Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes

Por Eduardo Vera Rosales

Introducción

Al comienzo de la segunda unidad, revisamos las propiedades más importantes de las ecuaciones lineales homogéneas de segundo orden. En particular, vimos que para encontrar la solución general basta con encontrar dos soluciones particulares que sean linealmente independientes, y la combinación lineal de estas será la solución general a la ecuación.

Pondremos en práctica lo aprendido anteriormente para resolver ecuaciones lineales homogéneas de segundo orden con coeficientes constantes, es decir, de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ donde $a$, $b$ y $c$ son constantes y $a \neq 0$. Observaremos que las soluciones deben ser de la forma $e^{rt}$, y si hallamos los valores de $r$ que satisfagan la ecuación diferencial, entonces podremos encontrar la solución general.

Finalmente analizaremos tres distintos casos que se presentan cuando buscamos la solución general a la ecuación diferencial, los cuales dependen de la ecuación $$ar^{2}+br+c=0$$ que aparece durante el desarrollo de la solución. Por supuesto, estos casos dependerán de las raíces de dicha ecuación.

Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales diferentes

Analizamos cómo deben ser las soluciones a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ y suponiendo que $y_{0}(t)=e^{rt}$ es una solución, hallamos la solución general a la ecuación. En particular, revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son reales y distintas, y resolvemos un ejemplo.

Raíces reales repetidas

En este video revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son iguales, y resolvemos un ejemplo para mostrar lo desarrollado.

Raíces complejas

En el último video de esta entrada revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son complejas, vemos que las soluciones complejas se comportan de manera similar a las soluciones con valores reales, y como buscamos soluciones reales, transformamos la solución compleja en una real.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Resuelve el problema de valor inicial $$\frac{d^{2}y}{dt^{2}}-6\frac{dy}{dt}+y=0; \,\,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$
  • Prueba que $\{e^{rt}, te^{rt}\}$ es un conjunto linealmente independiente. Por tanto, para el caso cuando $$ar^{2}+br+c=0$$ tiene raíces repetidas, la solución general a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ efectivamente es la que se muestra en el video correspondiente.
  • Resuelve el problema de condición inicial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=0; \,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$
  • Prueba que si $r_{1}=w + iz$ y $r_{2}=w – iz$, entonces $\{e^{r_{1}t}, e^{r_{2}t}\}$ es un conjunto linealmente independiente. Por tanto, para el caso cuando $$ar^{2}+br+c=0$$ tiene raíces complejas, la solución general a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ es la combinación lineal de estas dos funciones.
  • Prueba que $$W[e^{wt}\cos{zt}, e^{wt}\sin{zt}]\neq 0$$ para el caso del ejercicio anterior, y por tanto la combinación lineal de estas dos funciones es la solución general a la ecuación diferencial.
  • Resuelve el problema de condición inicial $$\frac{d^{2}y}{dt^{2}}+\frac{dy}{dt}+2y=0; \,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$

Más adelante

En la siguiente entrada comenzaremos a estudiar el caso no homogéneo de las ecuaciones lineales de segundo orden, es decir, ecuaciones de la forma $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ donde la función $g$ no es la constante cero.

En particular, resolveremos este tipo de ecuaciones por el método de variación de parámetros, que es análogo al método de variación de parámetros para resolver ecuaciones no lineales de primer orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

Por Omar González Franco

“Obvio” es la palabra más peligrosa del mundo en matemáticas.
– E. T. Bell

Introducción

Con esta entrada concluiremos el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden.

Presentaremos dos ecuaciones diferenciales no lineales más, conocidas como ecuación diferencial de Bernoulli y ecuación diferencial de Riccati en honor a sus formuladores Jacob Bernoulli y Jacopo Francesco Riccati, respectivamente.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden formulada por Jacob Bernoulli en el siglo XVll.

Si a la ecuación de Bernoulli la dividimos por la función $a_{1}(x) \neq 0$, obtenemos

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)} y^{n}$$

Definimos las siguientes funciones.

$$P(x)=\dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x)=\dfrac{g(x)}{a_{1}(x)} \label{2} \tag{2}$$

Entonces una ecuación de Bernoulli se puede reescribir como

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n} \label{3} \tag{3}$$

La ecuación (\ref{3}) es también una definición común de ecuación de Bernoulli.

Notemos que si $n = 0$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea.

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{4} \tag{4}$$

Y si $n = 1$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea.

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= Q(x) y \\
\dfrac{dy}{dx} + [P(x) -Q(x)] y &= 0 \\
\end{align*}

Si definimos

$$R(x) = P(x) -Q(x)$$

entonces

$$\dfrac{dy}{dx} + R(x) y = 0 \label{5} \tag{5}$$

Las ecuaciones (\ref{4}) y (\ref{5}) ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que $n \neq 0$ y $n \neq 1$.

Una propiedad de las ecuaciones de Bernoulli es que la sustitución

$$u(x) = y^{1 -n} \label{6} \tag{6}$$

la convierte en una ecuación lineal, de tal manera que podremos resolverla usando algún método de resolución visto para ecuaciones diferenciales lineales.

Consideremos la ecuación de Bernoulli en la forma (\ref{3}).

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Dividimos toda la ecuación por $y^{n} \neq 0$.

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} + P(x) y^{1-n} = Q(x) \label{7} \tag{7}$$

La derivada de la función (\ref{6}) es

$$\dfrac{du}{dx} = (1 -n) y^{-n} \dfrac{dy}{dx} = (1 -n) \dfrac{1}{y^{n}} \dfrac{dy}{dx}$$

de donde,

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n} \dfrac{du}{dx} \label{8} \tag{8}$$

Sustituyamos (\ref{6}) y (\ref{8}) en la ecuación (\ref{7}).

$$\dfrac{1}{1-n} \dfrac{du}{dx} + P(x)u = Q(x) \label{9} \tag{9}$$

Multipliquemos por $1 -n$ en ambos lados de la ecuación.

$$\dfrac{du}{dx} + (1 -n)P(x)u = (1 -n)Q(x)$$

Definimos las funciones

$$R(x) = (1 -n)P(x) \hspace{1cm} y \hspace{1cm} S(x) = (1 -n)Q(x)$$

En términos de estas funciones la ecuación (\ref{9}) se puede escribir de la siguiente forma.

$$\dfrac{du}{dx} + R(x)u = S(x) \label{10} \tag{10}$$

Este resultado corresponde a una ecuación diferencial lineal de primer orden no homogénea y, por tanto, puede ser resuelta aplicando el algoritmo descrito para resolver ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (\ref{3}).
  1. Dividimos toda la ecuación por $y^{n}$ y consideramos el cambio de variable $u = y^{1 -n}$, así como la respectiva derivada $$\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$$
  1. Sustituimos $$y^{1 -n} = u \hspace{1cm} y \hspace{1cm} \dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n}\dfrac{du}{dx}$$ en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función $u(x)$.
  1. Regresamos a la variable original para obtener finalmente la solución $y(x)$.

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (\ref{3}).

\begin{align*}
3(1 + x^{2}) \dfrac{dy}{dx} &= 2xy (y^{3} -1) \\
\dfrac{dy}{dx} & =\dfrac{2xy (y^{3} -1)}{3(1 + x^{2})} \\
\dfrac{dy}{dx} &= \dfrac{2xy^{4}}{3(1 + x^{2})} -\dfrac{2xy}{3(1 + x^{2})} \\
\dfrac{dy}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) y &= \left( \dfrac{2x}{3(1 + x^{2})} \right) y^{4}
\end{align*}

La última relación muestra a la ecuación en la forma (\ref{3}) con $n = 4$, ahora dividamos toda la ecuación por $y^{4}$.

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} + \left( \dfrac{2x}{3(1+x^{2})} \right) y^{-3} = \dfrac{2x}{3(1 + x^{2})} \label{11} \tag{11}$$

Consideremos la sustitución

$$u = y^{1 -n} = y^{1 -4} = y^{-3} = \dfrac{1}{y^{3}}$$

y

$$\dfrac{du}{dx} = -3 y^{-4} \dfrac{dy}{dx}$$

De donde,

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} = -\dfrac{1}{3} \dfrac{du}{dx} \hspace{1cm} y \hspace{1cm} y^{-3} = u$$

Sustituimos estos resultados en la ecuación (\ref{11}).

\begin{align*}
-\dfrac{1}{3} \dfrac{du}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) u &= \dfrac{2x}{3(1 + x^{2})} \\
\dfrac{du}{dx} +\left( -\dfrac{2x}{1 + x^{2}} \right) u &= -\dfrac{2x}{1 + x^{2}} \label{12} \tag{12}
\end{align*}

La última ecuación es una expresión en la forma (\ref{10}). Con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea.

Establecemos las siguientes funciones.

$$R(x) = -\dfrac{2x}{1 + x^{2}} \hspace{1cm} y \hspace{1cm} S(x) = -\dfrac{2x}{1 + x^{2}}$$

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales.

