Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral I: Subsucesiones

Por Juan Manuel Naranjo Jurado

Introducción

Dada una sucesión, si «quitamos» cierta cantidad de términos de tal forma que aún queda una cantidad infinita de ellos y se conserva el orden de la sucesión original, se genera un tipo particular de sucesión llamado subsucesión. En esta entrada probaremos algunas de sus características y veremos cómo se enlazan sus propiedades respecto a la sucesión original.

Subsucesiones

Primero formalizaremos la idea intuitiva dada en la introducción a través de la siguiente definición.

Definición. Sea $\{a_n\}$ una sucesión de números reales y sea $n_1 < n_2 < \ldots < n_k < \ldots$, con $k \in \mathbb{N}$, una sucesión estrictamente creciente de números naturales. Entonces la sucesión $\{ a_{n_k} \}$ dada por $$\{ a_{n_1}, a_{n_2}, \ldots, a_{n_k}, \ldots \}$$

es una subsucesión de $\{a_n\}$.

Observación. Es importante recalcar que en la definición se indica que los índices de los términos de la subsucesión son una sucesión por sí mismos. Esto se podrá apreciar claramente en los ejemplos siguientes.

Ejemplo 1. Consideremos la sucesión $\{ a_n \} = \{ \frac{1}{n} \}$.

Si tomamos los términos con índice par, obtenemos la subsucesión $\{ a_2, a_4, a_6, \ldots, a_{2k}, \ldots \}$ cuyos términos son

$$\left\lbrace \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, \frac{1}{2k}, \ldots \right\rbrace.$$

De esta forma, se tiene que $n_1 = 2$, $n_2 = 4$, $\ldots$, $n_k = 2k$, $\ldots$. Y podemos observar que los índices forman una sucesión estrictamente creciente, es decir, se cumple que $$n_1 < n_2 < \ldots < n_k < \ldots.$$

Si consideramos ahora $n_k = 2k-1$, obtenemos una nueva subsucesión $\{ a_1, a_3, a_5, \ldots, a_{2k-1}, \ldots \}$ conformada por los términos

$$\left\lbrace \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \ldots, \frac{1}{2k-1}, \ldots \right\rbrace.$$

Otra subsucesión podría ser la generada por los índices $n_k = k^2$, generando la subsucesión $\{ a_1, a_4, a_9, \ldots, a_{k^2} \}$, con términos

$$\left\lbrace \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \ldots, \frac{1}{k^2}, \ldots \right\rbrace.$$

En contraste, podemos observar que $\{a_2, a_1, a_4, a_3, \ldots, a_{k+1}, a_{k-1}, \ldots \}$ no es una subsucesión de $\{ a_n \}$. Los términos generados son

$$\left\lbrace \frac{1}{2}, \frac{1}{1}, \frac{1}{4}, \frac{1}{3}, \ldots, \frac{1}{k+1}, \frac{1}{k-1}, \ldots \right\rbrace.$$

Y no es subsucesión debido a que ésta no respeta el orden de la sucesión original, en otras palabras, la sucesión de índices $\{n_k\}$ no es estrictamente creciente. En este caso
$$n_k = \begin{cases} k+1 & \text{ si } k \text{ es impar} \\ k-1 & \text{ si } k \text{ es par}. \end{cases}$$

Con lo cual podemos ver que $n_1 = 2$, $n_2=1$, $n_3 = 4$, $n_4 = 3$, $\ldots$, por lo que $\{n_k\}$ no es monótona y, particularmente, no es estrictamente creciente.

Una forma singular de crear subsucesiones a partir de una sucesión dada, es eliminando los primeros $m$ términos de la sucesión. Así, tenemos la siguiente definición.

Definición. Sea $\{a_n\}$ una sucesión de números reales y sea $m \in \mathbb{N}$. Definimos la cola-$m$ de $\{a_n\}$ como la sucesión

$$\{a_{m+n}: n \in \mathbb{N}\} = \{ a_{m+1}, a_{m+2}, \ldots \}.$$

La cola-$m$ es una subsucesión donde $n_1 = m+1$, $n_2 = m +2$, $\ldots$, $n_k = m+k$.

Ejemplo 2. Consideremos la sucesión $\{a_n\} = \{ \sqrt{n} \}.$

La cola-$10$ de $\{a_n\}$ es la subsucesión $\{ a_{11}, a_{12}, \ldots, a_k \ldots \}$, cuyos términos son $\{ \sqrt{11}, \sqrt{12}, \ldots, \sqrt{k}, \ldots \}.$

Subsucesiones de sucesiones convergentes

Si generamos una subsucesión de una sucesión convergente, es natural que dicha subsucesión también converja y, de hecho, lo hace al límite de la sucesión original.

Teorema. Si una sucesión $\{a_n\}$ de números reales converge a un número real $L$, entonces cualquier subsucesión $\{ a_{n_k}\}$ también converge a $L$.

Demostración.

Sea $\varepsilon > 0$. Como $\{a_n\}$ converge a $L$, entonces existe un número natural $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene que

$$|a_n – L| < \varepsilon.$$

Dado que $n_1 < n_2 < \ldots < n_k < \ldots$ es una sucesión creciente de números naturales, se tiene que $n_k \geq k$. De esta forma, tenemos que si $k \geq n_0$, entonces $n_k \geq k \geq n_0$. Por lo que se cumple que
$$|a_{n_k} – L| < \varepsilon.$$

Por lo tanto, la sucesión $\{ a_{n_k} \}$ también converge a $L$.

$\square$

Ejemplo 3. Del teorema anterior se sigue que dada una sucesión $\{a_n\}$ convergente a $L$, la cola-$m$ de la sucesión también converge a $L$ para todo $m \in \mathbb{N}$.

Ejemplo 4. Consideremos la sucesión $\{a_n\} = \{ \frac{1}{\pi^n}\}$.

Notemos que $\frac{1}{\pi^n} = \left( \frac{1}{\pi} \right)^n$.

Además, como $\pi > 1$, entonces $\frac{1}{\pi} <1$. Por tanto $$\lim_{n \to \infty} \frac{1}{\pi^n} = 0.$$

Así, toda subsucesión de $\{a_n\}$ converge a cero. Podemos considerar, por ejemplo, la subsucesión generada tomando $n_k = 2k$, es decir, la subsucesión $\{a_{n_k} \} = \{ \frac{1}{\pi^{2k}} \}$ converge a cero.

Subsucesiones y la no convergencia

Hasta este punto hemos revisado las subsucesiones y su relación con la convergencia; ahora es momento de encontrar qué sucede respecto a la no convergencia.

Teorema. Sea $\{a_n\}$ una sucesión de números reales. Entonces los siguientes enunciados son equivalentes:

  1. La sucesión $\{a_n\}$ no converge a $L \in \mathbb{R}.$
  2. Existe $\varepsilon_0 > 0$ tal que para cualquier $k \in \mathbb{N}$, existe $n_k \in \mathbb{N}$ tal que $n_k \geq k$ y $|a_{n_k} – L| \geq \varepsilon_0.$
  3. Existe $\varepsilon_0 > 0$ y una subsucesión $\{a_{n_k}\}$ de $\{a_n\}$ tal que $|a_{n_k} – L| \geq \varepsilon_0$ para todo $k \in \mathbb{N}.$

Demostración.

