Archivo de la etiqueta: media aritmética

Geometría Moderna I: Desigualdades geométricas

Introducción

En esta entrada, con la ayuda de varias fórmulas y resultados que hemos visto hasta ahora, mostraremos algunas desigualdades geométricas básicas e importantes, entre ellas la desigualdad entre las medias geométrica y aritmética, y la desigualdad de Erdos Mordell.

Medias armónica, geométrica, aritmética y cuadrática

Teorema 1. Dados dos segmentos de longitudes $a$ y $b$ tenemos las siguientes desigualdades:
$\dfrac{2ab}{a + b} \leq \sqrt{ab} \leq \dfrac{a + b}{2} \leq \sqrt{\dfrac{a^2 + b^2}{2}}$.

De izquierda a derecha estas cantidades se conocen como media armónica, media geométrica, media aritmética y media cuadrática de $a$ y $b$.

Demostración. Tracemos un semicírculo tomando como diámetro un segmento $BC$  de longitud $a + b$ y sea $D \in BC$ tal que $BD = a$ y $DC = b$, en $D$ levantamos una perpendicular a $BC$ que corta al arco $\overset{\LARGE{\frown}}{CB}$ en $A$, entonces $\triangle ABC$ es un triángulo rectángulo con $\angle A = \dfrac{\pi}{2}$.

Por criterio de semejanza AA $\triangle ADB \sim \triangle CDA$ y tenemos que $\dfrac{AD}{CD} = \dfrac{BD}{AD}$.

Por lo tanto $AD$ es la media geométrica de $BD$ y $DC$, esto es $AD^2 = BD \times CD$.

Figura 1

Consideremos $O$ el punto medio de $BC$, sea $E \in AO$ tal que $DE  \perp AO$, como $\triangle ADO \sim \triangle AED$ entonces
$\dfrac{AD}{AE} = \dfrac{AO}{AD}$
$\Rightarrow AE = \dfrac{2AD^2}{2AO} = \dfrac{2BD \times DC}{BC} = \dfrac{2ab}{a + b}$.

Por el teorema de Pitágoras en $\triangle AED$
$AD^2 = AE^2 + DE^2 \Rightarrow AE \leq AD \Rightarrow \dfrac{2ab}{a + b} \leq \sqrt{ab}$.

Por el teorema de Pitágoras en $\triangle ADO$
$AO^2 = AD^2 + DO^2 \Rightarrow AD \leq AO \Rightarrow \sqrt{ab} \leq \dfrac{a + b}{2}$.

Ahora tracemos $OF$ el radio perpendicular a $BC$, entonces
$OD = \dfrac{a + b}{2} – a = \dfrac{b – a}{2}$.

Aplicando el teorema de Pitágoras a $\triangle ODF$ obtenemos,
$DF^2 = OF^2 + OD^2 = (\dfrac{b – a}{2})^2 + (\dfrac{a + b}{2})^2 =\dfrac{a^2 + b^2}{2}$.

Como $OF \leq DF \Rightarrow \dfrac{a + b}{2} \leq \sqrt{\dfrac{a^2 + b^2}{2}}$.

$\blacksquare$

Corolario. Sean $w$, $x$, $y$, $z$ números reales positivos entonces:
$wxyz \leq (\dfrac{w + x + y + z}{4})^4$, y la igualdad se da si y solo si $w = x = y = z$.

Demostración. Aplicamos la desigualdad entre las medias geométrica y aritmética a los pares de números $w$, $x$; $y$, $z$.
$\sqrt{wx} \leq \dfrac{w + x}{2}$, $\sqrt{yz} \leq \dfrac{y + z}{2}$.

Por lo tanto, $\sqrt{wxyz} \leq (\dfrac{w + x}{2}) (\dfrac{y + z}{2})$.

Ahora volvemos a usar la desigualdad entre las medias geométrica y aritmética
$\sqrt{\dfrac{(w + x)}{2} \dfrac{(y + z)}{2}} \leq \dfrac{\dfrac{w + x}{2} + \dfrac{y + z}{2}}{2} = \dfrac{w + x + y + z}{4}$

Por lo tanto, $\sqrt[4]{wxyz} \leq \sqrt{\dfrac{(w + x)}{2} \dfrac{(y + z)}{2}} \leq \dfrac{w + x + y + z}{4}$.

En consecuencia, $wxyz \leq (\dfrac{w + x + y + z}{4})^4$.