La ecuación ya se encuentra en su forma canónica. Determinemos el factor integrante dado por

$$\mu (x) = e^{\int {R(x)dx}} \label{13} \tag{13}$$

Resolvamos la integral del exponente omitiendo la constante de integración.

\begin{align*}
\int {R(x)dx} &= -\int \dfrac{2x}{1 + x^{2}} dx \\
&= -\ln|1 + x^{2}|
\end{align*}

Por lo tanto,

$$\mu (x) = e^{-\ln|1 + x^{2}|} = \dfrac{1}{1+x^{2}}$$

Multipliquemos a la ecuación (\ref{12}) por el factor integrante.

$$\dfrac{1}{1 + x^{2}} \dfrac{du}{dx} -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right) u = -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right)$$

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante $\mu(x)$ por la función $u(x)$, de esta manera

$$\dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) = -\dfrac{2x}{(1 + x^{2})^{2}}$$

Integramos ambos lados de la ecuación con respecto a $x$. Por tratarse del último paso sí consideramos a la constante de integración.

$$\int \dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) dx = -\int \dfrac{2x}{(1 + x^{2})^{2}} dx$$

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución $a(x) = 1 + x^{2}$ para resolver la integral. El resultado que se obtiene es

\begin{align*}
\dfrac{u}{1 + x^{2}} &= \dfrac{1}{1 + x^{2}} + c \\
u &= 1 + (1 + x^{2})c \\
\end{align*}

Regresamos a la variable original $u = y^{-3}$.

$$\dfrac{1}{y^{3}} = 1 + (1 + x^{2})c$$

Por lo tanto, la solución general (implícita) de la ecuación diferencial de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

es

$$y^{3}(x) = \dfrac{1}{1 + (1 + x^{2}) c}$$

$\square$

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Resolver la ecuación de Riccati requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución $\hat{y}(x)$. Si hacemos la sustitución

$$y(x) = \hat{y}(x) + u(x) \label{15} \tag{15}$$

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral comprueba este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea, así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea $\hat{y}(x)$ una solución particular de la ecuación de Riccati y consideremos la sustitución

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} \label{16} \tag{16}$$

Derivemos esta ecuación.

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{17} \tag{17}$$

Como $\hat{y}(x)$ es una solución de la ecuación de Riccati, entonces satisface la ecuación diferencial.

$$\dfrac{d\hat{y}}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} \label{18} \tag{18}$$

Sustituyendo (\ref{18}) en (\ref{17}) obtenemos la siguiente ecuación.

$$\dfrac{dy}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{19} \tag{19}$$

Ahora podemos igualar la ecuación (\ref{19}) con la ecuación de Riccati (\ref{14}).

\begin{align*}
q_{0}(x) + q_{1}(x) y +q_{2}(x) y^{2} &= q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
q_{1}(x) y +q_{2}(x) y^{2} &= q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \hat{y} -q_{1}(x) y + q_{2}(x) \hat{y}^{2} -q_{2}(x) y^{2} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x)(\hat{y} -y) + q_{2}(x)(\hat{y}^{2} -y^{2})
\end{align*}

En la última relación sustituimos la función (\ref{16}).

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \left[ \hat{y} -\left( \hat{y} + \dfrac{1}{u} \right) \right] + q_{2}(x) \left [ \hat{y}^{2} -\left( \hat{y} + \dfrac{1}{u} \right) ^{2} \right ] \\
&= q_{1}(x) \left( \hat{y} -\hat{y} -\dfrac{1}{u} \right) + q_{2}(x) \left( \hat{y}^{2} -\hat{y}^{2} -2 \hat{y} \dfrac{1}{u} -\dfrac{1}{u^{2}} \right) \\
&= q_{1}(x) \left( -\dfrac{1}{u} \right ) + q_{2}(x) \left( -2\dfrac{\hat{y}}{u} -\dfrac{1}{u^{2}} \right) \\
&= -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}
\end{align*}

Esto es,

$$\dfrac{1}{u^{2}} \dfrac{du}{dx} = -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}$$

Multipliquemos ambos lados de la ecuación por $u^{2}$.

\begin{align*}
\dfrac{du}{dx} &= -q_{1}(x)u -2q_{2}(x) \hat{y} u -q_{2}(x) \\
\dfrac{du}{dx} &= -\left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u -q_{2}(x)
\end{align*}

Vemos que

$$\dfrac{du}{dx} + \left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u = -q_{2}(x) \label{20} \tag{20}$$

Definamos las funciones

$$R(x) = q_{1}(x) + 2q_{2}(x) \hat{y}(x) \hspace{1cm} y \hspace{1cm} S(x) = -q_{2}(x)$$

Por lo tanto, la ecuación (\ref{20}) queda de la siguiente forma.

$$\dfrac{du}{dx} + R(x) u = S(x) \label{21} \tag{21}$$

Queda demostrado que la sustitución (\ref{16}) convierte a la ecuación de Riccati en una ecuación diferencial lineal y, por tanto, puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, enunciemos la serie de pasos que se recomienda seguir para resolver las ecuaciones diferenciales de Riccati.

Método para resolver ecuaciones de Riccati

  1. El primer paso es escribir a la ecuación de Riccati en la forma (\ref{14}) y estar seguros de que conocemos previamente una solución particular $\hat{y}(x)$ de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$ con $\hat{y}(x)$ la solución particular dada.

    Si se deseara reducirla a una ecuación de Bernoulli se hace la sustitución $$y(x) = \hat{y}(x) + u(x)$$
  1. Debido a que $\hat{y}(x)$ es solución de la ecuación de Riccati, el siguiente paso es derivar la sustitución $y = \hat{y} + \dfrac{1}{u}$ y en el resultado sustituir $\dfrac{d\hat{y}}{dx}$ por la ecuación de Riccati para la solución particular, esto es

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} = \left[ q_{1}(x) + q_{2}(x) \hat{y} + q_{3}(x) \hat{y}^{2} \right] -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (\ref{14}) y hacemos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función $u(x)$ la sustituimos en $y(x)$ para obtener la solución deseada.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

dada la solución particular $\hat{y} = \dfrac{2}{x}$.

Solución: La ecuación diferencial prácticamente se encuentra en la forma de la ecuación (\ref{14}), sólo para que sea claro escribimos

$$\dfrac{dy}{dx} = \left( -\dfrac{4}{x^{2}} \right) + \left( -\dfrac{1}{x} \right) y + y^{2}$$

Comencemos por verificar que la solución particular dada efectivamente satisface la ecuación de Riccati. Por un lado,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{2}{x^{2}}$$

Por otro lado,

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} &= -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} \\
&= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} \\
&= -\dfrac{2}{x^{2}}
\end{align*}

En efecto,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} = -\dfrac{2}{x^{2}}$$

El siguiente paso es hacer la sustitución (\ref{16}).

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} = \dfrac{2}{x} + \dfrac{1}{u}$$

De acuerdo a (\ref{19}), tenemos

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

Igualemos este resultado con la ecuación de Riccati original.

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2} &= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
-\dfrac{y}{x} + y^{2} &= \dfrac{2}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{y}{x} -y^{2}
\end{align*}

En la última ecuación sustituimos $y = \dfrac{2}{x} + \dfrac{1}{u}$.

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{1}{x} \left( \dfrac{2}{x} + \dfrac{1}{u} \right) -\left( \dfrac{2}{x} + \dfrac{1}{u} \right)^{2} \\
&= \dfrac{2}{x^{2}} + \dfrac{2}{x^{2}} + \dfrac{1}{xu} -\left( \dfrac{4}{x^{2}} + \dfrac{4}{xu} + \dfrac{1}{u^{2}} \right) \\
&= \dfrac{4}{x^{2}} + \dfrac{1}{xu} -\dfrac{4}{x^{2}} -\dfrac{4}{xu} -\dfrac{1}{u^{2}} \\
&= -\dfrac{3}{xu} -\dfrac{1}{u^{2}} \\
\end{align*}

De donde,

$$\dfrac{du}{dx} + \dfrac{3}{x}u = -1$$

Esta expresión tiene la forma de una ecuación diferencial lineal (\ref{21}), de donde podemos determinar que

$$R(x) = \dfrac{3}{x} \hspace{1cm} y \hspace{1cm} S(x) = -1$$

La ecuación de Riccati ha sido reducida a una ecuación lineal no homogénea, ahora apliquemos el método de resolución de ecuaciones diferenciales lineales.

Calculemos el factor integrante $\mu(x) = e^{\int R(x)dx}$.

$$\int {R(x)dx} = \int {\dfrac{3}{x}dx} = 3\ln|x|$$

El factor integrante es

$$\mu (x) = e^{3 \ln|x|} = x^{3}$$

Multipliquemos la ecuación diferencial por el factor integrante.

\begin{align*}
x^{3} \dfrac{du}{dx} + x^{3} \left( \dfrac{3}{x} \right ) u &= -x^{3} \\
x^{3} \dfrac{du}{dx} + 3x^{2}u &= -x^{3}
\end{align*}

Identificamos que el lado izquierdo de la ecuación corresponde a la derivada del producto entre el factor integrante $\mu(x)$ y la función $u(x)$, entonces

$$\dfrac{d}{dx} \left( x^{3}u \right) = -x^{3}$$

Integramos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int {\dfrac{d}{dx} \left( x^{3}u \right) dx} &= \int {-x^{3}dx} \\
x^{3}u &= -\dfrac{x^{4}}{4} + c \\
u(x) &= -\dfrac{x}{4} + \dfrac{c}{x^{3}}
\end{align*}

Ya determinamos el valor de $u(x)$, ahora sólo lo sustituimos en la función $y = \dfrac{2}{x} + \dfrac{1}{u}$.