$1 \Rightarrow 2]$ Si $\{a_n\}$ no converge, entonces existe $\varepsilon_0 > 0$ para el cual no es posible encontrar un natural $k$ tal que para todo $n \geq k$ se cumpla $|a_n-L| < \varepsilon$. Es decir, para todo $k \in \mathbb{N}$ existe un natural $n_k \geq k$ tal que $|a_{n_k} – L | \geq \varepsilon_0.$

$2 \Rightarrow 3]$ Sea $\varepsilon_0 > 0$ tal que cumple $2)$ y sea $n_1 \in \mathbb{N}$ tal que $n_1 \geq 1$ y $|a_{n_1} – L| \geq \varepsilon_0.$

Ahora sea $n_2 \in \mathbb{N}$ tal que $n_2 > n_1$ y $|a_{n_2} – L| \geq \varepsilon_0.$

Sea $n_3 \in \mathbb{N}$ tal que $n_3 > n_2$ y $|a_{n_3} – L| \geq \varepsilon_0.$

Se continúa de esta manera para obtener la subsucesión $\{a_{n_k}\}$ tal que $|a_{n_k} – L| \geq \varepsilon_0$ para todo $k \in \mathbb{N}.$

$3 \Rightarrow 1]$ Supongamos que $\{a_n\}$ tiene una subsucesión $\{a_{n_k}\}$ que satisface la condición $3)$. Entonces $\{a_n\}$ no puede converger a $L$ porque sería una contradicción al teorema anterior.

$\square$

Criterios de no convergencia. Sea $\{a_n\}$ una sucesión de números reales. Si se cumple cualquiera de las siguientes condiciones, entonces la sucesión es divergente.

  1. $\{a_n\}$ tiene dos subsucesiones convergentes $\{a_{n_k}\}$ y $\{a_{n_l}\}$. Donde $\{a_{n_k}\}$ converge $L$ y $\{a_{n_l}\}$ converge a $M$, pero $L \neq M.$
  2. $\{a_n\}$ no está acotada.

Ejemplo 5. Prueba que la sucesión $\{(-1)^n\}$ no es convergente.

Demostración.

Consideremos las subsucesiones $\{(-1)^{2k}\}$ y $\{(-1)^{2k-1}\}$. Es claro que la primera subsucesión converge a $1$, mientras que la segunda converge a $-1$. Por tanto, la sucesión no converge.

$\square$

Ejemplo 6. Prueba que la sucesión $\{n!\}$ no es convergente.

Demostración.

Dado que $n! \geq n$ para todo $n \in \mathbb{N}$, y sabemos que la sucesión generada por los números naturales no está acotada. Se sigue que la sucesión $\{n!\}$ no está acotada. Por tanto, no es convergente.

$\square$

Ejemplo 7. Prueba que la sucesión $\{ 1 – (-1)^n + \frac{1}{n} \}$ no es convergente.

Demostración.

Consideremos las subsucesiones $\{ 1 – (-1)^{2k} + \frac{1}{2k} \}$ y $\{ 1 – (-1)^{2k-1} + \frac{1}{2k-1} \}.$

Notemos que

\begin{align*}
\lim_{k \to \infty } 1 – (-1)^{2k} + \frac{1}{2k} & = \lim_{k \to \infty } 1 – ((-1)^2)^k + \frac{1}{2k} \\ \\
& = \lim_{k \to \infty } 1 – (1)^k + \frac{1}{2k} \\ \\
& = 1-1+0 \\ \\
& = 0.
\end{align*}

Análogamente, se tiene que

\begin{align*}
\lim_{k \to \infty } 1 – (-1)^{2k-1} + \frac{1}{2k-1} & = \lim_{k \to \infty } 1 – (-1)^{2k} \cdot (-1)^{-1} + \frac{1}{2k-1} \\ \\
& = \lim_{k \to \infty } 1 – (1)^k \cdot (-1) + \frac{1}{2k-1} \\ \\
& = 1+1+0 \\ \\
& = 2.
\end{align*}

Por tanto, la primera subsucesión converge a $0$, mientras que la segunda converge a $2$. Se concluye que la sucesión $\{ 1 – (-1)^n + \frac{1}{n} \}$ no es convergente.

$\square$

Teorema de Bolzano-Weierstrass

El teorema de Bolzano-Weierstrass nos indica que toda sucesión acotada tiene una subsucesión convergente. Un ejemplo claro es el revisado en esta entrada, la sucesión $\{(-1)^n\}$ de la cual hemos probado anteriormente que está acotada y es fácil notar que la subsucesión generada por los índices pares $n_k =2k$ es convergente. Sin embargo, para probar el caso general, veremos primero que toda sucesión tiene una subsucesión monótona y, usando un teorema previamente revisado que indica que toda sucesión monótona acotada es convergente, podremos probar fácilmente el teorema de Bolzano-Weierstrass.

Teorema. Si $\{a_n\}$ es una sucesión de números reales, entonces existe una subsucesión $\{a_{n_k} \}$ que es monótona.

Demostración.

Por practicidad, diremos que $a_m$ es un «pico» si $a_m \geq a_n$ para todo $n \geq m$. Es decir, $a_m$ nunca es excedido por ningún término posterior en la sucesión. Tal como se muestra en la siguiente ilustración, donde los puntos rojos representan los «picos» de la sucesión.

Podemos notar que en una sucesión decreciente cualquier término es un pico, mientras que para una sucesión creciente ningún término es un pico. Dada una sucesión, podemos dividir en dos casos de acuerdo a la cantidad de picos que ésta posea.

  • Caso 1: La sucesión tiene una cantidad infinita de picos.
    En este caso, la enumeración de los picos se hace con subíndices crecientes: $a_{m_1}$, $a_{m_2}$, $\ldots$, $a_{m_k}$, $\ldots$ Puesto que cada término es un pico se tiene que
    $$ a_{m_1} \geq a_{m_2} \geq \ldots \geq a_{m_k}.$$
    Por tanto, la subsucesión $\{ a_{m_k}\}$ es una subsucesión decreciente de $\{ a_n\}$.

  • Caso 2: La sucesión tiene una cantidad finita de picos.
    Nuevamente, la sucesión generada por los subíndices es creciente: $a_{m_1}$, $a_{m_2}$, $\ldots$, $a_{m_k}$. Sea $s_1 = m_k+1$ el primer índice después del último pico, entonces existe $s_2 > s_1$ tal que $a_{s_1} < a_{s_2}$ dado que $a_{s_1}$ no es un pico. Además, sucede que $a_{s_2}$ tampoco es un pico, por lo que existe $s_3 > s_2$ tal que $a_{s_2} < a_{s_3}$. Al continuar de esta forma, se obtiene una subsucesión creciente $\{ a_{s_k}\}$ de $\{a_n\}.$

De ambos casos podemos concluir que toda sucesión tiene una subsucesión monótona.

