumandos para $k=1$ y $k=3$ quedan como

\begin{align*} 2s(x,y) – 2s(y,x) \end{align*}

Sustituyendo esto en la definición original de $\varphi$ tenemos que

\begin{align*} \varphi(x,y)&=\frac{ 2s(y,x) + 2s(x,y) + 2s(x,y) – 2s(y,x) }{4}\\&=s(x,y). \end{align*}

De esta igualdad podemos concluir que $\varphi = s$, por lo que 1) $\varphi$ es forma sesquilineal hermitiana y 2) la forma cuadrática hermitiana de $\varphi$ es $\Phi$. Esta forma debe ser única pues si hubiera otra forma sesquilineal hermitiana tal que $s'(x,x)=\Phi(x)$, los pasos anteriores darían $s'(x,x)=\varphi(x,y)$ nuevamente.

$\square$

En particular, esta identidad nos dice que formas sesquilineales hermitianas distintas van a formas cuadráticas hermitianas distintas. Es por ello que podemos llamar a la función $\varphi$ dada por la fórmula en el enunciado la forma polar de $\Phi$.

Teorema de Gauss complejo

Enunciamos a continuación la versión compleja del teorema de Gauss.

Teorema. Sea $\Phi$ una función cuadrática hermitiana $\mathbb{C}^n$. Existen $\alpha_1, \cdots , \alpha_r$ números complejos y formas lineales $l_1, \cdots l_r$ linealmente independiente de $\mathbb{C}^n$ tales que para todo $x$ en $\mathbb{C}^n$ se tiene:

\begin{align*} \Phi(x_1, \cdots , x_n ) = \sum_{i=1}^r \alpha_i |l_i(x)|^2. \end{align*}

Observa que en la expresión de la derecha no tenemos directamente a las formas lineales, sino a las normas de éstas.

Más adelante…

Ya hablamos de formas bilineales y de formas sesquilineales. ¿Habrá una forma alternativa de representarlas? Cuando teníamos transformaciones lineales entre espacios vectoriales, podíamos representarlas por matrices. Resulta que a las formas bilineales también podemos representarlas por matrices. Veremos cómo hacer esto (y cuáles son las ventajas de hacer eso) en las siguientes dos entradas. En una veremos los resultados correspondientes a formas bilineales y en la otra los resultados correspondientes a formas sesquilineales.

Un poco más adelante aprovecharemos esta representación matricial para retomar el estudio de los productos interiores.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{C}^n$ y definamos $\varphi:V\times V \to \mathbb{C}$ como sigue:
    \begin{align*} \varphi(x,y)= \overline{x_1}y_1 + \cdots + \overline{x_n}y_n, \end{align*}
    para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  2. Sea $V$ el espacio de funciones continuas del intevalo $[0,1]$ a $\mathbb{C}$ y $\varphi: V\times V \to \mathbb{C}$ definida como sigue:
    \begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt,\end{align*}
    para cualquier par $f_1, f_2 \in V$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  3. Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\Phi$ una forma cuadrática hermitiana. Prueba la siguiente identidad (identidad del paralelogramo)
    \begin{align*} \Phi(x+y) + \Phi(x-y) = 2(\Phi(x) + \Phi(y)).\end{align*} ¿Cómo se compara con la identidad del paralelogramo real?
  4. Compara la identidad de polarización real con la identidad de polarización compleja. ¿Por qué son tan distintas entre sí?
  5. Demuestra el Teorema de Gauss para formas cuadráticas hermitianas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Valor absoluto. Desigualdad del triángulo

Por Karen González Cárdenas

Introducción

En esta entrada veremos una función muy particular: el valor absoluto. Ésta nos permitirá «medir la distancia» entre un par de números reales. Finalizaremos con la demostración de la Desigualdad del triángulo y algunas de sus consecuencias. Esta desigualdad es usada en las demostraciones de Límite y Continuidad que veremos más adelante.

Definición formal

Definición (Valor absoluto): Para todo $x\in \r$ definimos la función valor absoluto como sigue:
\begin{equation*}
|x|=
\begin{cases}
x &\text{si $x \geq 0$}\\
-x & \text{si $x< 0$}
\end{cases}
\end{equation*}

Recordando las propiedades de orden, la definición quedaría de la siguiente manera:
\begin{equation*}
|x|=
\begin{cases}
x &\text{si $x =0 \quad\text{o}\quad x\in P$}\\
-x & \text{si $-x\in P$}
\end{cases}
\end{equation*}
Esta última nos será de utilidad para la demostración de la desigualdad del triángulo que veremos más adelante.