Por lo tanto, la solución general de la ecuación de Bernoulli

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

es

$$y(x) = \dfrac{2}{x} + \dfrac{1}{\dfrac{c}{x^{3}} -\dfrac{x}{4}} = \dfrac{2}{x} + \dfrac{4x^{3}}{4c -x^{4}}$$

$\square$

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones de Bernoulli.
  • $\dfrac{dy}{dx} + \dfrac{1}{x}y = \dfrac{2}{3}x^{4}y^{4}$
  • $3x \dfrac{dy}{dx} -2y = x^{3}y^{-2}$
  • $x^{2} \dfrac{dy}{dx} -2xy = 3y^{4} \hspace{0.8cm}$ con la condición inicial $\hspace{0.5cm} y(1) = \dfrac{1}{2}$
  1. Resolver las siguientes ecuaciones de Riccati.
  • $x^{3} \dfrac{dy}{dx} = x^{4}y^{2} -2x^{2}y -1 \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = \dfrac{1}{x^{2}}$
  • $\dfrac{dy}{dx} = xy^{2} + y + \dfrac{1}{x^{2}} \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = -\dfrac{1}{x}$
  1. Demostrar que la sustitución $$y(x) = \hat{y}(x) + u(x)$$ convierte a una ecuación de Riccati en una ecuación de Bernoulli. $\hat{y}(x)$ es una solución particular de la ecuación de Riccati.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales de primer orden tanto lineales como no lineales.

Antes de pasar a la siguiente unidad y comenzar con el estudio de las ecuaciones diferenciales de segundo orden, es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad ya que es este teorema el que justifica toda la teoría que hemos desarrollado a lo largo de la unidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Cuadrilátero cíclico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada hablaremos sobre algunas propiedades importantes del cuadrilátero cíclico, mas allá de las primeras caracterizaciones como las vistas en el teorema de Ptolomeo.

Fórmula de Brahmagupta

Teorema 1, fórmula de Bretschneider. Sea $\square ABCD$ un cuadrilátero convexo, si $AB = a$, $BC = b$, $CD = c$, $AD = d$, $s = \dfrac{a + b + c + d}{2}$ y $\beta = \angle CBA$, $\delta = \angle ADC$, entonces el área de $\square ABCD$ se puede calcular mediante la siguiente formula:
$(\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d) – \dfrac{abcd}{2}(1 + \cos(\beta + \delta))}$

Demostración. Calculamos el área de los triángulos que se forman al considerar la diagonal AC,
$(\triangle ABC) = \dfrac{ab \sin \beta}{2}$,
$(\triangle ACD) = \dfrac{cd \sin \delta}{2}$.

Figura 1

Por otro lado, empleando la ley de los cosenos podemos calcular $AC$
$AC^2 = a^2 + b^2 – 2ab \cos \beta = c^2 + d^2 – 2cd \cos \delta$.

De la última igualdad obtenemos
$(a^2 + b^2 – (c^2 + d^2))^2 = (2ab \cos \beta – 2cd \cos \delta)^2$.

Entonces:
$(\square ABCD) = (\triangle ABC) + (\triangle ACD) = \dfrac{ab \sin \beta}{2} + \dfrac{cd \sin \delta}{2}$
$\Rightarrow (\square ABCD)^2 = \dfrac{a^2b^2 \sin^2 \beta}{4} + \dfrac{abcd \sin \beta \sin \delta }{2} + \dfrac{c^2d^2 \sin^2 \delta}{4}$.

Por lo tanto,
$16(\square ABCD)^2 = 4 a^2b^2 \sin^2 \beta + 8 abcd \sin \beta \sin \delta + 4 c^2d^2 \sin^2 \delta$
$= 4a^2b^2(1 – \cos^2 \beta) + 4c^2d^2(1 – \cos^2 \delta) + 8abcd \sin \beta \sin \delta$


$= 4a^2b^2 + 4c^2d^2 + 8abcd – 8abcd – 4a^2b^2 \cos^2 \beta – 4c^2d^2 \cos^2 \delta$
$+ 8abcd\cos \beta\cos \delta – 8abcd\cos \beta\cos \delta + 8abcd \sin \beta \sin \delta$
$= (2ab + 2cd)^2 – (2ab \cos \beta – 2cd \cos \delta)^2 – 8abcd(1 + \cos \beta\cos \delta – \sin \beta \sin \delta)$
$ = (2ab + 2cd)^2 – (a^2 + b^2 – (c^2 + d^2))^2 – 8abcd(1 + \cos(\beta + \delta))$


$= (2ab + 2cd + a^2 + b^2 – (c^2 + d^2))(2ab + 2cd – a^2 – b^2 + (c^2 + d^2)) – 8abcd(1 + \cos(\beta + \delta))$
$ = (a^2 + 2ab +b^2 – (c^2 – 2cd + d^2))(c^2 + 2cd + d^2 – (a^2 – 2ab + b^2)) – 8abcd(1 + \cos(\beta + \delta))$
$=((a + b)^2 – (c – d)^2)((c + d)^2 – (a – b)^2) – 8abcd(1 + \cos(\beta + \delta))$
$=(a + b + c – d)(a + b + d – c)(a + c + d – b)(b + c + d – a) – 8abcd(1 + \cos(\beta + \delta))$


$= (2s – 2d)(2s – 2c)(2s – 2b)(2s – 2a) – 8abcd(1 + \cos(\beta + \delta))$
$\Rightarrow (\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d) – \dfrac{1}{2}abcd(1 + \cos(\beta + \delta))}$.

$\blacksquare$

Corolario, fórmula de Brahmagupta. Si $\square ABCD$ es cíclico entonces
$(\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d)}$.

Demostración. Si $\square ABCD$ es cíclico entonces $\beta + \delta = \pi$
por lo que $1 + \cos(\beta + \delta) = 0$.

$\blacksquare$

Observación. La fórmula de Bretschneider nos muestra que de todos los cuadriláteros convexos que tienen lados $a$, $b$, $c$ y $d$, aquellos que son cíclicos tienen mayor área.

Una propiedad del cuadrado

Teorema 2. De entre los cuadriláteros con el mismo perímetro el cuadrado es el que tiene la mayor área.

Demostración. Notemos primero que a partir de un cuadrilátero cóncavo o un cuadrilátero cruzado con un perímetro dado es posible construir un cuadrilátero convexo que tenga los mismos lados, pero mayor área. 

Si en el cuadrilátero cóncavo $\square ABCD$, reflejamos $D$ respecto la diagonal $AC$ obtenemos $\square ABCD’$ el cual es convexo y $(\square ABCD’) = (\square ABCD) + (\square ADCD’)$.

Por lo tanto $(\square ABCD’) > (\square ABCD)$.

Figura 2

En el caso de un cuadrilátero cruzado reflejamos algún vértice respecto de la diagonal que no pasa por el vértice a reflejar, por ejemplo, en $\square EFGH$ reflejamos $G$ respecto de $\overline{FH}$ y obtenemos $\square EFG’H$.

Por lo tanto,
$(\square EFG’H) = (\triangle EFH) + (\triangle FG’H) = (\triangle EFH) + (\triangle FGH) > (\square EFGH)$.

De esta forma podemos fijarnos solo en el área de los cuadriláteros convexos, pero por la observación bastara con restringirnos a los cuadriláteros convexos y cíclicos.

Por la fórmula de Brahmagupta sabemos que el área depende de los lados del cuadrilátero cíclico.

En la entrada desigualdades geométricas vimos que para $w$, $x$, $y$, $z$ números reales positivos tesemos lo siguiente:
$wxyz \leq (\dfrac{w + x + y + z}{4})^4$, y la igualdad se da si y solo si $w = x = y = z$.

Aplicamos este resultado al área del cuadrilátero cíclico $\square ABCD$ de perímetro $P$ y lados $a$, $b$, $c$ y $d$.

$(\square ABCD)^2 = (s – a)(s – b)(s – c)(s – d) \leq (\dfrac{(s – a) + (s – b) + (s – c) + (s – d)}{4})^4$
$= (\dfrac{(4s – (a + b + c + d)}{4})^4 = (\dfrac{2P – P}{4})^4 = (\dfrac{P}{4})^4$

Por lo tanto,
$(\square ABCD) \leq (\dfrac{P}{4})^2$ y la igualdad se da
$\Leftrightarrow$ $(s – a) = (s – b) = (s – c) = (s – d)$
$ \Leftrightarrow$$ a = b = c = d$
$\Leftrightarrow \square ABCD$ es un cuadrado.

$\blacksquare$

Anticentro del cuadrilátero cíclico

Definición. Las rectas perpendiculares a los lados de un cuadrilátero que pasan por los puntos medios de los lados opuestos, se conocen como $m$-alturas.

Teorema 3. Las $m$-alturas de un cuadrilátero cíclico son concurrentes, al punto de concurrencia se le conoce como anticentro, además, el circuncentro, el centroide y el anticentro de un cuadrilátero cíclico son colineales.

Demostración. Sea $\square ABCD$ cíclico y sean $E$, $F$, $G$ y $H$ los puntos medios de $AB$, $BC$, $CD$ y $DA$ respectivamente consideremos $O$ y $J$, el circuncentro y el centroide respectivamente de $\square ABCD$.