$\square$

Teorema de Bolzano-Weierstrass. Toda sucesión acotada de números reales tiene una subsucesión convergente.

Demostración.

Sea $\{a_n\}$ una sucesión acotada. Por el teorema anterior, sabemos que $\{a_n\}$ tiene una subsucesión monótona $\{a_{n_k}\}$, además la subsucesión también está acotada pues $\{a_n\}$ lo está, entonces $\{a_{n_k}\}$ es convergente.

$\square$

Como último teorema, revisaremos que si toda subsucesión convergente de una sucesión acotada tiene límite $L$, entonces debe suceder que la sucesión original también converja a $L$.

Teorema. Sea $\{a_n\}$ una sucesión acotada de números reales. Si toda subsucesión convergente $\{a_{n_k} \}$ de $\{a_n\}$ converge a $L$, entonces $\{a_n\}$ también converge y lo hace a $L$.

Demostración.

Sea $\{a_n\}$ una sucesión acotada tal que todas sus subsucesiones convergentes lo hacen a $L$. Entonces existe $M \in \mathbb{R}$ tal que $|a_n| < M$ para todo $n \in \mathbb{N}$.

Supongamos que $\{a_n\}$ no converge a $L$, entonces existen $\varepsilon_0 > 0$ y una subsucesión $\{a_{n_k}\}$ tal que

$$|a_{n_k} – L| \geq \varepsilon_0 \quad \forall k \in \mathbb{N}. \tag{1}$$

Puesto que $\{ a_{n_k}\}$ es una subsucesión de $\{a_n\}$, entonces también se cumple que $|a_{n_k}| < M $. Es decir, $M$ también es una cota $\{ a_{n_k}\}$. Por el teorema de Bolzano-Weierstrass, esto implica que $\{a_{n_k}\}$ tiene una subsucesión convergente $\{a_{r_k}\}$. Puesto que esta última subsucesión también es subsucesión de $\{a_n\}$ converge a $L$ por hipótesis. Por tanto, existe $n_0 \in \mathbb{N}$ tal que para $r_k \geq n_0$ se tiene que $|a_{r_k} – L| \leq \varepsilon_0$, lo cual contradice $(1).$

$\square$

Más adelante…

En la siguiente entrada estudiaremos las sucesiones de Cauchy, las cuales nos permitirán dar un enfoque especial a las sucesiones convergentes donde no será necesario conocer a priori el valor del límite. Además, probaremos la equivalencia existente entre las sucesiones convergentes y las sucesiones de Cauchy.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de una sucesión y dos subsucesiones de ella.
  • Da un ejemplo de una sucesión acotada que tenga una subsucesión convergente.
  • Da un ejemplo de una sucesión no acotada que tenga una subsucesión convergente.
  • Prueba que la sucesión $\{ \left( 1 + \frac{1}{n^2} \right) ^{n^2} \}$ es convergente.
  • Determina el límite de la sucesión$\{ (3n)^{\frac{1}{2n}} \}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Sucesiones monótonas

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada terminaremos de revisar las operaciones aritméticas de sucesiones probando qué sucede con el cociente de sucesiones convergentes. Además, daremos la definición de sucesión monótona y demostraremos algunas de sus propiedades.

Cociente de sucesiones

Daremos inicio demostrando que el cociente de sucesiones convergentes converge al cociente de sus límites siempre que se cumpla la condición de que el denominador sea una sucesión de términos distintos de cero e, igualmente, debe tener como límite a un número real distinto de cero.

Proposición. Sean $\{b_n \}$ una sucesión en los reales tal que
$$\lim_{n \to \infty} b_n = M.$$
Si además se tiene que $M \neq 0$ y $b_n \neq 0$ para todo $n \in \mathbb{N}$, entonces
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{M}.$$

Demostración.

Sea $\varepsilon > 0$. Para $n \in \mathbb{N}$, se tiene

\begin{align*}
\left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert &
= \left\lvert \frac{M-b_n}{M \cdot b_n} \right\rvert \\ \\
& = \frac{|M-b_n|}{|M \cdot b_n|} \\ \\
& = \frac{1}{|M \cdot b_n|} \cdot |M-b_n| \\ \\
& = \frac{1}{|M|} \cdot \frac{1}{| b_n|} \cdot |M-b_n|.
\end{align*}

$$\therefore \left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert = \frac{1}{|M|} \cdot \frac{1}{|b_n|} \cdot |M-b_n|. \tag{1}$$

Sea $\frac{|M|}{2} > 0$, como $\{b_n\}$ converge a $M$, entonces existe $n_1 \in \mathbb{N}$ tal que si $n \geq n_1$ se cumple que
\begin{gather*}
|M-b_n| < \frac{|M|}{2}.
\end{gather*}
Se sigue que
$$ |M| – |b_n | \leq |M-b_n| < \frac{|M|}{2}. $$
De la expresión anterior se obtiene que $$\frac{|M|}{2} < |b_n|.$$
Por tanto,
$$\frac{1}{|b_n|} < \frac{2}{|M|}. \tag{2}$$

De $(1)$ y $(2)$ se tiene que si $n \geq n_1$, entonces

\begin{align*}
\left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert & = \frac{1}{|M|} \cdot \frac{1}{| b_n|} \cdot |M-b_n| \\ \\
& < \frac{1}{|M|} \cdot \frac{2}{|M|} \cdot |M-b_n| \\ \\
& = \frac{2}{|M|^2} \cdot |M-b_n|.
\end{align*}

$$\therefore \left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert < \frac{2}{|M|^2} \cdot |M-b_n|. \tag{3}$$

Ahora consideremos $$\frac{\varepsilon}{\frac{2}{|M|^2}} > 0.$$

Nuevamente, como $\{ b_n \}$ converge a $M$, existe $n_2 \in \mathbb{N}$ tal que si $n \geq n_2$, entonces $$|b_n-M| < \frac{\varepsilon}{\frac{2}{|M|^2}}. \tag{4}$$

Tomemos $n_0 = max\{n_1, n_2 \}$. Si $n \geq n_0$, también se cumple que $n \geq n_1$ y $n \geq n_2$ y de $(3)$ y $(4)$ se tiene que
\begin{align*}
\left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert & < \frac{2}{|M|^2} \cdot |M-b_n| \\ \\
& = \frac{2}{|M|^2} \cdot |b_n-M| \\ \\
&< \frac{2}{|M|^2} \cdot \frac{\varepsilon}{\frac{2}{|M|^2}} \\ \\
& = \varepsilon.
\end{align*}

$$ \therefore \left\lvert \frac{1}{b_n} – \frac{1}{M} \right\rvert < \varepsilon.$$

$$\therefore \lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{M}.$$

$\square$

Ejemplo 1. Prueba el siguiente límite $$\lim_{n \to \infty} \frac{3}{1+(n+10)^2}-1 = -1.$$

Demostración.