Observación: De la definición anterior notamos que para toda $x \in \r$, su valor absoluto $|x|$ es mayor o igual a cero.

Midiendo distancias

Si observamos la definición del valor absoluto, notamos que asocia a cualquier número real con su distancia respecto al cero. Veámoslo en los ejemplos siguientes:

  • $|-3|=3$
  • $|14|= 14$

En consecuencia, si consideramos la distancia entre cualquier par de números reales tendríamos la siguiente definición.

Definición: Para cualesquiera $a,b \in \r$ tenemos que están a distancia $|a-b|$.
Observemos que la distancia siempre será positiva o cero.

Desigualdad del triángulo

Teorema (Desigualdad del triángulo): Para todo $a,b \in \r$ se cumple la siguiente desigualdad:
$$|a+b| \leq |a|+|b|\text{.}$$

Demostración: Dada la definición del valor absoluto, debemos considerar casos sobre los signos de $a$ y $b$.
CASO 1: $a \geq 0$ y $b \geq 0$.
Recordemos que $P$ es cerrado bajo la suma, por lo que tenemos lo siguiente:
\begin{align*}
|a+b|&= a + b\\
&= |a|+|b|.
\end{align*}
La última igualdad se sigue de $a = |a|$ y $b = |b|$.

Para los siguientes casos haremos uso de los siguientes resultados que serán demostrados posteriormente:

Resultados: Para cualesquiera $a,b,c \in \r$ se cumplen:

  1. $-a-b=-(a+b)$.
  2. Si $b<0 \Rightarrow b<-b$.
  3. Si $a<b \Rightarrow a+c < b+c$.

CASO 2: $a < 0$ y $b < 0$.
Notemos que $-a \in P$ y $-b \in P$ por lo que $-a-b \in P$. Así se sigue que:
\begin{align*}
|a+b|&= -(a+b)\tag{por ser $a+b$ negativo}\\
&= -a – b\tag{por el resultado 1}\\
&= (-a)+(-b)\\
&= |a|+|b|,
\end{align*}
porque $|a|=-a$ y $|b|=-b$.

CASO 3: $a \geq 0$ y $b < 0$.
Para esta demostración debemos considerar dos subcasos.
SUBCASO 1: $a+b \geq 0$.
Dado lo anterior aplicando la definición de valor absoluto ocurre que:
\begin{align*}
|a+b|&=a+b\\
&< a-b. \tag{por los resultados 2 y3}\\
\end{align*}
Como tenemos que $a-b = |a|+|b|$, concluimos:
$$|a+b|<|a|+|b|.$$
SUBCASO 2: $a+b < 0$.
Procederemos análogamente al subcaso anterior:
\begin{align*}
|a+b|&=-(a+b)\\
&= -a-b\\
&< a-b. \tag{por resultados 2 y3}\\
\end{align*}
Ya que $a-b = |a|+|b|$, tenemos:
$$|a+b|<|a|+|b|.$$

CASO 4: $a < 0$ y $b \geq 0$.
Al igual que en el caso 3, para verificar la desigualdad se deberán considerar dos subcasos. La demostración de este caso se deja como parte de la Tarea moral.

$\square$

Para poder dar por terminada la prueba, debemos demostrar los siguientes resultados auxiliares que utilizamos:

Resultados: Para cualesquiera $a,b,c \in \r$ se cumplen:

  1. $-a-b=-(a+b)$.
  2. Si $b<0 \Rightarrow b<-b$.
  3. Si $a<b \Rightarrow a+c < b+c$.

Demostración:
1. Debemos verificar que $-a-b =(-a)+(-b)$ es inverso aditivo de $a+b$.
\begin{align*}
(a+b)+((-a)+(-b))&= (b+a)+((-a)+(-b))\\
&= ((b+a)+(-a))+(-b)\\
&= (b+(a+(-a))+(-b)\\
&= (b+0)+(-b)\\
&= b + (-b)\\
&=0.
\end{align*}
Concluimos que $(-a)+(-b) = -(a+b)$.

2. Ya que $b<0$ sabemos que $-b \in P$. Queremos probar que $-b-b > 0$.
Observemos que: $-b-b=(-b)+(-b)\in P$.
Por lo que concluimos que $b<-b$.

