Archivo de la etiqueta: rotaciones

Geometría Analítica I: Encontrar el centro y los ejes de una cónica

Introducción

En esta entrada, continuaremos con el estudio de las cónicas, pero en esta ocasión, vamos a encontrar su centro y ejes, a partir de dos grupos de isometrías que ya son familiares para nosotros, las rotaciones y traslaciones y usando otro tema que ya ha sido estudiado con anterioridad, la equivalencia de polinomios y reducción de términos lineales y cuadráticos.

Encontrando el centro de las traslaciones

Para cualquier vector $h \in \mathbb R^2$, consideremos la traslación $g(x)=x+h$ y veamos cómo se escribe el polinomio $P \circ g$ con $P(x)=x*Ax+k*x+f$:

\begin{equation}\left(P\circ g\right)(x)= P(x+h)=(x+h)*A(x+h)+k*(x+h)+f\end{equation}

Factorizando y desarrollando un poco la expresión anterior, obtenemos:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+(h*Ah+k*h+f)\end{equation}

Donde $h*Ah+k*h+f=P(h)$

Lo que nos lleva, finalmente, a:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)\end{equation}

La pregunta ahora es, ¿hay una forma de encontrar el centro de la traslación g a partir de esta expresión? Lo que, por muy extraño que parezca, es cierto, pero, ¿cómo?

Enunciemos unos lemas que nos ayudarán a encontrar la respuesta a la pregunta anterior.

Lema 4.4: Dadas $A$ y $B$ dos matrices que se puedan multiplicar, se cumple que $(AB)^T=B^TA^T$

Lema 4.5: Si tenemos una matriz simétrica $A$ (recordemos que una matriz $A$ es simétrica si $A=A^T$), entonces, para todo par de vectores $x,y$ en $\mathbb R$, se cumple que $x*Ay=Ax*y$

Demostración

Sean $x,y$ vectores, recordemos que $x=x^T$ y que $y=y^T$, por esto y el lema anterior, tenemos que:

\begin{equation}x*Ay=x^TAy=\left(x^TAy\right)^T=\left(Ay\right)^T\left(x^T\right)^T=y^TA^Tx=y*Ax=Ax*y\end{equation}

Ahora sí podemos encontrar el centro de la traslación considerando:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)\end{equation}

Ya que, considerando el lema anterior, podemos simplificar $\left(P\circ g\right)(x)$ de la siguiente manera:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)=2(Ah*x)+k*x+P(h)\end{equation}

Y, finalmente:

\begin{equation}\left(P\circ g\right)(x)=(2Ah+k)*x+P(h)\end{equation}

Donde $(2Ah+k)*x$ es la parte lineal de esta composición por lo que, si podemos encontrar una $h \in \mathbb R^2$ que cumpla que $2Ah+k=0$, entonces habremos encontrado una traslación que no contenga la parte lineal del polinomio. Si esta $h$ existe, es el centro de la traslación (en el caso de este capítulo, estaremos hablando de traslaciones de cónicas).

Lo anterior lo podemos resumir en el siguiente lema:

Lema 4.6: Sea $P(x)=x*Ax+k*x+f$ un polinomio cuadrático (es decir que $A=A^T$) tal que $det(A)\neq 0$. Si definimos $c:=-\frac{A^{-1}}{k}$, $c$ es el centro de la curva asociada al polinomio $P$, $C(P)$ donde:

\begin{equation}P(x+c)=x*Ax+P(c)\end{equation}

Como buena conclusión de este apartado, observa que las traslaciones afectan la parte lineal de los polinomios cuadráticos.

Encontrando los ejes de las rotaciones

Ahora considera la rotación $g(x)=Bx$ con $B$ en el general lineal de $\mathbb R^2$, es decir, $B \in Gl(2)$ y $P$ el polinomio cuadrático general. Entonces:

\begin{equation}(P\circ g)(x) = P(Bx)=(Bx)*A(Bx)+k(Bx)+f\end{equation}

Si desarrollamos y simplificamos esta expresión, obtenemos:

\begin{equation}(P\circ g)(x) = x*(B^TAB)x+(B^Tk)*x+f\end{equation}

La pregunta en este caso es, ¿existe una forma de encontrar los ejes de la rotación a partir de esta expresión? La respuesta es sí.

A diferencia de las traslaciones, en las que se afectaba la parte lineal, para las rotaciones nos vamos a enfocar en la parte cuadrática. Debemos encontrar una manera de simplificar la expresión $B^TAB$.

Considera a $B$ como matriz ortogonal $(B \in O(2))$, esto implica que $B^TAB=B^{-1}AB$ que es la matriz que expresa la función $A$ en la base de las columnas de $B$.

Finalmente, toma a $u,v$ columnas de $B$ que forman una base ortonormal y que $A$ alarga estas columnas en factores $\lambda, \mu$, es decir, que $Au=\lambda u$ y $Av=\mu v$. Entonces, las siguientes igualdades se cumplen:

\begin{equation}A=\begin{pmatrix} \lambda & 0 \\
0 & \mu\end{pmatrix}\end{equation}

\begin{equation}B^TAB=\begin{pmatrix} u,&v \end{pmatrix}^T*A\begin{pmatrix} u,&v \end{pmatrix}=\begin{pmatrix} u^TAu & u^TAv\\ v^TAu & v^TAv\end{pmatrix}\end{equation}

Si desarrollamos esta última igualdad, obtenemos:

\begin{equation}B^TAB=\begin{pmatrix} \lambda & 0 \\
0 & \mu\end{pmatrix}\end{equation}

Si encontramos una matriz B que cumpla $(3)$, podemos eliminar el término mixto del polinomio $P$ y acercarnos a los polinomios canónicos.