Figura 3

La perpendicular a $BC$ desde $H$ interseca a $BC$ en $H’$, $HH’$ interseca a la recta determinada por $O$ y $J$ en $M$.

Como $O$ esta en la mediatriz de $BC$ entonces $OF \perp BC$, y asi, $OF \parallel HH’$, en consecuencia $\angle JFO = \angle JHM$, además $\angle OJF = \angle MJH$ por ser opuestos por el vértice.

Por lo tanto, $\triangle JFO$ y $\triangle JHM$ son semejantes y como $J$ es el punto medio de $HF$, entonces, $JO = JM$, en otras palabras, $HH’$ pasa por $M$, el punto simétrico de $O $ respecto a $J$.

De manera similar podemos ver que las demás $m$-alturas de $\square ABCD$ pasan por $M$.

$\blacksquare$

Proposición 1. Los ortocentros de los triángulos determinados por los cuatro vértices de un cuadrilátero cíclico forman un cuadrilátero simétrico al cuadrilátero original respecto del anticentro.

Demostración. Sean $\square ABCD$ cíclico y $H_{a}$, $H_{b}$, $H_{c}$ y $H_{d}$ los ortocentros de $\triangle BCD$, $\triangle ACD$, $\triangle ABD$ y $\triangle ABC$ respectivamente y $F$ el punto medio de $BC$.

Figura 4

Considerando los triángulos $\triangle ABC$ y $\triangle DBC$ y por la proposición 6 de la entrada triangulo órtico, tenemos que $AH_{d} = 2OF = DH_{a}$, además $AH_{d}$ y $DH_{a}$ son perpendiculares a $BC$ por lo tanto $AH_{d} \parallel DH_{a}$.

De esto se sigue que $\square AH_{d}H_{a}D$ es un paralelogramo, así que las diagonales $AH_{a}$ y $DH_{d}$ se intersecan en su punto medio.

De manera análoga vemos que $AH_{a}$ y los segmento $BH_{b}$, $CH_{c}$, se intersecan en su punto medio.

Por lo tanto, estos cuatro segmentos se bisecan mutuamente, es decir el punto de intersección $X$ es el centro de simetría de $\square ABCD$ y $\square H_{a}H_{b}H_{c}H_{d}$.

Ahora en $\triangle AH_{d}D$ consideremos la recta que pasa por $H$ el punto medio de $DA$ y el centro de simetría $X$, entonces $HX \parallel AH_d$, por lo tanto, $HX \perp $BC$ y así $HX$ es una $m$-altura.

De manera análoga vemos que las otras $m$-alturas pasan por $X$, por lo tanto, $X$ es el anticentro de $\square ABCD$.

$\blacksquare$

Teorema Japonés

Proposición 2. Sea $\square ABCD$ cíclico, considera $E$, $F$, $G$, $H$, los puntos medios de los arcos, $BC$, $CD$, $DA$, $AB$, respectivamente del circuncírculo de $\square ABCD$, entonces $EG \perp FH$.

Demostración. Considera $O$ el circuncentro de $\square ABCD$ y $X = EG \cap FH$.

Como $\angle EXF$ es un ángulo interior, tenemos lo siguiente:
$\angle EXF = \dfrac{\angle EOF + \angle GOH}{2}$
$= \angle EAF + \angle GCH = \angle EAC + \angle CAF + \angle GCA + \angle ACH $
$= \dfrac{\angle BAC}{2} + \dfrac{\angle CAD}{2} + \dfrac{\angle DCA}{2} + \dfrac{\angle ACB}{2} $
$ = \dfrac{\angle BAD + \angle DCB}{2} = \dfrac{\pi}{2}$.

$\blacksquare$

Figura 5

Teorema 4, teorema japonés. Los incentros de los cuatro triángulos que se forman al considerar las diagonales de un cuadrilátero cíclico, son los vértices de un rectángulo.

Demostración. Sean $A’$, $B’$, $C’$, $D’$, los incentros de $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, $\triangle ABC$, donde $\square ABCD$ es cíclico (figura 5).

En $\triangle ACD$, como $AB’$ es la bisectriz de $\triangle CAD$ entonces $AB’$ interseca al circuncírculo de $\square ABCD$ en $F$ el punto medio del arco $\overset{\LARGE{\frown}}{CD}$.

Por el teorema 1 de la entrada circunferencias tritangentes, $B’$ pertenece a la circunferencia $(F, FC)$, con centro en $F$ y radio $FC = FD$.

De manera análoga podemos ver que $A’ \in (F, FC)$, por lo tanto, $\triangle A’FB’$ es isósceles.

Sea $H$ el punto medio del arco $\overset{\LARGE{\frown}}{AB}$, entonces $FH$ es bisectriz de $\triangle AFB$, en consecuencia, $A’B’ \perp FH$.

De mamera análoga vemos que $C’D’ \perp FH$ y $B’C’ \perp EG \perp D’A’$, donde $E$ y $G$ son los puntos medios de los arcos $\overset{\LARGE{\frown}}{BC}$ y $\overset{\LARGE{\frown}}{DA}$ respectivamente.

Por la proposición anterior, $EG \perp FH$, por lo tanto, $\square A’B’C’D’$ es un rectángulo.

$\blacksquare$

Teorema 5. De los cuatro triángulos que se forman al trazar las diagonales de un cuadrilátero cíclico, si consideremos tres que comparten un mismo vértice, entonces los tres excentros opuestos al vértice que comparten, son los vértices de un rectángulo, y el cuarto vértice es el incentro del triángulo restante.

Demostración. Usaremos la misma notación del teorema anterior.

En $\square ABCD$, consideremos los tres triángulos que comparten el vértice $C$, $\triangle CDB$, $\triangle CDA$, $\triangle CAB$ y sus respectivos excentros opuestos a $C$, $C_a$, $C_b$, $C_d$.

Figura 6

Nos apoyaremos en el teorema 1 de la entrada circunferencias tritangentes para hacer las siguientes afirmaciones.

$D’C_d$ es diámetro de la circunferencia $(H, HA)$, con centro en $H$ el punto medio de $\overset{\LARGE{\frown}}{AB}$, y radio $HA = HB = HC’$.

Consideremos $D_c$ el excentro de $\triangle ABD$ opuesto a $D$, $C’D_c$ es diámetro de $(H, HA)$.

Como $D’C_d$ y $C’D_c$, se bisecan y tienen la misma longitud, entonces, $\square C_dD_CD’C’$ es un rectángulo.

En consecuencia, las dos tercias de puntos, $C_d$, $C’$, $B’$; $D_c$, $D’$, $A’$, son colineales.

Igualmente, si consideramos $B_c$ el excentro de $\triangle ABD$ opuesto a $B$, podemos ver $B’C_b$ y $C’B_c$ son diámetros de $(G, GA)$ con $G$ el punto medio de $\overset{\LARGE{\frown}}{DA}$ y que las dos tercias $C_b$, $C’$, $D’$; $B_C$, $B’$, $A’$, son colineales.

Por otra parte, como $B_c$, $D_c$ son excentros de $\triangle ABD$, entonces $B_cD_c$ es diámetro de $(K, KB)$, la circunferencia con centro en $K$, el punto medio de $\overset{\LARGE{\frown}}{DB}$, y radio $KB = KD$.

Similarmente, como $A’$ y $C_a$, son dos centros tritangentes de $\triangle CBD$ entonces $A’C_a$ es diámetro de $(K, KB)$.

Por lo tanto, $\square C_aD_cA’B_c$ es un rectángulo.

En consecuencia, $\square C_aC_dC’C_b$ es un rectángulo.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos propiedades de los cuadriláteros cuyas diagonales son perpendiculares y veremos que pasa cuando además son cíclicos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra la fórmula de Brahmagupta usando la fórmula de Herón.
  2. En la tarea moral de la entrada teorema de Ptolomeo se pide mostrar que es posible construir tres cuadriláteros cíclicos diferentes de lados $a$, $b$, $c$ y $d$ siempre que la suma de cualesquiera tres de ellos sea mayor que el restante, y que de estos se obtienen tres diagonales diferentes digamos $l$, $m$, y $n$ si $\square ABCD$ es construido de esa manera y $R$ es el circunradio muestra que:
    $i)$ $(\square ABCD) = \dfrac{lmn}{4R}$
    $ii)$ $(\square ABCD)^2 = \dfrac{(ab + cd)(ac + bd)(ad + bc)}{16R^2}$.
  3. Demuestra que los centroides de los cuatro triángulos determinados por los cuatro vértices de un cuadrilátero cíclico son los vértices de otro cuadrilátero cíclico.
  4. Muestra que la suma de los cuadrados de las distancias del anticentro de un cuadrilátero cíclico a los cuatro vértices es igual al cuadrado del diámetro de la circunferencia en la que esta inscrito dicho cuadrilátero.
  5. Muestra que el anticentro de un cuadrilátero cíclico es el ortocentro del triángulo formado por los puntos medios de las diagonales y el punto en que estas rectas coinciden.
  6. Prueba que las circunferencia de los nueve puntos de los cuatro triángulos que se forman al considerar las dos diagonales de un cuadrilátero cíclico, concurren en el anticentro del cuadrilátero.
  7. Demuestra que la suma de los inradios de los triángulos obtenidos al trazar una diagonal de un cuadrilátero cíclico es igual a la suma de los inradios de los otros dos triángulos que se obtienen al considerar la otra diagonal.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 143-146.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 127-135.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 57-60.
  • Wikipedia

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales exactas

Por Omar González Franco

Los matemáticos han alcanzado lo más alto del pensamiento humano.
– Havelock Ellis

Introducción

Ahora sabemos que método aplicar si nos encontramos con ecuaciones diferenciales no lineales con variables separables u homogéneas.