3. Bastaría ver que $(b+c)-(a+c) \in P$. Debido a que $b-a \in P$. Observamos lo siguiente.
\begin{align*}
b-a &= (b-a)+0\\
&= (b-a) + (c-c)\\
&= (b+c)-(a+c).
\end{align*}
$$\therefore\quad (b+c)-(a+c) \in P.$$
$$\therefore \quad b+c > a+c.$$

$\square$

Observemos que las demostraciones de estos resultados no utilizan la desigualdad del triángulo, más bien hacen uso de las propiedades vistas en las entradas anteriores.

Consecuencias de la desigualdad del triángulo

Proposición (Consecuencias de la desigualdad del triángulo): Sean $a,b \in \r$. Se cumplen las siguientes desigualdades:

  1. $|a-b| \leq |a|+|b|$
  2. $|a|-|b|\leq |a-b|$
  3. $|b|-|a|\leq |a-b|$

En esta ocasión sólo probaremos el punto 2.

Demostración:
2. Como $|a|= |a+0|$, al desarrollar esta igualdad obtenemos:
\begin{align*}
|a|&= |a+0|\\
&= |a+ (b+ (-b))|\\
&= |(a-b)+b|\\
&\leq |a-b| + |b| \tag{por la desigualdad del triángulo}\\
\end{align*}
$$\therefore |a| \leq |a-b| + |b|$$
$$\therefore |a|-|b| \leq |a-b|$$

$\square$

Más adelante

En la próxima entrada comenzaremos a resolver desigualdades donde el valor absoluto se encuentra involucrado.

Tarea moral

  • Propiedades del valor absoluto.
    Prueba los siguientes resultados:
    • $|a|=|-a|.$
    • $|ab|=|a||b|$.
    • $|\frac{1}{a}|=\frac{1}{|a|}$ con $a\neq 0$.
    • $\frac{|a|}{|b|}=|\frac{a}{b}|$ con $b \neq 0$.
  • Desigualdad del triángulo.
    • Realiza la prueba del CASO 4 .
    • Demuestra que para cualesquiera $a,b \in \r$:
      • $|a-b| \leq |a|+|b|$.
      • $|b|-|a|\leq |a-b|$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: El teorema de clasificación de transformaciones ortogonales

Por Ayax Calderón

Introducción

En la entrada anterior definimos las transformaciones ortogonales y probamos algunas de sus propiedades relacionadas con el producto interior, norma y la transformación adjunta. Vimos también que el conjunto de todas las transformaciones ortogonales de un espacio euclideano $V$ forma un grupo $O(V)$ bajo composición.

En esta entrada queremos entender mucho mejor dicho grupo. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión $2$. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

El lema de los subespacios estables

Lo primero que veremos es que las transformaciones ortogonales preservan completamente los subespacios estables, así como sus espacios ortogonales. Este es el resultado que nos permitirá un poco más adelante trabajar inductivamente.

Lema. Sean $V$ un espacio euclidiano, $T\in O(V)$ y $W$ un subespacio de $V$ estable bajo $T$.

  1. Se tiene que $T(W)=W$ y $T(W^\bot)=W^\bot$.
  2. Se tiene que $T|_W\in O(W)$ y $T|_{W^\bot}\in W^\bot$.

Demostración. 1. Como $T(W)\subseteq W$ y $T|_W$ es inyectiva (pues $T$ es inyectiva en $V$), se sigue que $T|_W:W\to W$ es suprayectiva y por lo tanto $T(W)=W$. Veamos ahora que $W^\bot$ también es estable bajo $T$. Tomemos $x\in W^\bot$ y $y\in W$. Queremos demostrar que $T(x)\in W^\bot$, es decir, que $\langle T(x),y \rangle=0$. Como $T$ es ortogonal, entonces $T^*=T^{-1}$ y por lo tanto
$$\langle T(x),y \rangle=\langle x,T^{-1}(y) \rangle.$$

Como $T|_W:W\to W$ es biyectiva, se tiene que $W$ es estable bajo $T^{-1}$. Entonces $T^{-1}(y)\in W$, y como $x\in W^\bot$, entonces $\langle x,T^{-1}(y) \rangle=0$. Por lo tanto $\langle T(x),y \rangle=0$. Esto muestra que $W^\bot$ es estable bajo $T$ y por la primer parte de este inciso, llegamos a $T(W^\bot)=W^\bot$.