Primero desarrollaremos la expresión y multiplicaremos por un uno, $\frac{ \frac{1}{n^2} }{ \frac{1}{n^2} }$, que nos ayudará a obtener límites que ya conocemos. Podemos observar que el uno que usaremos está bien definido dado que $n \in \mathbb{N}$, por lo que $n \geq 1$.

\begin{align*}
\frac{3}{1+(n+10)^2}-1 & = \frac{3}{n^2+20n+101}-1 \\ \\
& = \frac{3}{n^2+20n+101} \cdot \frac{ \frac{1}{n^2} }{ \frac{1}{n^2} } -1 \\ \\
& = \frac{\frac{3}{n^2}}{\frac{n^2+20n+101}{n^2}}-1 \\ \\
& = \frac{\frac{3}{n^2}}{1+\frac{20}{n}+\frac{101}{n^2}}-1. \\ \\
\end{align*}

Además, sabemos que $$ \lim_{n \to \infty} \frac{1}{n} = 0.$$

Y usando las propiedades que hemos visto respecto a las operaciones de sucesiones convergentes, se tiene que
\begin{align*}
\lim_{n \to \infty} \frac{3}{1+(n+10)^2}-1 & = \lim_{n \to \infty} \frac{\frac{3}{n^2}}{1+\frac{20}{n}+\frac{101}{n^2}}-1 \\ \\
&= \frac{\lim_{n \to \infty} \frac{3}{n^2}}{\lim_{n \to \infty} 1+\frac{20}{n}+\frac{101}{n^2} } – \lim_{n \to \infty} 1 \\ \\
& = \frac{0}{1+0+0}-1 \\ \\
& = -1.
\end{align*}

$$\therefore \lim_{n \to \infty} \frac{3}{1+(n+10)^2}-1 = -1.$$

$\square$

Sucesiones monótonas

A continuación daremos algunas definiciones referentes a la monotonía que se presenta en las sucesiones.

Definición. Sea $\{a_n \}$ una sucesión de números reales.

  • Se dice que la sucesión es creciente si satisface que $a_n \leq a_{n+1}$ para todo $n \in \mathbb{N}$. Si la desigualdad es estricta, se dice que la sucesión es estrictamente creciente.
  • Se dice que la sucesión es decreciente si satisface que $a_n \geq a_{n+1}$ para todo $n \in \mathbb{N}$. Si la desigualdad es estricta, se dice que la sucesión es estrictamente decreciente.
  • Se dice que la sucesión es monótona si es creciente o decreciente. Si la desigualdad es estricta, se dice que la sucesión es estrictamente monótona.

Ejemplo 2. Las siguientes sucesiones son decrecientes:

  • $\{\frac{1}{n}\}.$
  • $\{\frac{1}{n!}\}.$
  • $\{c^n\}$ si $0< c < 1.$
  • $\{\frac{1}{2^n}\}.$

Probaremos la monotonía de la última sucesión.

Demostración.

Sea $\{a_n\} = \{\frac{1}{2^n}\}$. Consideremos $n \in \mathbb{N}$, sabemos que $2 > 1$ y $2^n > 0$, entonces se tiene que

\begin{gather*}
& 2 \cdot 2^n > 1 \cdot 2^n. \\ \\
\Leftrightarrow & 2^{n+1} > 2^n. \\ \\
\Leftrightarrow & \frac{1}{2^n} > \frac{1}{2^{n+1}}.
\end{gather*}

$$\therefore a_n \geq a_{n+1}.$$

Además, como se cumple la desigualdad estricta, la sucesión $\{a_n\} = \{\frac{1}{2^n}\}$ es estrictamente decreciente.

$\square$

Ejemplo 3. Las siguientes sucesiones son crecientes:

  • $\{n\}.$
  • $\{n^2\}.$
  • $\{c^n\}$ si $c > 1.$
  • $\{ \sqrt{n} \}.$

Probaremos la monotonía de la última sucesión.

Demostración.

Sea $\{a_n\} = \{ \sqrt{n} \}$. Consideremos $n \in \mathbb{N}$, sabemos que $n <n+ 1$, entonces se tiene que

\begin{gather*}
& 0 < n+1-n. \\
\Leftrightarrow & 0 < \left( \sqrt{n+1} \right)^2 – \left( \sqrt{n} \right)^2. \\ \\
\Leftrightarrow & 0 < \left( \sqrt{n+1} – \sqrt{n}\right) \left( \sqrt{n+1} + \sqrt{n}\right). \\ \\
\Leftrightarrow & \frac{0}{ \sqrt{n+1} + \sqrt{n} } < \sqrt{n+1} – \sqrt{n}, \text{pues } \sqrt{n+1} + \sqrt{n} > 0.
\end{gather*}

De la expresión anterior se sigue que
$$0 < \sqrt{n+1} – \sqrt{n}. $$
Es decir,
$$\sqrt{n} < \sqrt{n+1}.$$

$$\therefore a_{n} \leq a_{n+1}.$$

Además, como se cumple la desigualdad estricta, la sucesión $\{a_n\} = \{ \sqrt{n} \}$ es estrictamente creciente.

$\square$

Una vez dada la definición, podemos probar el siguiente teorema.

Teorema. Una sucesión monótona de números reales es convergente si y solo si está acotada. Además,

  1. Si $\{a_n\}$ es una sucesión creciente acotada, entonces
    $$ \lim_{n \to \infty} a_n = sup\{a_n : n \in \mathbb{N} \}.$$
  2. Si $\{a_n\}$ es una sucesión decreciente acotada, entonces
    $$ \lim_{n \to \infty} a_n = inf\{a_n : n \in \mathbb{N} \}.$$

Demostración.

$\Rightarrow]$ En la entrada anterior se probó que toda sucesión convergente está acotada, particularmente una sucesión convergente monótona también está acotada.

$\Leftarrow]$ Sea $\{a_n\}$ una sucesión monótona acotada. Entonces la sucesión es creciente o decreciente.

  • Caso 1: $\{a_n\}$ es creciente.
    Como $\{a_n\}$ está acotada, entonces existe un número real $M$ tal que $a_n \leq M$ para todo $n \in \mathbb{N}$. Sea $A = \{a_n | n \in \mathbb{N} \}$, como $A \neq \varnothing$ y está acotado, entonces existe el supremo. Definimos $\alpha = supA$.