$\blacksquare$

Desigualdad de Erdos Mordell

Lema de Mordell. Sea $\triangle ABC$ y $P$ un punto en su interior, considera $D$, $E$ y $F$ las proyecciones de $P$ a los lados $BC$, $AC$ y $AB$ respectivamente, entonces $PA \sin A \geq PF \sin B + PE \sin C$.

Demostración. Notemos que la circunferencia con diámetro $PA$ pasa por $F$ y por $E$, pues $AP$ subtiende ángulos rectos en $F$ y $E$.

Figura 2

Por la ley extendida de los senos,
$\sin BAC = \sin (\pi – BAC) = \sin EPF = \dfrac{EF}{PA}$, esto implica que $PA \sin A = EF$.

Sean $G$ y $H$ las proyecciones de $E$ y $F$ respectivamente en la recta que pasa por $P$ y $D$.

$\square FBDP$ es cíclico, pues $PB$ subtiende ángulos rectos en $F$ y $D$, entonces $\angle DBA$ y $\angle FPD$ son y suplementarios por lo tanto $\sin DBA = \sin HPF = \dfrac{FH}{FP}$.

Como resultado $FP \sin B = FH$, igualmente podemos ver que $PE \sin C = EG$.

Sea $I = EF \cap HP$, por el teorema de Pitágoras podemos ver que $IE \geq GE$ y $FI \geq FH$,

Por lo tanto, $PA \sin A \geq PF \sin B + PE \sin C$.

$\blacksquare$

Teorema 2, desigualdad de Erdos Mordell. Sea $\triangle ABC$ y $P$ un punto en su interior, considera $D$, $E$ y $F$ las proyecciones de $P$ a los lados $BC$, $AC$ y $AB$ respectivamente, entonces $PA + PB + PC \geq 2(PD + PE + PF)$.

Demostración. Debido al lema anterior tenemos lo siguiente:
$PA \geq PF\dfrac{\sin B}{\sin A} + PE\dfrac{\sin C}{\sin A}$,
$PB \geq PF\dfrac{\sin A}{\sin B} + PD\dfrac{\sin C}{\sin B}$,
$PC \geq PE\dfrac{\sin A}{\sin C} + PD\dfrac{\sin B}{\sin C}$.

Sumamos estas tres desigualdades
$PA + PB + PC \geq$

$PF(\dfrac{\sin B}{\sin A} + \dfrac{\sin A}{\sin B}) + PE(\dfrac{\sin C}{\sin A} + \dfrac{\sin A}{\sin C}) + PD(\dfrac{\sin B}{\sin C} + \dfrac{\sin C}{\sin B})$

$= PF(\dfrac{\sin^2A + \sin^2 B}{\sin A \sin B}) + PE(\dfrac{\sin^2 A + \sin^2 C}{\sin A \sin C}) + PD(\dfrac{\sin^2 B + \sin^2 C}{\sin B \sin C})$.

Sustituimos $a$ y $b$ por $a^2$ y $b^2$ en la desigualdad entre las medias geométrica y aritmética
$\dfrac{a^2 + b^2}{2} \geq \sqrt{a^2b^2}$, por lo tanto, $\dfrac{a^2 + b^2}{ab} \geq 2$.

Aplicamos esto a nuestra suma y como resultado obtenemos
$PA + PB + PC \geq 2(PD + PE + PF)$.

$\blacksquare$

Problema 1. Sea $\triangle ABC$ e $I$ su incentro, considera $P$, $Q$ y $R$ los puntos medios de los arcos $\overset{\LARGE{\frown}}{BC}$, $\overset{\LARGE{\frown}}{CA}$ y $\overset{\LARGE{\frown}}{AB}$ que no contienen a los vértices de $\triangle ABC$, entonces $IP + IQ + IR \geq IA + IB + IC$.

Solución. Sean $D = PQ \cap CR$, $E = QR \cap AP$ y $F = RP \cap BQ$.

Figura 3

Por la entrada anterior sabemos que $Q$ es el centro de una circunferencia que pasa por $I$, $A$ y $C$, y que $R$ es el centro de una circunferencia que pasa por $I$, $A$ y $B$, entonces $QA = QI$ y $RA = RI$.

Por lo tanto, $\square ARIQ$ es un rombo, de esto se sigue que $QR \perp AI$ y $AE = IE$.

Igualmente vemos que $RP \perp BI$, $BF = IF$ y $PQ \perp CI$, $CD = ID$.

Aplicamos la desigualdad de Erdos Mordell a $\triangle PQR$ y al punto $I$
$IP + IQ + IR \geq 2(ID + IE + IF) = 2(\dfrac{IC}{2} + \dfrac{IA}{2} + \dfrac{IB}{2})$.