2. Para todo $x\in W$ se tiene que
$$||T|_W(x)||=||T(x)||=||x||,$$
lo que significa que $T|_W\in O(W)$. De manera análoga se tiene que $T_{W^\bot}\in O(W^\bot)$.

$\square$

El lema de la invarianza de una recta o un plano

Para poder aplicar el lema de la sección anterior, tendremos que poder encontrar subespacios estables. El siguiente lema nos dice que siempre podemos encontrar subespacios estables en espacios euclideanos.

Lema. Sea $V$ un espacio euclidiano y $T$ una transformación lineal sobre $V$. Entonces existe una recta (subespacio de dimensión $1$) o un plano (subespacio de dimensión $2$) en $V$ estable bajo $T$.

Demostración. El polinomio mínimo de $T$ es un polinomio $\mu_T(x)$ con coeficientes reales. Si tiene una raíz real, se sigue que $T$ tiene un eigenvalor y por consiguiente, la recta generada por un eigenvector es estable bajo $T$.

Ahora supongamos que $\mu_T(x)$ no tiene raíces reales. Sea $z$ una raíz compeja de $\mu_T(x)$, que existe por el teorema fundamental del álgebra. Como $\mu_T(x)$ tiene coeficientes reales, entonces $\overline{z}$ también es raíz de $\mu_T(x)$.Por lo tanto, $Q(x)=(x-z)(x-\overline{z})$ divide a $\mu_T(x)$.

Es imposible que $Q(T)$ sea una matriz invertible, pues de serlo, tendríamos que $\frac{\mu_T}{Q}(x)$ sería un polinomio de grado más chico que $\mu_T(x)$ y anularía a $T$. Esto nos dice que existe $x\in V$ distinto de $0$ tal que $Q(T)(x)=0$. Si $Q(x)=x^2+ax+b$, esto se traduce a $T^2(x)+aT(x)+bx=0$. De aquí, se tiene que $x$ y $T(x)$ generan un plano estable bajo $T$.

$\square$

Las transformaciones ortogonales en dimensión $2$

Los lemas de las secciones anteriores nos permitirán ir partiendo a un espacio euclideano $T$ en «cachitos estables» ya sea de dimensión $1$ o de dimensión $2$. En los de dimensión $1$ ya sabemos cómo debe verse una matriz que represente a $T$: simplemente corresponden a eigenvectores y entonces consistirán en reescalamientos (que deben de ser por factor $1$ ó $-1$ para tener ortogonalidad). Pero, ¿cómo se verá matricialmente la transformación $T$ en subespacios estables de dimensión $2$ que no se puedan descomponer más? Esto es lo que nos responde el siguiente lema.

Lema. Sea $V$ un espacio euclidiano de dimensión $2$ y $T\in O(V)$ sin eigenvalores reales. Entonces existe una base ortonormal de $V$ tal que la matriz asociada a $T$ en dicha base es de la forma
$$R_\theta=\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta\end{pmatrix}.$$

Demostración. Sea $\beta=\{e_1,e_2\}$ una base ortonormal de $V$ y escribimos $T(e_1)=ae_1+be_2$ para algunos números reales $a,b$. Como
$$a^2+b^2=||T(e_1)||^2=||e_1||^2=1,$$ entonces podemos encontrar un número real $\theta$ tal que $(a,b)=(\cos\theta,\sin\theta)$.

Para que $\langle T(e_1), T(e_2)\rangle = 0$, necesitamos que exista un $c$ tal que $T(e_2)=c(-\sin\theta e_1+\cos \theta e_2)$. Finalmente, ya que $$||T(e_2)||=||e_2||=1, $$ debemos tener $|c|=1$ y así $c\in \{-1,1\}$.

El caso $c=-1$ podemos descartarlo pues la matriz que representa a $T$ en la base $\beta$ sería
$$\begin{pmatrix}
\cos \theta & \sin \theta\\
\sin \theta & -\cos\theta\end{pmatrix},$$
cuyo polinomio caracterísitco es $x^2-1$ y por lo tanto tiene a $1$ como eigenvalor, lo cual no entra en nuestras hipótesis. Así, $c=1$ y por lo tanto la matriz que representa a $T$ en la base $\beta$ es
$$\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta\end{pmatrix},$$

como queríamos.