    Sea $\varepsilon > 0$. Notemos que $\alpha – \varepsilon < \alpha$ y como $\alpha$ es la cota superior más pequeña del conjunto $A$, entonces $\alpha – \varepsilon$ no es cota superior de $A$. Entonces existe $n_0 \in \mathbb{N}$ tal que $$\alpha – \varepsilon < a_{n_0} \leq \alpha < \alpha + \varepsilon.$$

    Si $n \geq n_0$, como $\{a_n\}$ es creciente, se tiene que
    \begin{gather*}
    & \alpha – \varepsilon < a_{n_0} \leq a_n \leq \alpha < \alpha + \varepsilon. \\
    \Rightarrow & \alpha – \varepsilon < a_n < \alpha + \varepsilon.
    \end{gather*}

    Es decir, $$-\varepsilon < a_n – \alpha < \varepsilon.$$

    $$\therefore |a_n – \alpha| < \varepsilon \quad \forall n \geq n_0.$$
    $$\therefore \lim_{n \to \infty} a_n = \alpha.$$
  • Caso 2: $\{a_n\}$ es decreciente.
    Quedará como tarea moral.

$\square$

Gracias al teorema anterior, dada una sucesión que sea monótona, basta probar que está acotada para saber que es convergente. Más aún, si determinamos el ínfimo/supremo de tal sucesión, estaremos encontrando su límite; el siguiente ejemplo nos permitirá poner esto en práctica.

Ejemplo 4. Determina el siguiente límite $$\lim_{n \to \infty} \frac{1}{\sqrt{n}}.$$

Demostración.

Sabemos que $\{ \sqrt{n} \}$ es creciente, entonces para todo $n \in \mathbb{N}$
$$\sqrt{n} \leq \sqrt{n+1}.$$

$$ \Leftrightarrow \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}}.$$

Por lo tanto, se tiene que la sucesión $\{ \frac{1}{\sqrt{n}} \}$ es decreciente y tiene como ínfimo el $0$, por tanto, se tiene que

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

$\square$

Más adelante…

En la siguiente entrada añadiremos a nuestro arsenal más propiedades de las sucesiones convergentes con lo cual tendremos un estudio más detallado de las mismas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sean $\{a_n\}$, $\{b_n \}$ dos sucesiones de números reales tal que $$\lim_{n \to \infty} a_n = L \text{ y } \lim_{n \to \infty} b_n = M.$$
    Si además se tiene que $L \neq 0$ y $b_n \neq 0$ para todo $n \in \mathbb{R}$, entonces $$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}.$$
  • Prueba que si $\{a_n\}$ es una sucesión decreciente acotada, entonces
    $$ \lim_{n \to \infty} a_n = inf\{b_n : n \in \mathbb{N} \}.$$
  • Da un ejemplo de sucesión convergente que no sea monótona.
  • Da un ejemplo de sucesión de números reales negativos tal que converja a cero, pero que no sea creciente.
  • Da un ejemplo de sucesión creciente y acotada, y encuentra su límite.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros

Por Eduardo Vera Rosales

Introducción

Es momento de estudiar el caso no homogéneo, es decir, ecuaciones del tipo $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ donde la función $g$ no es la función constante cero. El primer método que estudiaremos es el de variación de parámetros que es, en cierta parte, análogo al método de variación de parámetros para ecuaciones lineales no homogéneas de primer orden, y que puedes encontrar en el siguiente enlace.

El teorema principal de esta entrada nos dice que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada, que denotaremos por $y_{H}$, y una solución particular a la ecuación no homogénea denotada por $y_{P}$.

Dado que en entradas anteriores estudiamos ecuaciones lineales homogéneas y sabemos cómo encontrar su solución general, nos enfocaremos en encontrar únicamente la solución particular. El método de variación de parámetros nos ayudará a resolver este problema.

Vamos a comenzar!

Soluciones a ecuaciones lineales no homogéneas de segundo orden

En el video demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

Método de variación de parámetros

En el primer video desarrollamos el método de variación de parámetros para encontrar a la solución particular $y_{P}$. En el segundo video empleamos este método para resolver dos ejemplos particulares.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una expresión para $u_{2}(t)$ similar a la encontrada para $u_{1}(t)$ en el segundo video: $$u_{1}(t)=-\int \frac{g(t)y_{2}(t)}{W[y_{1},y_{2}](t)} dt$$ con $u_{1}(t)$, $u_{2}(t)$ que satisfacen $$y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$$ donde $y_{P}(t)$ es una solución particular a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ y $y_{1}$, $y_{2}$ son soluciones a la ecuación homogénea asociada. (Revisa el video para mayor referencia).
  • Prueba que $y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$ es solución a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ una vez que has encontrado las expresiones para $u_{1}(t)$ y $u_{2}(t)$.
  • Resuelve la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-t}$$ por el método de variación de parámetros.
  • Resuelve el problema de condición inicial $$3\frac{d^{2}y}{dt^{2}}+4\frac{dy}{dt}+y=e^{-t}\sin{t}; \,\,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$

Más adelante

Hemos presentado un primer método para resolver ecuaciones lineales no homogéneas de segundo orden. En la siguiente entrada estudiaremos otro método de resolución, en particular para resolver ecuaciones de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes, $a \neq 0$ y en la función $g(t)$ aparecen funciones exponenciales, polinómicas y funciones $\sin{\beta t}$ y $\cos{\beta t}$.

El método que estudiaremos será llamado coeficientes indeterminados.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Teorema de Ptolomeo

Por Rubén Alexander Ocampo Arellano

Introducción

El teorema de Ptolomeo nos da una caracterización del cuando un cuadrilátero convexo es cíclico en términos de los productos entre sus lados y sus diagonales. Necesitaremos antes una caracterización diferente de cuadrilátero cíclico.

Cuadriláteros cíclicos

Definición. Si los vértices de un polígono están en una misma circunferencia decimos que está inscrito en ella o que es cíclico.

Teorema 1. Un cuadrilátero convexo es cíclico si y solo si los ángulos opuestos son suplementarios.

Demostración. Sea $\square ABCD$ un cuadrilátero cíclico inscrito en $(O, r)$, la circunferencia con centro en $O$.

Los ángulos opuestos $\angle ADC$ y $\angle CBA$ son subtendidos por los arcos $AC$ y $CA$ respectivamente y por el teorema de la medida del ángulo inscrito tenemos que
$\angle ADC + \angle CBA = \dfrac{\angle AOC}{2} + \dfrac{\angle COA}{2} = \dfrac{2\pi}{2} = \pi$.

Figura 1

De manera análoga se ve que $\angle BAD$ y $\angle DCB$ son suplementarios.

Por lo tanto, los ángulos opuestos de un cuadrilátero cíclico son suplementarios.

$\blacksquare$

Ahora supongamos que los ángulos opuestos $\angle ADC$ y $\angle CBA$ de $\square ABCD$ son suplementarios.

Consideremos el circuncírculo de $\triangle ABC$, entonces todos los puntos en el arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$ subtienden un ángulo $\angle ADC$ suplementario a $\angle CBA$, pero este lugar geométrico es único.

Por lo tanto $D \in \overset{\LARGE{\frown}}{CA}$ y en consecuencia $\square ABCD$ es cíclico.