Esta entrada la dedicaremos a un tipo de ecuaciones diferenciales no lineales conocidas como ecuaciones exactas. Estas ecuaciones suelen ser más complejas e interesantes que las anteriores y su método de resolución involucra un mayor número de pasos a seguir.

Ecuaciones diferenciales exactas

Existe un caso especial en el que $f(x, y) = c$, donde $c$ es una constante, en este caso la diferencial, de acuerdo a la ecuación (\ref{1}), es

$$\dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy = 0 \label{2} \tag{2}$$

Esto significa que dada una familia de curvas $f(x, y) = c$ es posible generar una ecuación diferencial de primer orden si se calcula la diferencial de ambos lados de la igualdad.

Ejemplo: Sea

$$f(x, y) = 8x^{2}y -x^{3} + y^{2} = c$$

una familia de curvas, calcular su diferencial.

Solución: De acuerdo a la definición de diferencial de una función de dos variables (\ref{1}), necesitamos calcular $\dfrac{\partial f}{\partial x}$ y $\dfrac{\partial f}{\partial y}$. Por un lado,

$$\dfrac{\partial f}{\partial x} = 16xy -3x^{2}$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = 8x^{2} + 2y$$

Por lo tanto, la diferencial de la función dada es

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy = 0$$

$\square$

En el ejemplo anterior vimos que

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$$

corresponde a la diferencial de la función

$$f(x, y) = 8x^{2}y -x^{3} + y^{2}$$

Por lo tanto, $(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$ es una diferencial exacta.

No todas las ecuaciones de primer orden escritas en la forma

$$M(x, y) dx + N(x, y) dy = 0 \label{3} \tag{3}$$

corresponden a la diferencial de alguna función $f(x, y) = c$, pero en caso de serlo, entonces la función $f(x, y) = c$ sería una solución implícita de (\ref{3}). Este tipo de ecuaciones tienen un nombre particular.

Ejemplo: Sea la función

$$f(x, y) = e^{x} + xy + e^{y} = c$$

una familia de curvas. Mostrar que la ecuación diferencial

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta con respecto a la función $f(x, y)$.

Solución: Para verificar que es una ecuación exacta debemos verificar que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

sea una diferencial exacta.

Consideremos la función dada

$$f(x, y) = e^{x} + xy + e^{y} = c$$

Por un lado,

$$\dfrac{\partial f}{\partial x} = e^{x} + y$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = e^{y} + x$$

Por lo tanto, la diferencial de la función $f(x, y)$ es

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

esto nos indica que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

es una diferencial exacta ya que corresponde a la diferencial de la función $f(x, y)$. Por lo tanto, la ecuación

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta. No sólo hemos mostrado que es una ecuación exacta, sino que incluso ahora podemos decir que la ecuación

$$e^{x} + xy + e^{y} = c$$

es una solución implícita de la ecuación diferencial.

$\square$

En este ejemplo nos han dado la función $f(x, y) = c$, pero es claro que dada una ecuación diferencial exacta resolverla implica hallar dicha función $f$. Entonces, ¿cómo podemos saber si una ecuación diferencial es exacta si previamente no conocemos la función $f$? y en caso de que de alguna manera seamos capaces de mostrar que la ecuación diferencial es exacta, ¿cómo podemos hallar a la función $f$?.

Antes de aprender a resolver las ecuaciones diferenciales exactas veamos un teorema que nos permite saber si la ecuación diferencial es exacta o no. Si la ecuación es exacta, entonces tenemos garantizado la existencia de una función $f$ tal que $f(x, y) = c$, dicha función será la solución de la ecuación exacta.

Demostración: Supongamos que $M(x, y) dx + N(x, y) dy$ es exacta, entonces por definición existe alguna función $f$ tal que para toda $x$ en $U$ se satisface lo siguiente.

$$M(x, y) dx + N(x, y) dy = \dfrac{\partial f}{\partial x} dx + \dfrac{\partial f}{\partial y} dy$$

Esta relación sólo se cumple si

$$M(x, y) = \dfrac{\partial f}{\partial x} \hspace{1cm} y \hspace{1cm} N(x, y) = \dfrac{\partial f}{\partial y} \label{5} \tag{5}$$

Si derivamos parcialmente la expresión

$$M(x, y) = \dfrac{\partial f}{\partial x}$$

con respecto a $y$ en ambos lados, obtenemos

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)
= \dfrac{\partial^{2} f}{\partial y \partial x}
= \dfrac{\partial^{2} f}{\partial x \partial y}
= \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)
= \dfrac{\partial N}{\partial x}$$

Donde

$$\dfrac{\partial^{2} f}{\partial y \partial x} = \dfrac{\partial^{2} f}{\partial x \partial y}$$

se cumple debido a que las primeras derivadas parciales de $M(x, y)$ y $N(x, y)$ son continuas en $U$.

Si es posible encontrar una función $f$ tal que se cumple (\ref{5}), entonces la condición

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

es necesaria y suficiente. Encontrar la función $f$ en realidad corresponde a un método de resolución de ecuaciones exactas y lo desarrollaremos a continuación.

$\square$

Solución a las ecuaciones exactas

La ecuación diferencial que queremos resolver es de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

Por el teorema anterior sabemos que siempre y cuando se cumpla que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

entonces debe existir una función $f$ para la que

$$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$

Para obtener la función $f(x, y)$ debemos integrar la primer ecuación con respecto a $x$ manteniendo a $y$ constante o integrar la segunda ecuación con respecto a $y$ manteniendo a $x$ constante, vamos a hacer el primer caso y como tarea moral realiza el siguiente procedimiento tomando el segundo caso, notarás que el resultado es equivalente.

Tomando el primer caso, integremos la primer ecuación con respecto a $x$.

\begin{align*}
\int{\dfrac{\partial f}{\partial x} dx} &= \int{M(x, y) dx} \\
f(x, y) &= \int{M(x, y) dx} + g(y) \label{6} \tag{6} \\
\end{align*}

Hemos hecho uso del teorema fundamental del cálculo y la función $g(y)$ corresponde a la constante de integración, es constante en $x$, pero sí puede variar en $y$ ya que en este caso la estamos considerando como una constante al hacer la integral.

Ahora derivemos a (\ref{6}) con respecto a $y$.

\begin{align*}
\dfrac{\partial f}{\partial y} &= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} + g(y) \right) \\
&= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy}
\end{align*}

Pero,

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

Entonces,

$$\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy} = N(x, y)$$

Despejemos a

$$\dfrac{dg}{dy} = g^{\prime}(y)$$

Se tiene,

$$g^{\prime}(y) = N(x, y) -\dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \label{7} \tag{7}$$

Lo que nos interesa en obtener la función $f(x, y)$, así que podemos integrar la ecuación (\ref{7}) con respecto a $y$ y sustituir $g(y)$ en la ecuación (\ref{6}). Como sabemos, la solución implícita es $f(x, y) = c$. Integremos la ecuación (\ref{7}).

$$g(y) = \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} \label{8} \tag{8}$$

Sustituimos el resultado (\ref{8}) en la ecuación (\ref{6}) e igualamos el resultado a la constante $c$.

$$f(x, y) = \int{M(x, y) dx} + \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} = c \label{9} \tag{9}$$

De esta manera habremos encontrado una solución implícita de la ecuación diferencial exacta.

Una observación interesante es que la función $g^{\prime}(y)$ es independiente de $x$, la manera de comprobarlo es con el siguiente resultado.

\begin{align*}
\dfrac{\partial g}{\partial x} &= \dfrac{\partial}{\partial x} \left[ N(x, y) -\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx}\right) \right] \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial x} \left(\dfrac{\partial}{\partial y}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial y} \left(\dfrac{\partial}{\partial x}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \\
&= 0
\end{align*}

Ya que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Las ecuaciones (\ref{6}), (\ref{8}) y (\ref{9}) son el resultado de tomar el primer caso. Si realizas el segundo caso en el que a la ecuación

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

se integra con respecto a $y$ y al resultado se deriva con respecto a $x$ obtendremos las expresiones análogas, dichas expresiones son, respectivamente

$$f(x, y) = \int{N(x, y) dy} + h(x) \label{10} \tag{10}$$

$$h(x) = \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} \label{11} \tag{11}$$

y

$$f(x, y) = \int{N(x, y) dy} + \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} = c \label{12} \tag{12}$$

Método de solución de ecuaciones diferenciales exactas

Hemos desarrollado la teoría sobre cómo obtener la solución $f(x, y)$ de las ecuaciones diferenciales exactas. Debido a que no se recomienda memorizar los resultados, presentamos a continuación la siguiente serie de pasos o algoritmo que se recomiendan seguir para resolver una ecuación diferencial exacta.