$\square$

El teorema de clasificación

Con lo visto hasta ahora, ya estamos listos para demostrar el teorema fundamental de clasificación de transformaciones lineales ortogonales de un espacio euclidiano.

Teorema (clasificación de ortogonales). Sea $V$ un espacio euclidiano y $T\in O(V)$. Entonces podemos encontrar una base ortonormal $\beta$ de $V$ tal que la matriz asociada a $T$ con respecto a la base $\beta$ es de la forma
\begin{equation}\label{forma}
A=\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix},\end{equation}
donde $\theta_1,\dots, \theta_k$ son números reales y
$$R_\theta=\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{pmatrix}.$$

Demostración. Procederemos por inducción sobre $\dim V$. Si $\dim V=1$, entonces ya terminamos, pues se tendría que $T=\pm id$ (esto quedó de tarea moral en la entrada anterior).

Supongamos que el resultado se satisface para todos los espacios euclideanos de dimensión a lo más $n-1$. Tomemos $V$ un espacio euclideano de dimensión $n$ y $T$ una transformación ortogonal de $V$. Por el lema de la invarianza de una recta o un plano, o bien $V$ tiene una recta estable bajo $T$, o bien un plano estable bajo $T$.

El caso en que $T$ tiene una recta estable bajo $T$ corresponde a que $T$ tiene un eigenvalor real $t$ con eigenvector, digamos, $e_1$. Entonces $$|t|||e_1||=||te_1||=||T(e_1)||=||e_1||,$$
por lo cual $t\in\{-1,1\}$. Sea $W$ la recta generada por $e_1$.

Tenemos que $V=W\oplus W^\bot$. Por el lema de subespacios estables, $T(W)=W$ y $T|_{W^\bot}$ es ortogonal de $W^\bot$. Por hipótesis inductiva, $W^\bot$ tiene una base ortonormal $\{e_2,\dots , e_n\}$ tal que la matriz asociada a dicha base y restringida a $W^\bot$ es de la forma \eqref{forma}. Añadiendo el vector $\frac{e_1}{||e_1||}$ se añade un $1$ o $-1$ en la diagonal, así que, posiblemente permutando la base ortonormal resultante $\{\frac{e_1}{||e_1||},e_2,\dots ,e_n\}$ de $V$ obtenemos una base ortonormal tal que la matriz asociada a $T$ con respecto a esta base es de la forma \eqref{forma}.

Ahora supongamos que $T$ no tiene valores propios reales, es decir, que estamos en el caso de tener un plano estable bajo $T$. Como $T$ es ortogonal, el espacio $W^\bot$ también es estable bajo $T$, y las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones otogonales sobre estos espacios. Por hipótesis inductiva, $W^\bot$ tiene una base ortonormal $\{e_3,\dots,e_n\}$ tal que la matriz asociada a $T|_{W^\bot}$ con respecto a esta base es una matriz diagonal de bloques de la forma $R_{\theta_i}$. Por el lema de transformaciones ortogonales en dimensión $2$, el subespacio $W$ tiene una base ortonormla $\{e_1,e_2\}$ tal que la matriz asociada a $T|_W$ con respecto a esta base es de la forma $R_\theta$. Como $V=W\oplus W^\bot$, entonces la matriz asociada a $T$ con respecto a la base $\{e_1,\dots, e_n\}$ es de la forma \eqref{forma}, con lo cual concluimos con la prueba deseada.

$\square$

También podemos enunciar el teorema anterior en términos de matrices:

Corolario. Sea $A\in M_n(\mathbb{R})$ una matriz ortogonal. Entonces existen enteros $p,q,k$ que satisfacen $p+q+2k=n$, una matriz ortogonal $P\in M_n(\mathbb{R})$ y números reales $\theta_1,\dots , \theta_n$ tales que
$$A=P^{-1}\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix}P.$$

Observación. El determinante de la matriz
$$\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix}$$
es $(-1)^q\in\{1,-1\}$ (estamos usando $\det R_{\theta_i}=1$ para $1\leq i\leq k$). Se sigue que $$\det T\in\{-1,1\}$$ para cualquier $T\in O(V)$.

Más adelante…

Por lo platicado en esta entrada, ya podemos decir cómo es cualquier transformación ortogonal, y no es tan complicado: simplemente en alguna base apropiada, se rota en pares de coordenadas, o bien se refleja en coordenadas, o bien no se hace nada en alguna coordenada (o una combinación de estas cosas). Todo esto intuitivamente deja fijas las normas y el teorema de clasificación nos dice que si se fijan normas entonces debe ser así. Por ello, podemos pensar a las transformaciones ortonormales como «sencillas» o por lo menos «entendibles».