$\blacksquare$

Teorema de Ptolomeo

Teorema 2, desigualdad de Ptolomeo. En todo cuadrilátero convexo la suma de los productos entre lados opuestos es mayor o igual al producto de las diagonales, y la igualdad se da si y solo si es el cuadrilátero es cíclico.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo, construyamos sobre el segmento $AB$ (figura 2), un triángulo $\triangle ABE$ semejante a $\triangle ADC$ tal que $\angle ABE = \angle ADC$ y $\angle BAE = \angle CAD$ entonces

$\begin{equation} \dfrac{EA}{CA} = \dfrac{BA}{DA} \Leftrightarrow \dfrac{EA}{BA} = \dfrac{CA}{DA}. \end{equation}$

Figura 2

Dado que $\angle CAE = \angle BAD$ y por $(1)$, por criterio lado, ángulo, lado, los triángulos $\triangle EAC$ y $\triangle BAD$ son semejantes, entonces de la primera y segunda relaciones de semejanza tenemos que
$\dfrac{EB}{CD} = \dfrac{AB}{AD}$ y $\dfrac{EC}{BD} = \dfrac{AC}{AD}$
$\Leftrightarrow$ $EB = \dfrac{AB \times CD}{AD}$ y $EC = \dfrac{AC \times BD}{AD}$.

Ahora notemos que tenemos dos casos:

Caso 1. (izquierda figura 2)
$B \in EC$ $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE = \pi$ $\Leftrightarrow$ $\square ABCD$ es cíclico,
y en tal caso $EC = EB + BC$ $\Leftrightarrow$ $\dfrac{AC \times BD}{AD} = \dfrac{AB \times CD}{AD} + BC$
$\Leftrightarrow$ $AC \times BD = AB \times CD + AD \times BC$.

Caso 2. (derecha figura 2)
$E$, $B$ y $C$ son tres puntos no colineales $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE \ne \pi$ $\Leftrightarrow$ $\square ABCD$ no es cíclico, entonces aplicando la desigualdad del triángulo a $\triangle EBC$ tenemos que
$EC < EB + BC$ $\Leftrightarrow$ $AC \times BD < AB \times CD + AD \times BC$.

De lo anterior se sigue que $AB \times CD + AD \times BC \geq AC \times BD$, con la igualdad si y solo si $\square ABCD$ es cíclico.

$\blacksquare$

Construcción del cuadrilátero cíclico

Problema 1. Construir un cuadrilátero convexo y cíclico dados sus cuatro lados $a$, $b$, $c$ y $d$.

Solución. Notemos primero que es necesario que la suma de cualesquiera tres de los lados dados sea mayor que el lado restante.

Si un lado es mayor que la suma de los otros tres no es posible construir ningún cuadrilátero y si es igual entonces solo es posible construir un cuadrilátero degenerado donde todos los vértices están alineados.

Supongamos que $AB = a$, $BC = b$, $CD = c$ y $DA = d$, la prueba del teorema de Ptolomeo nos sugiere una manera de resolver este problema.

Trazamos el segmento $BC$ y lo extendemos del lado de $B$ hasta un punto $E$ tal que $EB = \dfrac{ac}{d}$, el cual es posible construir pues podemos construir el producto de dos magnitudes y el inverso de una magnitud dadas.

Aquí usaremos que $B \in EC$ $\Leftrightarrow$ $\square ABCD$ es cíclico y que los triángulos $\triangle ABE$ y $\triangle ADC$ son semejantes, como en la prueba anterior.

La razón de semejanza está dada por $\dfrac{AE}{AC} = \dfrac{BE}{CD} = \dfrac{ac}{dc} = \dfrac{a}{d}$.

Esto último nos dice que la razón entre las distancias de $A$ a los puntos $E$ y $C$ es una razón fija por lo tanto $A$ esta en la circunferencia de Apolonio determinada por $E$, $C$ y la razón $\dfrac{a}{d}$.

Por otro lado, el vértice $A$ se encuentra en la circunferencia con centro en $B$ y radio $a$, por lo tanto, $A$ esta determinado por la intersección de $(B, a)$ y la circunferencia de Apolonio mencionada.

Ahora que conocemos la diagonal $AC$ podemos completar el triángulo $\triangle ACD$ trazando circunferencias $(A, d)$ y $(C, c)$, una de las intersecciones será el cuarto vértice del cuadrilátero buscado.

Figura 3

Por construcción $\triangle ABE$ y $\triangle ADC$ son semejantes por lo que $\angle CBA$ y $\angle ADC$ son suplementarios.

Por lo tanto $\square ABCD$ es cíclico.

$\blacksquare$

Distancia de los vértices de un polígono cíclico a un punto del circuncírculo

Problema 2. Sean $\triangle ABC$ isósceles con $AB = AC$ y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, muestra que $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

Figura 4

Solución. Aplicando el teorema de Ptolomeo a $\square ABPC$ tenemos que
$PA \times BC = AB \times PC + AC \times PB $
$= AC \times PC + AC \times PB = AC(PC + PB)$.

Por lo tanto, $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

$\blacksquare$

Problema 3. Sean $ABCDE$ un pentágono regular inscrito en una circunferencia y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$, muestra que $PA + PD = PB + PC + PE$.

Solución. Como el pentágono es regular, entonces sus diagonales tienen la misma longitud.

Figura 5

Aplicando el teorema de Ptolomeo a $\square ABPC$  y $\square BPCD$ obtenemos
$BC \times PA = AB \times PC + AC \times PB = BC \times PC + AC \times PB$
$BC \times PD = PB \times CD + PC \times BD = PB \times BC + PC \times AC$.

Sumando estas dos últimas igualdades tenemos
$\begin{equation} BC(PA + PD) = BC(PB + PC) + AC(PB + PC). \end{equation}$

Por otra parte dado que $\triangle BEC$ es isósceles podemos aplicar el resultado del problema anterior y obtenemos $\dfrac{PE}{PB + PC} = \dfrac{EC}{BC}$

$\Leftrightarrow$ $\begin{equation} \dfrac{PE \times BC}{PB + PC} = EC = AC. \end{equation}$

Sustituyendo $(3)$ en $(2)$ resulta
$BC(PA + PD) = BC(PB + PC) + \dfrac{PE \times BC}{PB + PC} (PB + PC)$.

Por lo tanto, $PA + PD = PB  + PC + PE$.

$\blacksquare$

Hexágono cíclico

Problema 4. Sea $ABCDEF$ un hexágono convexo inscrito en una circunferencia. Consideremos las diagonales que dividen al hexágono en dos cuadriláteros cíclicos, $AD = d$, $CF = e$ y $BE = f$ y los lados del hexágono que no comparten vértices con dichas diagonales $BC = a$, $EF = a’$, $DE = b$, $AB = b’$, $AF = c$, $CD = c’$ respectivamente, entonces $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

Figura 6

Demostración. Aplicando el teorema de Ptolomeo a $\square ABCD$ y $\square BCDE$ obtenemos
$ad + b’c’ = AC \times BD$ y $ab + c’f = BD \times CE$.