En conclusión, $IP + IQ + IR \geq IA + IB + IC$.

$\blacksquare$

Desigualdades de Euler y de Padoa

Proposición 1, desigualdad de Euler. El circunradio $R$ y el inradio $r$ de todo triangulo cumplen $R \geq 2r$ y la igualdad se cumple si y solo si el triángulo es equilátero.

Demostración. La fórmula de Euler nos asegura que $0 \leq OI^2 = R(R – 2r) = R^2 – 2Rr$, donde $I$ es el incentro y $O$ el circuncentro del triángulo.

Como resultado, $R \geq 2r$.

$\blacksquare$

Proposición 2, desigualdad de Padoa. Sea $\triangle ABC$ con lados $c = AB$, $a = BC$ y $b = AC$ entonces $abc \geq (a + b – c)(a + c – b)(b + c – a)$.

Demostración. Sean $s = \dfrac{a + b + c}{2}$, $R$ el circunradio y $r$ el inradio de $\triangle ABC$, entonces tenemos las siguientes fórmulas para el área de $\triangle ABC$:
$(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)} = \dfrac{abc}{4R} = rs$.

Notemos lo siguiente
$(a + b – c)(a + c – b)(b + c – a) = (2s – 2)(2s – 2b)(2s – 2a) = 8(s – c)(s – b)(s – a) $
$= \dfrac{8(\triangle ABC)^2 }{s} = \dfrac{8r^2s^2}{s} = 8r^2s$.

Por otro lado, $abc = 4Rrs$.

Por lo tanto, la desigualdad que queremos mostrar es equivalente a $8r^2s \leq 4Rrs$ que a su vez es equivalente a $2r \leq R$, lo cual es cierto por la proposición anterior.

$\blacksquare$

Transformación de Ravi

Recordemos que las tangentes desde un punto a una circunferencia son iguales, por lo que los puntos de tangencia del incírculo de un triángulo, divide al perímetro del triángulo en tres pares de segmentos iguales, así que podemos expresar a los lados de un triángulo de esta manera para resolver algunas desigualdades geométricas.

$a = BC = y + z$, $b = AC = x + z$, $c = AB = x + y$.

Figura 4

Problema 2. Para los ángulos internos de un triángulo $\triangle ABC$ tenemos la siguiente desigualdad.
$\sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \leq \dfrac{1}{8}$.

Solución. Usando la identidad para el seno del ángulo medio y la ley de los cosenos tenemos:
$\sin^2 \dfrac{A}{2} = \dfrac{1}{2}(1 – \cos A) = \dfrac{1}{2}(1 + \dfrac{a^2 – (b^2 + c^2)}{2bc})$
$= \dfrac{a^2 – (b – c)^2}{4bc} = \dfrac{y^2 + 2yz + z^2 – (z – y)^2}{4bc} = \dfrac{yz}{bc}$.

Igualmente tenemos
$\sin^2 \dfrac{B}{2} = \dfrac{xz}{ac}$ y $\sin^2 \dfrac{C}{2} = \dfrac{xy}{ab}$.

A continuación despejamos y hacemos el producto
$\sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2} = \dfrac{\sqrt{yz}\sqrt{xz}\sqrt{xy}}{abc}$.

Ahora aplicamos la desigualdad entre las medias geométrica y aritmética
$\dfrac{\sqrt{yz}\sqrt{xz}\sqrt{xy}}{abc} \leq \dfrac{1}{abc}(\dfrac{y + z}{2})(\dfrac{x + z}{2})(\dfrac{x + y}{2}) = \dfrac{abc}{8abc} = \dfrac{1}{8}$.

Por lo tanto, $\sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \leq \dfrac{1}{8}$.

$\blacksquare$

Desigualdad de Nesbitt

Proposición 3. Sean $a$, $b$ y $c$ tres números positivos entonces la siguiente desigualdad es cierta
$(a +b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) \geq 9$.

Demostración. La desigualdad entre las medias geométrica y aritmética puede ser vista como
$\dfrac{a}{b} + \dfrac{b}{a} \geq 2\sqrt{\dfrac{a}{b} \dfrac{b}{a}} = 2$.

Por lo tanto,
$(a +b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = \dfrac{a}{b} + \dfrac{b}{a} + \dfrac{a}{c} + \dfrac{c}{a} + \dfrac{b}{c} + \dfrac{c}{b} + 3 \geq 6 +3 = 9$.