  1. El primer paso es verificar que la ecuación diferencial
    $$M(x, y) dx + N(x, y) dy = 0$$ sea exacta para garantizar la existencia de la función $f$ tal que $f(x, y) = c$. Para verificar este hecho usamos el criterio para una diferencial exacta que consiste en verificar que se cumple la relación $$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$
  1. Una vez que verificamos que la ecuación es exacta tenemos garantizado que existe una función $f$ tal que $f(x, y) = c$ es una solución implícita de la ecuación diferencial. Para determinar dicha función definimos $$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$
  1. El siguiente paso es integrar alguna de las ecuaciones anteriores en su respectiva variable, se recomienda integrar la que sea más sencilla de resolver, de esta manera obtendremos $$f(x, y) = \int{M(x, y) dx} + g(y) \hspace{1cm} o \hspace{1cm} f(x, y) = \int{N(x, y) dy} + h(x)$$
  1. Después derivamos parcialmente a la función $f(x, y)$ con respecto a la variable $y$ o $x$ según la elección hecha en el paso anterior, de manera que obtendremos el resultado $$\dfrac{\partial f}{\partial y} = \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) + \dfrac{dg}{dy} = N(x, y)$$ o bien, $$\dfrac{\partial f}{\partial x} = \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) + \dfrac{dh}{dx} = M(x, y)$$
  1. De los resultados anteriores obtendremos una expresión para $\dfrac{dg}{dy}$, o para $\dfrac{dh}{dx}$, debemos integrar estas expresiones para obtener las funciones $g(y)$ o $h(x)$.
  1. El último paso es sustituir las funciones $g(y)$ o $h(x)$ en la ecuación $f(x, y) = c$ lo que nos devolverá, en general, una solución implícita de la ecuación diferencial exacta.

Realicemos un ejemplo en el que apliquemos este método para que todo quede más claro.

Ejemplo: Resolver la ecuación diferencial

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

Solución: La ecuación diferencial es de la forma (\ref{3}), de manera que podemos definir

$$M(x, y) = 4 x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} N(x, y) = 4y^{3} -4x^{2}y + x$$

Ambas funciones son continuas y tienen derivadas parciales continuas en cualquier región $U \in \mathbb{R}^{2}$, entonces podemos aplicar el criterio para una diferencial exacta. Verifiquemos que se satisface la relación (\ref{4}).

$$\dfrac{\partial M}{\partial y} = -8xy + 1 \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x}= -8xy +1$$

En efecto,

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Por lo tanto, la ecuación diferencial sí es exacta, esto nos garantiza la existencia de una función $f$ tal que $f(x, y) = c$ es solución, entonces podemos definir

$$\dfrac{\partial f}{\partial x} = M(x, y) = 4x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y) = 4y^{3} -4x^{2}y + x$$

El tercer paso nos indica que debemos integrar una de las ecuaciones anteriores, en este caso elegiremos integrar la ecuación

$$\dfrac{\partial f}{\partial x} = 4x^{3} -4xy^{2} + y$$

con respecto a la variable $x$.

$$\int{ \dfrac{\partial f}{\partial x} dx} = \int{ ( 4x^{3} -4xy^{2} + y) dx}$$

Del lado izquierdo aplicamos el teorema fundamental del cálculo y del lado derecho resolvemos la integrar, el resultado es

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + g(y)$$

La función $g(y)$ es la constante que considera a todas las constantes que aparecen al integrar y decimos que es constante porque no depende de la variable $x$, pero es posible que pueda depender de la variable $y$.

El cuarto paso es derivar la última ecuación con respecto a la variable $y$ ya que deseamos conocer a $\dfrac{dg}{dy} = g^{\prime}(y)$.

$$\dfrac{\partial f}{\partial y} = -4x^{2}y + x + \frac{dg}{dy}$$

Y sabíamos que

$$\dfrac{\partial f}{\partial y} = 4y^{3} -4x^{2}y + x$$

Igualando ambas ecuaciones, obtenemos

$$-4x^{2}y + x + \dfrac{dg}{dy} = 4y^{3} -4x^{2}y + x$$

Para que esta igualdad se cumpla es necesario que

$$\dfrac{dg}{dy} = 4y^{3}$$

Ahora que ya conocemos a $\dfrac{dg}{dy} = g^{\prime}(y)$, la integramos con respecto a $y$. Esto corresponde al penúltimo paso.

\begin{align*}
\int {\dfrac{dg}{dy} dy} &= {\int 4y^{3} dy} \\
g(y) &= y^{4}
\end{align*}

El último paso es sustituir el resultado $g(y)$ en la función $f(x, y) = c$. En la integración anterior omitimos a las constantes porque podemos englobarlas en la constante $c$.

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + y^{4} = c$$

de donde

$$(x^{2} -y^{2})^{2} + xy= c$$

Por lo tanto, la solución (implícita) de la ecuación diferencial exacta

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

es

$$(x^{2} -y^{2})^{2} + xy= c$$

$\square$

Por su puesto que hay ecuaciones diferenciales de la forma (\ref{3}) que no cumplen con la condición (\ref{4}), es decir, que no son exactas, en estos casos es posible apoyarnos de una función auxiliar tal que si multiplicamos a la ecuación diferencial por esta función se volverá exacta, si esto ocurre a dicha función la llamamos factor integrante. Así es, usaremos un método similar al método por factor integrante de las ecuaciones lineales, pero esta vez es para convertir a una ecuación diferencial no exacta en exacta.

Factores integrantes

En entradas anteriores vimos que multiplicar la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x)y = Q(x) \label{13} \tag{13}$$

por un factor integrante $\mu(x)$ hace que el lado izquierdo de la ecuación sea igual a la derivada del producto de $\mu(x)$ con $y(x)$ permitiendo resolver la ecuación con sólo integrar, esta idea de multiplicar por un factor integrante también nos será de ayuda al trabajar con ecuaciones diferenciales de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

que no son exactas. Lo que se espera es que multiplicando por un factor integrante $\mu (x, y)$ a la ecuación no exacta ésta se vuelva una ecuación exacta.

Consideremos la ecuación

$$M(x, y) dx + N(x, y) dy = 0$$

pero que no es exacta, esto significa que el lado izquierdo de la ecuación no corresponde a la diferencial de alguna función $f(x, y)$. Supongamos que existe una función $\mu (x, y)$ tal que al multiplicar la ecuación diferencial por esta función se vuelve una ecuación diferencial exacta. Es decir, la ecuación

$$\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0 \label{14} \tag{14}$$

ahora es exacta y se puede resolver con el método que ya conocemos. Lo que veremos ahora es un método para determinar el factor integrante $\mu (x, y)$.

Por el criterio de diferencial exacta, la ecuación diferencial (\ref{14}) es exacta si

$$\dfrac{\partial (\mu M)}{\partial y} = \dfrac{\partial (\mu N)}{\partial x} \label{15} \tag{15}$$

Usando la regla del producto, la ecuación anterior se puede escribir como

$$\mu \dfrac{\partial M}{\partial y} + \dfrac{\partial \mu}{\partial y} M = \mu \dfrac{\partial N}{\partial x} + \dfrac{\partial \mu}{\partial x} N$$

Reordenando los términos obtenemos la siguiente expresión.

$$\dfrac{\partial \mu}{\partial x} N -\dfrac{\partial \mu}{\partial y} M = \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{16} \tag{16}$$

Para determinar la función $\mu(x, y)$ debemos resolver esta ecuación diferencial parcial, sin embargo no estamos en condiciones de hacerlo, pues no sabemos resolver ecuaciones diferenciales parciales. Para simplificar el problema vamos a considerar la hipótesis de que la función $\mu$ depende sólo de una variable, consideremos por ejemplo que $\mu$ depende sólo de $x$, así se cumple que

$$\dfrac{\partial \mu}{\partial x} = \dfrac{d \mu}{dx} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = 0$$

Con estas hipótesis la ecuación (\ref{16}) se puede escribir de la siguiente forma.

$$\dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{17} \tag{17}$$

Seguimos en problemas si el cociente de la derecha depende tanto de $x$ como de $y$. En el caso en el que dicho cociente sólo depende de $x$, entonces la ecuación será separable así como lineal.

Supongamos que la ecuación (\ref{17}) sólo depende de la variable $x$, entonces dividimos toda la ecuación por $\mu$ para separar las variables.

$$\dfrac{1}{\mu} \dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

Integremos ambos lados de la ecuación con respecto a la variable $x$.

\begin{align*}
\int{ \dfrac{1}{\mu}\dfrac{d \mu}{dx} dx} &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \\
\ln|\mu (x)| &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx
\end{align*}

Finalmente apliquemos la exponencial en ambos lados de la ecuación.

$$\mu (x) = \exp \left[ \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \right] \label{18} \tag{18}$$

Es totalmente análogo el caso en el que el factor integrante es sólo función de la variable $y$, en este caso se cumple

$$\dfrac{\partial \mu}{\partial x} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = \dfrac{d \mu}{dy}$$

Es así que la ecuación (\ref{16}) queda de la siguiente forma.

$$\dfrac{d \mu}{dy} = \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) \mu \label{19} \tag{19}$$

Si el cociente de la derecha sólo depende de la variable $y$, entonces se puede resolver la ecuación (\ref{19}), obteniendo

$$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right] \label{20} \tag{20}$$

Las funciones (\ref{18}) y (\ref{20}) corresponden a la forma del factor integrante que vuelven a la ecuación no exacta en exacta, según las condiciones que se presenten.