Multiplicamos por $a’$ y $c$ respectivamente y después sumamos el resultado y obtenemos:
$aa’d + a’b’c’ + abc + cc’f $
$= a’(AC \times BD) + c(BD \times CE) = BD(a’AC + cCE)$.

Aplicando Ptolomeo a $\square ACEF$ obtenemos $a’AC + cCE = eAE$.

Por lo tanto $aa’d + a’b’c’ + abc + cc’f = BD(eAE) = e (BD \times AE)$.

Ahora consideramos $\square ABDE$ y por el teorema de Ptolomeo obtenemos
$BD \times AE = df -bb’$.

En consecuencia tenemos $aa’d + a’b’c’ + abc + cc’f = e(df – bb’)$.

Por lo tanto, $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

$\blacksquare$

Más adelante…

En la próxima entrada estudiaremos trigonometría y mostraremos algunas identidades trigonométricas aplicando el teorema de Ptolomeo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que un cuadrilátero convexo es cíclico si y solo si:
    $i)$ un ángulo interno formado con una diagonal y un lado es igual al ángulo interno formado con la otra diagonal y el lado opuesto,
    $ii)$ las mediatrices de los lados del cuadrilátero son concurrentes.
  2. Sean $l_{1}$, $l_{2}$ y $l_{3}$, $l_{4}$ dos pares de rectas tales que la bisectriz del primer par es transversal al segundo par y forma ángulos internos iguales entonces decimos que $l_{3}$ y $l_{4}$ son antiparalelas respecto a $l_{1}$ y $l_{2}$. Muestra que un cuadrilátero convexo es cíclico si y solo si un par de lados opuestos es antiparalelo respecto al otro par de lados opuestos.
Figura 7
  1. Como podrás haber notado nuestra construcción del cuadrilátero cíclico no es única pues partimos de una suposición arbitraria, que $AB = a$, $BC = b$, $CD = c$ y $DA = d$ para $a$, $b$, $c$ y $d$ dados. Muestra que es posible construir tres cuadriláteros cíclicos diferentes con los mismos lados y que de estos se obtienen tres diagonales diferentes.
  2. Expresa la razón de las diagonales de un cuadrilátero cíclico en términos de sus lados.
  3. Considera $\triangle ABC$ equilátero y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, prueba que $PA = PB + PC$.
  4. Sean $\square ABCD$ un cuadrado y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\square ABCD$, muestra que $\dfrac{PA +PC}{PD + PB} = \dfrac{PD}{PA}$.
  5. Si $ABCDEF$ es un hexágono regular y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $ABCDEF$, muestra que $PE + PF = PA + PB + PC + PD$.
  6. Sean $\triangle ABC$ equilátero, $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$ y $D$ la intersección de $BC$ con $AP$, demuestra que $\dfrac{1}{PD} = \dfrac{1}{PB} + \dfrac{1}{PC}$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 127-131.
  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 15-19, 31-34.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 33-35.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 62-66.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Cortaduras de Dedekind (Adicional)

Por Karen González Cárdenas

Introducción

Ya hemos visto que el campo de los números reales cumple con la propiedad de ser completos, esta propiedad la vimos enunciada con el Axioma del Supremo en la entrada pasada. Ahora veremos que utilizando Cortaduras de Dedekind podemos dar una equivalencia.

Una idea intuitiva

Previamente vimos que existe una relación biunívoca entre el conjunto de los números reales $\r$ y la recta: a cada punto en la recta le corresponde un único número real y viceversa.

Imaginemos que tomamos un punto $p$ en la recta:

Observemos que ahora la recta queda dividida en dos secciones. La primera conformada por todos los elementos menores (o iguales) que $p$ a la que llamaremos $A$:

Y la segunda por los elementos mayores (o iguales) que $p$ que será $B$:

De este modo vemos que tenemos las siguientes posibilidades:

Cada una cumple que $A$ y $B$ no son vacíos además de ser ajenos. En la próxima sección veremos formalmente su definición.

Definición de Cortadura

Definición: Sean $A, B \subseteq \r$. Decimos que la pareja $(A,B)$ forma una cortadura de un campo ordenado $\mathbb{U} \Leftrightarrow$

  • $A$ y $B$ son distintos del vacío.
  • Para todo $x \in A$ y $y \in B$ ocurre que $x \leq y$.
  • $A \cup B = \mathbb{U}$
    $A \cap B = \emptyset$.

Completitud por Cortaduras de Dedekind

Principio de Completitud por Cortaduras de Dedekind: Para toda cortadura $(A,B)$ de $\r$ existe un único $p \in \r$ tal que $\forall x \in A, \forall y \in B$:
$$x \leq p \leq y.$$

Este principio no lo cumplen los números racionales. A continuación veremos la razón:
Consideremos al campo como $\mathbb{U} = \mathbb{Q}$. Proponemos a los conjuntos $A$ y $B$ siguientes:
$$ A = \left\{ x \in \mathbb{Q} : x^{2} \leq 2 \quad \text{o} \quad x < 0 \right\}$$
$$ B = \left\{ y \in \mathbb{Q} : y^{2} > 2 \quad \text{y} \quad y > 0 \right\}$$

Primero debemos probar que son una cortadura de $\mathbb{Q}$:

  • $A \neq \emptyset$ ya que $-1 <0$. Por lo que $-1 \in A$.
    $B \neq \emptyset$ pues $2 <3^{2}$. Así $2 \in B$.
  • Vemos que $A,B \subseteq \mathbb{Q}$ ya que así fueron definidos.
    • Para $x \in A$ observamos que $x^{2} \leq 2$ o $x<0$.
      $\Rightarrow |x| \leq \sqrt{2}$ o $x <0$.
      $\therefore x \in [- \sqrt{2}, \sqrt{2}] \cup (-\infty, 0) = (- \infty, \sqrt{2}) \cap \mathbb{Q}$.
      Por lo que concluimos $A=(- \infty, \sqrt{2}] \cap \mathbb{Q}$ que vemos es un subconjunto de $\mathbb{Q}$.
    • Ahora si $y \in B$ tenemos que $y^{2} > 2$ y $y>0$.
      $\Rightarrow |y| > \sqrt{2}$ y $y >0$.
      $\therefore y \in ((-\infty, -\sqrt{2}) \cup (\sqrt{2},\infty)) \cap (0,\infty) = (\sqrt{2}, \infty) \cap \mathbb{Q}$.
      Así $B = (\sqrt{2}, \infty) \cap \mathbb{Q}$ y vemos que también es un subconjunto de los racionales.
  • Notemos que para toda $x \in A$ y para toda $y \in B$ ocurre:
    $-\sqrt{2} \leq x \leq \sqrt{2}\quad$ o $\quad x<0$, $\sqrt{2}<y\quad$ y $\quad y>0$.
    $\Rightarrow x \leq \sqrt{2}\quad$ o $\quad x<0<y$.
    $\therefore x\leq y$.
  • Además de que:
    • \begin {align*}
      A \cup B&=((- \infty, \sqrt{2}] \cap \mathbb{Q}) \cup ((\sqrt{2}, \infty) \cap \mathbb{Q})\\
      &= ((-\infty, \sqrt{2}] \cup (\sqrt{2}, \infty)) \cap \mathbb{Q}\\
      &= \mathbb{Q}\\
      \end{align*}
    • \begin{align*}
      A \cap B&=((- \infty, \sqrt{2}] \cap \mathbb{Q}) \cap ((\sqrt{2}, \infty) \cap \mathbb{Q})\\
      &=(- \infty, \sqrt{2}] \cap (\sqrt{2}, \infty) \cap \mathbb{Q}\\
      &= \emptyset\\
      \end{align*}

Así probamos que $A$ y $B$ son una cortadura de $\mathbb{Q}$.