Aprovecharemos esto en el siguiente tema, pues enunciaremos el teorema espectral real, que nos dice que las transformaciones simétricas se entienden muy bien a partir de las ortogonales y de las diagonales. Así, las transformaciones simétricas también serán «entendibles». Finalmente, con el teorema de descomposición polar llevaremos este entendimiento a todas, todas las matrices.

Tarea moral

  1. Verifica que, en efecto, las matrices $R_\theta$ de la entrada tienen determinante igual a $1$.
  2. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Demuestra que $T$ es ortogonal si y sólo si $||T(x)||=||x||$ para los vectores $x$ de norma $1$.
  3. Encuentra la matriz de rotación de ángulo $\frac{\pi}{3}$ alrededor de la recta generada por el vector $(1,1,1)$.
  4. Describe todas las matrices en $M_3(\mathbb{R})$ que son simultaneamente ortogonales y diagonales.
  5. Describe todas las matrices en $M_3(\mathbb{R})$ que sean simultáneamente ortogonales y triangulares superiores.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Probabilidad I-Videos: Independencia de eventos

Por Aurora Martínez Rivas

Introducción

La noción de independencia de los eventos juega un papel importante en la teoría de la probabilidad y sus aplicaciones.  Generalmente, saber que algún evento B ha ocurrido cambia la probabilidad de que otro evento A ocurra. Si la probabilidad permanece sin cambios entonces llamamos a A y B independientes.

Independencia de eventos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sean $A$ y $B$ eventos independientes, muestra que
    • $A^c,\ B$
    • $A,\ B^c$
    • $A^c,\ B^c$

Son independientes.

  • Demuestra que los eventos $A$ y $B$ son independientes si y sólo si $P\left(A\middle|\ B\right)=P\left(A\middle|\ B^c\right)$.
  • Sea $\Omega=${$1,2,\ldots,p$} donde $p$ es primo, $\mathcal{F}$ es el conjunto de todos los subconjuntos de $\Omega$ y para todo evento $A\in\mathcal{F}$, $P(A)=\frac{\left|A\right|}{p}$. Muestra que, si $A$ y $B$ son eventos independientes, entonces al menos uno de los eventos $A$ y $B$ son cualquiera $\emptyset$ o $\Omega$.
  • Considera que se lanza un dado n veces. Sea $A_{ij}$ el evento tal que el $i-ésimo$ y $j-ésimo$ resultado producen el mismo número. Muestra que los eventos {$A_{ij}:1\le\ i\le\ j\le\ n$} son independientes dos a dos, pero no son independientes.
  • Prueba que si $A_1,A_2,\ldots,A_n$ son eventos independientes entonces $P\left(A_1\cup A_2\cup\ldots\cup A_n\right)=1-\displaystyle\prod_{i=1}^{n}\left[1-P\left(A_i\right)\right]$.

Más adelante…

En los siguientes videos veremos dos aplicaciones útiles e importantes de la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes, que nos permiten a través de una partición correcta del espacio muestral, encontrar probabilidades de una manera conveniente.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad de Picard

Por Eduardo Vera Rosales

Introducción

En entradas anteriores hemos cubierto diversos métodos de resolución de ecuaciones diferenciales de primer orden, y hemos pasado por alto diversas hipótesis que deben cumplir las ecuaciones para que éstas tengan una solución. Es momento entonces de justificar toda la teoría realizada anteriormente mediante el Teorema de existencia y unicidad para ecuaciones de primer orden, que nos garantiza la existencia de una única solución al problema de condición inicial $$\frac{dy}{dt}=f(t,y) ; \,\,\,\,\,\,\ y(t_{0})=y_{0}$$ en un intervalo $I_{h}$, bajo ciertas hipótesis que deben satisfacerse.

Primero daremos un panorama general del Teorema de existencia y unicidad, así como la estrategia general para demostrarlo. Debido a que este teorema es complejo de demostrar, necesitamos algunas herramientas extra que iremos presentando conforme las vayamos utilizando. Demostraremos primero la unicidad de la solución al problema de condición inicial y posteriormente su existencia. Finalmente demostraremos la dependencia continua del problema de condición inicial respecto a la condición inicial.