A manera de resumen, para el caso en el que la ecuación diferencial

$$M(x, y) dx + N(x, y) dy = 0$$

no es exacta probamos los siguientes dos casos:

  • Si $$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$ es una función sólo de $x$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (x) = \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$
  • Si $$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$ es una función sólo de $y$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right]$$

Realicemos un ejemplo para aclarar dudas.

Ejemplo: Resolver la siguiente ecuación diferencial no exacta.

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

Solución: Verifiquemos que no es una ecuación exacta, definamos

$$M(x, y) = 1 -\dfrac{y}{x} e^{y/x} \hspace{1cm} y \hspace{1cm} N(x, y) = e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

$$\dfrac{\partial M}{\partial y} = -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x}$$

Como

$$\dfrac{\partial M}{\partial y} \neq \dfrac{\partial N}{\partial x}$$

entonces la ecuación diferencial no es exacta. Para hacerla exacta debemos encontrar un factor integrante que dependa de $x$ o de $y$, para ello primero debemos ver si el cociente

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

es una función sólo de $x$ o si el cociente

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$

es una función sólo de $y$. Calculemos ambos cocientes usando los resultados anteriores.

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) = \left( 1 -\dfrac{y}{x} e^{y/x} \right)^{-1} \left( -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{1}{x} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = \dfrac{\dfrac{1}{x} e^{y/x}}{1 -\dfrac{y}{x} e^{y/x}}$$

y

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) = e^{-y/x} \left( -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = -\dfrac{1}{x}$$

Este último cociente es el que nos sirve ya que sólo depende de la variable $x$. Calculemos el factor integrante, en este caso corresponde a la expresión (\ref{18}).

\begin{align*}
\mu (x) &= \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right] \\
&= \exp \left[\int{-\dfrac{1}{x}} dx \right] \\
&= -e^{\ln |x|} \\
&= x^{-1}
\end{align*}

Por lo tanto, el factor integrante es

$$\mu (x)= \dfrac{1}{x}$$

Multipliquemos ambos lados de la ecuación original por el factor integrante.

\begin{align*}
\dfrac{1}{x} \left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + \dfrac{1}{x} e^{y/x} dy &= 0 \\
\left( \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \right) dx +\dfrac{1}{x} e^{y/x} dy &= 0
\end{align*}

Verifiquemos que la última expresión corresponde a una ecuación diferencial exacta. Definamos

$$\hat{M}(x, y) = \mu(x) M(x, y) \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \mu(x) N(x, y)$$

Entonces,

$$\hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

\begin{align*}
\dfrac{\partial \hat{M}}{\partial y} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \hat{N}}{\partial x} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x}
\end{align*}

En efecto,

$$\dfrac{\partial \hat{M}}{\partial y} = \dfrac{\partial \hat{N}}{\partial x}$$

La nueva ecuación sí es exacta, esto nos garantiza que existe una función $f$ tal que $f(x, y) = c$ es solución de la ecuación exacta, dicha función debe satisfacer que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Es nuestra elección que ecuación integrar, sin embargo notamos que la función $\hat{N}(x, y)$ es la más sencilla de integrar, así que integremos esta ecuación con respecto a $y$.

\begin{align*}
\int{ \dfrac{\partial f}{\partial y} dy} &= \int{ \dfrac{1}{x} e^{y/x} dy} \\
f(x, y) &= e^{y/x} + h(x)
\end{align*}

Derivemos parcialmente este resultado con respecto a la variable $x$.

$$\dfrac{\partial f}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Pero sabemos que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x}$$

Igualemos ambas ecuaciones.

$$\dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Para que se cumpla esta igualdad es necesario que

$$\dfrac{dh}{dx} = \dfrac{1}{x}$$

Integremos esta ecuación con respecto a $x$ omitiendo las constantes.

\begin{align*}
\int{ \dfrac{dh}{dx} dx} &= \int {\dfrac{1}{x} dx} \\
h(x) &= \ln |x|
\end{align*}

Sustituimos la función $h(x)$ en la función $f(x, y)$ e igualamos a una constante $c$.

$$f(x, y) = e^{y/x} + \ln |x|= c$$

Apliquemos la función exponencial

\begin{align*}
e^{\left( e^{y/x} + \ln (x) \right)} &= e^{c} \\
e^{e^{y/x}} e^{\ln (x)} &= k \\
e^{e^{y/x}} x &= k
\end{align*}

Donde $k = e^{c}$. Por lo tanto, la solución a la ecuación diferencial

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

es

$$x e^{e^{y/x}} = k$$

$\square$

Aquí concluimos nuestro estudio sobre las ecuaciones diferenciales exactas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones diferenciales exactas (verificar que son exactas).
  • $(2x -5y + 2)dx + (1- 6y -5x)dy = 0$
  • $\left( y -\dfrac{y}{x^{2}}e^{y/x} \right) dx + \left( x + \dfrac{1}{x}e^{y/x} \right) dy = 0$
  • $\left[ \sin(y) + \dfrac{y}{x^{2}} \sin \left( \dfrac{y}{x} \right) \right] dx + \left[ x \cos(y) -\dfrac{1}{x} \sin \left( \dfrac{y}{x} \right) \right] dy = 0$
  1. Resolver las siguientes ecuaciones diferenciales no exactas.
  • $[e^{x} \cos(y)] dx + [-xe^{x} \sin(y)] dy = 0$
  • $[2x \sin(y) + ye^{xy}] dx + [x \cos(y) + e^{xy}] dy = 0$
  1. En el procedimiento realizado para resolver ecuaciones diferenciales exactas vimos que hay dos posibilidades para llegar a resultados equivalentes. Desarrolla el otro camino y deduce las expresiones (\ref{10}), (\ref{11}) y (\ref{12}).

Más adelante…

Para concluir con nuestro estudio sobre ecuaciones diferenciales no lineales de primer orden, en la siguiente entrada presentaremos la ecuación de Bernoulli y la ecuación de Riccati, así como sus respectivos métodos de resolución.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Introducción a estructuras algebraicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente terminamos de construir a los números naturales, sus operaciones y su orden. El siguiente conjunto que nos interesa construir es $\mathbb{Z}$, el conjunto de los números enteros. Haremos esto en breve. Sin embargo, primero haremos un paréntesis para hablar de estructuras algebraicas.

Quizás hayas escuchado hablar de varias de ellas. En cálculo y geometría analítica se habla de los números reales y se comenta que es muy importante que sea un campo. En geometría moderna se habla de transformaciones geométricas y cómo algunas de ellas forman un grupo. También es común escuchar de los anillos de enteros o de polinomios (que estudiaremos más adelante). Y por supuesto, también están los espacios vectoriales, que están fuertemente conectados con resolver sistemas de ecuaciones lineales y hacer cálculo y geometría en altas dimensiones.

Todos estos conceptos (campos, grupos, anillos, espacios vectoriales, etc.) son ejemplos de estructuras algebraicas. Cada tipo de estructura algebraica es muy especial por sí misma y sus propiedades se estudian por separado en distintas materias, notablemente aquellas relacionadas con el álgebra moderna. La idea de esta entrada es dar una muy breve introducción al tema, para que te vayas acostumbrando al uso del lenguaje. Esto te servirá más adelante en tu formación matemática.

Intuición de estructuras algebraicas

De manera intuitiva, una estructura algebraica consiste de tomar un conjunto, algunas operaciones en ese conjunto, y ciertas propiedades que tienen que cumplir las operaciones. Eso suena mucho a lo que hemos trabajado con $\mathbb{N}$: es un conjunto, con las operaciones de suma y producto. Y ya demostramos que estas operaciones tienen propiedades especiales como la conmutatividad, la distributividad y la existencia de neutros.

En realidad podríamos tomar cualquier conjunto y cualquier operación y eso nos daría una cierta estructura.

Ejemplo. Consideremos el conjunto $\mathbb{N}$ con la operación binaria $\star$ tal que $$a\star b=ab+a+b.$$ Tendríamos entonces que $$3\star 1=3\cdot 1+3+1= 7,$$ y que $$10\star 10=10\cdot 10 + 10 + 10 = 120.$$

Es posible que la operación $\star$ tenga ciertas propiedades especiales, y entonces algunas proposiciones matemáticas interesantes consistirían en enunciar las propiedades de $\star$.

$\triangle$

Aunque tenemos mucha libertad en decidir cuál es el conjunto, cuáles son las operaciones que le ponemos y qué propiedades vamos a pedir, hay algunos ejemplos que se aparecen muy frecuentemente en las matemáticas. Aparecen de manera tan frecuente, que ameritan nombres especiales. Comencemos a formalizar esto.

Operaciones binarias y magmas

Dado un conjunto $S$, una operación binaria toma parejas de elementos de $S$ y los lleva a otro elemento de $S$. En símbolos, es una función $\star: S\times S\to S$. Cuando usamos la notación de función, tendríamos que escribir todo el tiempo $\times(a,b)$ para referirnos a lo que esta operación le hace a cada pareja de elementos $a$ y $b$ en $S$. Sin embargo, esto resulta poco práctico, y es por esta razón que se usa mucho más la notación $a\times b:=\times (a,b)$.

Ejemplo. En $\mathbb{N}$ ya definimos la operación binaria $+$, que toma dos enteros $a$ y $b$ y los manda a $s_a(b)$, donde $s_a:\mathbb{N}\to \mathbb{N}$ es la función que construimos usando el teorema de recursión estableciendo que $s_a(0)=a$ y $s_a(\sigma(n))=\sigma(s_a(n))$.