Veamos que el único número $p$ que cumple la desigualdad $x \leq p \leq y$ para cualesquiera $x \in A$ y $y \in B$ es $p = \sqrt{2} \notin \mathbb{Q}$.
$\therefore \mathbb{Q}$ no es completo.

$\square$

Notemos que anteriormente afirmamos que $\sqrt{2} \notin \mathbb{Q}$, a continuación, veremos su prueba:
Afirmación: $\sqrt{2}$ es irracional.
Demostración: Procederemos por contradicción. Supongamos que $\sqrt{2}$ es racional, es por ello que podemos expresar dicha raíz como una fracción irreducible:
$$\sqrt{2}=\frac{a}{b}.$$

De este modo, $a$ y $b\in \mathbb{Z}$ no tienen ningún factor en común distinto de $1$.

Ahora bien, elevando al cuadrado la igualdad anterior:
\begin{align*}
2=\frac{a^{2}}{b^{2}} &\Rightarrow 2b^{2}= a^{2}\\
&\Rightarrow a^{2} \text{ es par}\\
&\Rightarrow a \quad\text{es par} \tag{por Lema auxiliar}\\
&\therefore a=2q.
\end{align*}

Sustituyendo $a=2q$ nos queda:
\begin{align*}
2b^{2}= a^{2}&\Rightarrow 2b^{2}= (2q)^{2}\\
&\Rightarrow 2b^{2}= 4q^{2}\\
&\Rightarrow b^{2}= 2q^{2}\\
&\Rightarrow b^{2} \text{ es par}\\
&\Rightarrow b \quad\text{es par}. \tag{por Lema auxiliar}\\
\end{align*}
Concluimos que $2$ es un factor común de $a$ y $b \contradiccion$ lo cual es una contradicción.

$\square$

Lema auxiliar: Si consideramos $p \in \mathbb{Z}$ tenemos que:

  • $ p^{2}$ es par $\Leftrightarrow p$ es par.
  • $ p^{2}$ es impar $\Leftrightarrow p$ es impar.

Equivalencia

Ahora veremos que el Axioma del Supremo y el Principio de Completitud por Cortaduras de Dedekind son equivalentes:

Teorema: Axioma del Supremo $\Leftrightarrow$ Principio de Completitud por Cortaduras de Dedekind
Demostración:
$\Rightarrow ):$ Tomemos $(A,B)$ una cortadura de Dedekind de $\r$ cualquiera, así por definición sabemos que se cumple:
$$x \leq y,$$
para cualquier $x \in A$ y cualquier $y \in B$.

Observemos que $A$ es un conjunto acotado superiormente, entonces aplicando el Axioma del Supremo se sigue que:
$\exists \alpha \in \r$ tal que $\alpha = sup(A).$
Por lo que $\alpha$ cumple ser la menor de las cotas superiores de $A$ y $x \leq \alpha$ para toda $x \in A$.
Ya que para todo $y \in B$ ocurre que $y$ es cota superior de $A$ y $\alpha$ supremo de $A$
$\Rightarrow \alpha \leq y.$
Así concluimos que $\forall x \in A$ y $\forall y \in B$:
$$x \leq \alpha \leq y.$$

$\Leftarrow ):$ Consideremos a un conjunto de reales $C$ no vacío y acotado superiormente. Así tenemos que existe $M \in \r$ cota superior de $C$ por lo que si tomamos:
$$B = \left\{ cotas \quad superiores \quad de \quad C \right\},$$
podemos afirmar que $B \neq \emptyset$. Definamos al conjunto $A = B^{c}$ y hagamos las siguientes observaciones:

  • $A\neq \emptyset$. Si suponemos lo contrario se seguiría:
    $A= \emptyset \Rightarrow A^{c}= (B^{c})^{c} \Rightarrow B= \r$.
    Por lo que $C = \emptyset \quad \contradiccion$ lo que es una contradicción.
    $\therefore A, B$ son no vacíos.
  • $A \cup B= B^{c} \cup B= \r$
    $A \cap B= B^{c} \cap B= \emptyset$
  • Para cualquier $x \in A$ y para cualquier $y \in B$ se cumple la desigualdad $x \leq y$. De lo contrario tendríamos que:
    $\Rightarrow \exists x_{0} \in A$ y $\exists y_{0} \in B$ donde $y_{0} < x_{0}$.
    Como $y_{0}$ es cota superior de $C$, para cualquier $x \in C$ se cumple que:
    $$x \leq y_{0} < x_{0} \Rightarrow x < x_{0}.$$
    $\therefore x_{0}$ es cota superior de $C$.
    Por lo que $x_{0} \in B=A^{c}$ y $x_{0} \in A \quad \contradiccion.$

De todo lo anterior concluimos que los conjuntos $A$ y $B$ son una cortadura de Dedekind de $\r$.

Por el Principio de Completitud por Cortaduras de Dedekind existe un único $p \in \r$ tal que para todo $x \in A$ y para todo $y \in B$ cumple que:
$$x \leq p \leq y.$$
Queremos probar que $p =sup(C)$, es decir:

  1. $p$ es cota superior de $C$.
  2. $p$ es la menor de todas las cotas superiores.

Comenzaremos probando el punto 1 procediendo por contradicción:
Supongamos que $p$ no es una cota superior de $C$, así existe $x’ \in C$ donde $p<x’$.
Aplicando la densidad de los reales se sigue que existe $y’ \in \r$ tal que:
$$p<y'<x’.$$
Por hipótesis toda $x \in A$ cumple $x \leq p$ entonces $x < y’$. Por lo que concluiríamos que $y’ \in B$ por ser cota superior de $C$ y $y'<x$ con $x \in C \quad \contradiccion$.
$\therefore p$ es cota superior de $C$.

Ahora debemos probar que $p$ es la menor de las cotas superiores. Si suponemos que no lo es entonces existe $M \in B$ con $M<p \quad \contradiccion$ lo que contradice que $p \leq y$ para toda $y \in B$.
$\therefore p= sup(C)$.

$\square$

Más adelante

En la siguiente entrada veremos como tema adicional para esta unidad a los Conjuntos infinitos. Para ello daremos las definiciones necesarias y revisaremos teoremas útiles.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»