¡Vamos a comenzar!

Introducción del Teorema de Existencia y Unicidad de Picard. Ecuación integral asociada.

Enunciamos el Teorema de existencia y unicidad de Picard, debido al matemático francés Émile Picard, asociamos una ecuación integral al problema de condición inicial, analizamos la relación que guarda la solución a esta ecuación con el problema de condición inicial, y presentamos una forma equivalente de demostrar el teorema en lo que se refiere a la existencia de la solución.

Demostración de la unicidad de la solución al problema de condición inicial

En este video presentamos las herramientas para demostrar la parte de la unicidad del Teorema de existencia y unicidad de Picard. Primero presentamos a las funciones $f(t,y)$ Lipschitz continuas respecto a la segunda variable. Posteriormente demostramos dos lemas: el primero enuncia una forma equivalente de decir que una función $f$ es Lipschitz continua respecto a la segunda variable, el segundo es el Lema de Grönwall, debido al matemático sueco Thomas Grönwall, que nos da una cota superior para una función $g(t)$ continua no negativa que cumple con cierta desigualdad. Finalmente demostramos la unicidad de la solución al problema de condición inicial.

Iteraciones de Picard

Para demostrar la existencia de la solución al problema de condición inicial, o equivalentemente, a la ecuación integral asociada al problema, definimos una sucesión muy particular de funciones $\{y_{n}(t)\}_{n \in \mathbb{N}}$ cuyos elementos llamaremos iteraciones de Picard o aproximaciones sucesivas, resolvemos un ejemplo para ver cómo calcular estas iteraciones, hacemos algunas observaciones que cumple la sucesión, presentamos un par de definiciones y teoremas (que no demostraremos) para saber cuándo converge nuestra sucesión de funciones, esto para dar paso a la demostración de la existencia de la solución al problema de condición inicial.

Demostración de la existencia de la solución al problema de condición inicial

En este video demostramos la parte de la existencia de la solución al problema de condición inicial. Previamente mostramos un lema que nos permite encontrar el intervalo $I_{h}$ donde la solución existe.

Dependencia continua de la condición inicial

Concluimos esta serie de videos, mostrando la dependencia continua del problema de condición inicial, respecto a los valores de la condición inicial, utilizando el Lema de Grönwall que demostramos en el segundo video de esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que la función $$f(t,y)=y^{\frac{2}{3}}$$ no es Lipschitz continua respecto a la segunda variable en cualquier dominio D (subconjunto abierto conexo de $\mathbb{R}^{2}$) que incluya a $y=0$.
  • Resuelve el problema de valor inicial $$\frac{dy}{dt}=y^{\frac{2}{3}}; \,\,\,\,\,\,\,\,\,\,\, y(0)=0$$ y verifica que este problema tiene más de una solución.
  • ¿El problema anterior contradice el Teorema de existencia y unicidad de Picard?
  • Prueba el siguiente corolario al Lema de Grönwall: si se cumplen las hipótesis del Lema de Grönwall con $C_{1}=0$, entonces $g(t)=0$ en $[t_{0}-a,t_{0}+a]$.
  • Calcula las iteraciones de Picard hasta $n=2$ para el problema de condición inicial $$\frac{dy}{dt}=e^{t}+y^{2}; \,\,\,\,\,\, y(0)=0.$$ ¿Puedes encontrar una formula cerrada para caracterizar a los elementos de la sucesión? Intenta calcular más iteraciones. Con este ejemplo puedes ver que en ocasiones puede ser muy complicado calcular iteraciones para $n$ grande, y por tanto, no es sencillo encontrar la convergencia de la sucesión.
  • Muestra que si la sucesión $\{y_{n}(t)\}_{n \in \mathbb{N}}$ converge uniformemente a una función $y(t)$ en $[a,b]$, entonces $y$ es continua en $[a,b]$.

Más adelante

Antes de finalizar el análisis a las ecuaciones de primer orden regresemos un poco al estudio de ecuaciones autónomas. Vamos a considerar ahora una familia de ecuaciones autónomas $f_{\lambda}(y)$ que dependen de un parámetro $\lambda$, y vamos a analizar lo que sucede con las soluciones de equilibrio y con las soluciones en general cuando cambia el valor del parámetro. A este tipo de problemas se les llama bifurcaciones. Con esto terminamos la primera unidad de nuestro curso de Ecuaciones diferenciales ordinarias.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»