Tarea moral

  1. Demuestra el Lema 4.4.
  2. Demuestra que, para $A,B,C$ matrices que se pueden multiplicar, se tiene que: $\left(ABC\right)^T=C^TB^TA^T$
  3. Encuentra el centro, si es que tienen, de las curvas asociadas a los siguientes polinomios:
    • $xy-3x-2y-2$,
    • $x^2+2y^2-6x+4y+3$
    • $9x^2-4xy+6y^2-58x+24y+59$

Más adelante…

Continuaremos con el estudio de la equivalencia y reducción de polinomios, con valores y vectores propios.

Geometría Analítica I: Rotaciones y traslaciones

Introducción

En este apartado, vamos a continuar con el estudio de las isometrías que se empezaron a analizar en la unidad anterior, las rotaciones y traslaciones.

Encontrando un punto fijo

Recuerda que ya definimos la rotación de un ángulo $\theta$ con centro en $c$ ($\rho_{\theta,c}$), en función de la traslación de $c$ al origen $\tau_c$ y la rotación de $\theta$ en el origen $\rho_\theta$, como: $\rho_{\theta,c}=\tau_c\circ \rho_\theta \circ \tau_{-c}$. Usando matrices, esta expresión se convierte en:

\begin{equation}\rho_{\theta,c}(x)= R_\theta (x-c)+c=R_\theta x+(c-R_\theta c)\end{equation}

Observa que esta expresión es de la forma $Ax+b$ con $b$ constante, por lo que $\rho_{\theta,c} \in Iso^+ (2).

Por otro lado, si el problema se invierte y ahora queremos ver que una función $f(x)=Ax+b \in Iso^+ (2)$ es la rotación de una función en algún centro, debemos encontrar un punto fijo $c$ para el que $f(c)=c$. Es decir:

\begin{equation}c=Ac+b\end{equation}

\begin{equation}c-Ac=b\end{equation}

Esto quiere decir, que debemos encontrar una solución a la ecuación $x-Ax=b$, que se puede reescribir como:

\begin{equation}(I-A)x=b\end{equation}

Por lo que has visto en los capítulos anteriores, esperamos que, al ver esta expresión, hayas recordado que este sistema tiene solución única si y solo si su determinante es distinto de cero, donde su determinante es:

\begin{equation}det(I-R_\theta)=det\begin{pmatrix} 1-\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & 1-\cos(\theta)\end{pmatrix}\end{equation}

Donde puedes comprobar que $det(I-R_\theta)=2(1-\cos(\theta))$.

Lo anterior implica que, si $\theta\neq 0$, entonces $det(I-R_\theta)\neq 0)$, lo que resulta en una solución única para el sistema resultante que es $A=R_\theta$ el punto fijo que estábamos buscando. Finalmente, podemos concluir que $f$ es una rotación.

Centro de rotación para composición de rotaciones

Lo anterior implica el siguiente corolario:

Corolario A: La composición de rotaciones es una nueva rotación.

La nueva pregunta que surge es, ¿cuál es el centro de rotación de la composición de rotaciones? Las siguientes líneas, las dedicaremos a encontrar este nuevo centro de rotación.

Considera $\rho_{\alpha,a}$ y $\rho_{\beta,b}$ las rotaciones de ángulos $\alpha$ y $beta$ y centros en $a$ y $b$ respectivamente. La composición de estas dos rotaciones tiene un ángulo $\alpha + \beta$, pero su centro depende del orden de composición.

Para encontrar el centro de rotación, de forma geométrica, para $\rho_{\beta,b} \circ \rho_{\alpha,a}$, se trazan las líneas que van de $a$ a $b$, después, midiendo los ángulos a partir de esta recta, la línea que pasa por $a$ con ángulo $-\frac{\alpha}{2}$ y la que pasa por $b$ con ángulo $\frac{\beta}{2}$. La intersección de las últimas dos líneas es el nuevo centro de rotación $c$.

Observa que, para la composición $\rho_{\alpha,a} \circ \rho_{\beta,b}$, su nuevo centro de rotación es el reflejado de $c$ respecto de la línea que pasa por $a$ y $b$.

Tarea moral

  1. Verifica que, efectivamente, se cumple que $det(I-R_\theta)=2(1-\cos(\theta))$.
  2. Demuestra el Corolario A.
  3. Como veremos más delante, las homotecias, son transformaciones de la forma $f(x)=kx+b$ donde $k\neq 0$ se conoce como el factor de expansión. Demuestra que las homotecias con $k\neq 1$ tienen un punto fijo (este punto fijo se llama centro de expansión).

Más adelante…

En la siguiente entrada de esta unidad, hablaremos sobre otro tipo de isometrías que ya estudiamos en la unidad anterior, las reflexiones.