$\triangle$

Aquí lo único que nos importa es establecer una operación binaria. No nos importa si tiene otras propiedades adicionales.

Definición. Un magma consiste de un conjunto $S$ con una operación binaria $\ast$.

Otros ejemplos de magma son $\mathbb{N}$ con la operación que dimos en la parte de intuición, o bien $\mathbb{N}$ con el producto que ya definimos. También podemos tener magmas en conjuntos que no sea el de los enteros. Por ejemplo, si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$, y le damos la operación que manda $A$ y $B$ a $A\cup B\cup \{0\}$, entonces también obtenemos un magma.

Conmutatividad

Cuando tenemos un conjunto $S$ y una operación binaria $\star$ en $S$, puede suceder que de lo mismo hacer $a\star b$ que $b\star a$. Esto ya es una propiedad especial que pueden cumplir las operaciones binarias, y tiene un nombre.

Definición. Decimos que una operación binaria $\star$ en un conjunto $S$ es conmutativa si para cualesquiera dos elementos $a$ y $b$ de $S$ se cumple que $a\star b=b\star a$.

Observa que la igualdad debe suceder para cualesquiera dos elementos. Basta con que falle para una pareja para que la operación ya no sea conmutativa.

Ejemplo. Una de las propiedades que demostramos de la operación de suma en $\mathbb{N}$ es que $s_a(b)=s_b(a)$, es decir, que $a+b=b+a$. En otras palabras, la operación binaria $+$ en $\mathbb{N}$ es conmutativa. Así mismo, vimos que el producto era conmutativo, es decir, que $p_a(b)=p_b(a)$, que en términos de la operación binaria $\cdot$ quiere decir que $a\cdot b=b\cdot a$.

$\triangle$

Más adelante veremos que otras funciones de suma y producto también son conmutativas, por ejemplo, las de los enteros, racionales, reales y complejos. Sin embargo, hay algunas operaciones binarias muy importantes en matemáticas que no son conmutativas. Un ejemplo de ello es el producto de matrices. Otro ejemplo es la diferencia de conjuntos.

Ejemplo. Si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$ y le damos la operación binaria $\setminus$ tal que dados $A$ y $B$ en $P$ los manda a $A\setminus B$, entonces obtenemos un magma. Sin embargo, la operación $\setminus$ no es conmutativa pues, por ejemplo, $$\{1,2,3\}\setminus\{2,3,4\}=\{1\},$$ pero $$\{2,3,4\}\setminus\{1,2,3\}=\{4\}.$$

$\triangle$

En $\mathbb{N}$ no tenemos una operación de resta, como discutiremos en breve. Pero en el conjunto de los enteros sí, y ese sería otro ejemplo de una operación que no es conmutativa.

Asociatividad y semigrupos

Otra de las propiedades importantes que demostramos de la suma y producto de naturales es que son operaciones asociativas. En general, podemos definir la asociatividad para una operación binaria como sigue.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Decimos que $\star$ es asociativa si $a\star (b\star c)=(a\star b)\star c$ para cualesquiera tres elementos $a,b,c$ de $S$.

Tanto la suma como el producto de naturales dan una operación asociativa pues ya demostramos que si $a,b,c$ son naturales, entonces $a+(b+c)=(a+b)+c$ y $a(bc)=(ab)c$. Esta propiedad también la tendremos para la suma y producto de enteros, racionales, reales, complejos, polinomios, etc.

A partir de la asociatividad podemos definir la primer estructura algebraica que requiere un poco más de propiedades.

Definición. Un semigrupo es un conjunto $S$ con una operación asociativa $\star$.

Si además $\star$ es una operación conmutativa, entonces decimos que es un semigrupo conmutativo. En realidad, en cualquiera de las definiciones que daremos a continuación podemos agregar el adjetivo «conmutativo» y esto querrá decir que además de las propiedades requeridas, también se cumple que la operación es conmutativa.

En los semigrupos (y demás estructuras con asociatividad) tenemos la ventaja de que podemos «olvidarnos de los paréntesis» sin la preocupación de que haya ambigüedad. Por ejemplo, en los naturales la expresión $3+((2+4)+8)$ se puede escribir simplemente como $3+2+4+8$, pues cualquier otra forma de poner paréntesis, como $(3+2)+(4+8)$, debe dar exactamente el mismo resultado por asociatividad.

Ejemplo. Una operación que no es asociativa es la resta en los enteros. Aunque no hemos definido formalmente esta operación, es intuitivamente claro que $3-(2-1)$ no es lo mismo que $(3-2)-1$.

$\triangle$

Unidades y magmas unitales

A veces sucede que algunos elementos de un conjunto «no afectan a nadie» bajo una cierta operación binaria dada. Por ejemplo, en los naturales «sumar cero» no cambia a ningún entero.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Una unidad o neutro para $\star$ es un elemento $e$ en $S$ para el cual se cumple que para cualquier elemento $a$ de $S$ se tenga $a\star e = a$ y $e\star a = a$.

Observa que es muy importante pedir las dos igualdades de la definición. Si una se cumple, no necesariamente tiene que pasar la otra, pues no necesariamente la operación es conmutativa. Por supuesto, si ya se sabe que la operación es conmutativa, entonces basta con ver una de ellas.

En $\mathbb{Z}$ tenemos las operaciones de suma y producto. Para no confundir a sus neutros, a $0$ le llamamos el neutro aditivo para hacer énfasis que es el neutro de la suma. Y a $1$ le llamamos el neutro multiplicativo para hacer énfasis que es el neutro del producto. Entre las propiedades que probamos, en efecto vimos que $a+0=a=0+a$ y que $a\cdot 1 = a = 1\cdot a$ para cualquier entero $a$.

Definición. Un magma unital es un conjunto $S$ con una operación $\star$ que tiene un neutro.

El conjunto de naturales con la operación $\star$ que dimos en la sección de intuición también es un magma unital. ¿Puedes decir quién es su neutro?

Monoides

Se puede pedir más de una propiedad a una operación binaria y entonces obtenemos estructuras algebraicas más especiales.

Definición. Un monoide es un conjunto $S$ con una operación $\star$ que es asociativa y que tiene un neutro.

En otras palabras, un monoide es un magma unital con operación asociativa. O bien, un semigrupo cuya operación tiene unidad. Por supuesto, si la operación además es conmutativa entonces decimos que es un monoide conmutativo.

Ejemplo. Por todo lo que hemos visto en esta entrada, tenemos que $\mathbb{N}$ con la suma es un monoide conmutativo. Así mismo, $\mathbb{N}$ con el producto es un monoide conmutativo.

$\triangle$

Semianillos

La última idea importante para discutir en esta entrada es que una estructura algebraica puede tener más de una operación binaria, y además de pedir propiedades para cada operación, también se pueden pedir propiedades que satisfagan ambas operaciones en igualdades que las involucran a las dos.

Definición. Un seminanillo es un conjunto $S$ con dos operaciones binarias $\square$ y $\star$ que satisfacen las siguientes propiedades:

  • $\square$ es un monoide conmutativo
  • $\star$ es un monoide
  • Se cumple distributividad, es decir, que para cualesquiera tres elementos $a,b,c$ de $S$ se tiene $a\star(b\square c) = (a\star b)\square(a\star c)$ y $(a\square b)\star c = (a\star c)\square(b\star c)$.
  • El neutro $e$ de $\square$ aniquila a los elementos bajo $\star$, es decir, para cualquier elemento $a$ de $S$ se tiene que $a\star 0=0$ y $0\star a = 0$.

Un semianillo conmutativo es un semianillo en donde la operación $\star$ también es conmutativa. Las propiedades que hemos de los números naturales nos permiten enunciar el siguiente resultado.

Teorema. El conjunto $\mathbb{N}$ con las operaciones binarias de suma y producto es un semianillo conmutativo.

Más adelante…

Este sólo fue un pequeño paréntesis para comenzar a hablar de operaciones binarias y de estructuras algebraicas. Ahora regresaremos a seguir construyendo de manera formal los sistemas numéricos con los que se trabaja usualmente: los enteros, los racionales, los reales y los complejos.

Un poco más adelante haremos otro paréntesis de estructuras algebraicas, en el que hablaremos de otras propiedades más que puede tener una operación binaria. Una muy importante es la existencia de inversos para la operación binaria. Esto llevará a las definiciones de otras estructuras algebraicas como los grupos, los anillos, los semigrupos con inversos, los quasigrupos y los campos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra el neutro de la operación $\star$ dada en la sección de intuición. Verifica que en efecto es un neutro.
  2. Demuestra que el conjunto de los naturales pares $\{0,2,4,6,\ldots\}$ sí tiene un neutro para la operación de suma, pero no para la operación de producto.
  3. Considera el conjunto $P(S)$ de subconjuntos de un conjunto $S$. Considera las operaciones binarias de unión e intersección de elementos de $P(S)$. Muestra que $P(S)$ con estas operaciones es un semianillo conmutativo.
  4. Da un ejemplo de un magma que no sea un magma unital. Da un ejemplo de un magma unital que no sea un monoide.
  5. Da o busca un ejemplo de un semianillo que no sea un semianillo conmutativo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»