$\blacksquare$

Proposición 4. Desigualdad de Nesbitt. Para cualesquiera números positivos $a$, $b$, $c$ ocurre que $\dfrac{a}{b + c} + \dfrac{b}{a + c} + \dfrac{c}{a + b} \geq \dfrac{3}{2}$.

Demostración.
$\dfrac{a}{b + c} + \dfrac{b}{a + c} + \dfrac{c}{a + b}$
$= \dfrac{a}{b + c} + \dfrac{b + c}{b + c} + \dfrac{b}{a + c} + \dfrac{a + c}{a + c} + \dfrac{c}{a + b} + \dfrac{a + b}{a + b} – 3$
$ = \dfrac{a + b + c}{b + c} + \dfrac{ a + b + c}{a + c} + \dfrac{ a + b + c }{a + b} – 3$
$= (a + b + c)( \dfrac{1}{b + c} + \dfrac{1}{a + c} + \dfrac{1}{a + b}) – 3$
$=\dfrac{1}{2}((a + b) + (a + c) + (b + c))( \dfrac{1}{b + c} + \dfrac{1}{a + c} + \dfrac{1}{a + b}) – 3$
$\geq \dfrac{9}{2} – 3 = \dfrac{3}{2}$.

Donde la última desigualdad se obtiene al aplicar la proposición anterior.

Por lo tanto, $\dfrac{a}{b + c} + \dfrac{b}{a + c} + \dfrac{c}{a + b} \geq \dfrac{3}{2}$.

$\blacksquare$

Desigualdad de Weitzenböck

Proposición 5. Desigualdad de Weitzenböck. Si $a$, $b$, $c$ son las longitudes de los lados de $\triangle ABC$ entonces $a^2 + b^2 + c^2 \geq 4\sqrt{3} (\triangle ABC)$.

Demostración. De acuerdo a la fórmula de Herón
$(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$
$= \sqrt{(\dfrac{a + b + c}{2})(\dfrac{b + c – a}{2})(\dfrac{a + c – b}{2})(\dfrac{a + b – c}{2})}$
$= \dfrac{1}{4} \sqrt{2(a^2b^2 + a^2c^2 + b^2c^2) – (a^4 + b^4 + c^4)}$.

Por otro lado
$\begin{equation} (a^2 – b^2)^2 + (b^2 – c^2)^2 + (c^2 – a^2)^2 \geq 0 \end{equation}$

$\Leftrightarrow$ $2(a^4 + b^4 + c^4) – 2(a^2b^2 + a^2c^2 + b^2c^2) \geq 0$
$\Leftrightarrow$ $\dfrac{4}{3} (a^4 + b^4 + c^4) \geq \dfrac{4}{3} (a^2b^2 + a^2c^2 + b^2c^2)$
$ \Leftrightarrow$ $\dfrac{4}{3} (a^4 + b^4 + c^4) + \dfrac{- 3(a^4 + b^4 + c^4) + 2(a^2b^2 + a^2c^2 + b^2c^2)}{3}$
$\geq \dfrac{4}{3} (a^2b^2 + a^2c^2 + b^2c^2) + \dfrac{- 3(a^4 + b^4 + c^4) + 2(a^2b^2 + a^2c^2 + b^2c^2)}{3}$
$\Leftrightarrow$ $\dfrac{a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2)}{3} \geq 2(a^2b^2 + a^2c^2 + b^2c^2) – (a^4 + b^4 + c^4)$
$\Leftrightarrow$ $\dfrac{(a^2 + b^2 + c^2)^2}{3} \geq 2(a^2b^2 + a^2c^2 + b^2c^2) – (a^4 + b^4 + c^4) = (4(\triangle ABC))^2$.
$ \Leftrightarrow$ $a^2 + b^2 + c^2 \geq 4\sqrt{3} (\triangle ABC)$.

De la desigualdad $(1)$ podemos notar que la igualdad ocurre si y solo si $a = b = c$, es decir el triángulo es equilátero.

$\blacksquare$

Tarea moral

  1. Sea $P$ un punto en el interior de un triangulo $\triangle ABC$, muestra que al menos uno de los ángulos $\angle BAP$, $\angle CBP$ y $\angle ACP$ es igual a $\dfrac{\pi}{6}$.
  2. Considera $P$ un punto en el interior de $\triangle ABC$ cuyo circunradio es $R$, demuestra que $\dfrac{PA}{BC^2} + \dfrac{PB}{AC^2} + \dfrac{PC}{AB^2} \geq \dfrac{1}{R}$.
  3. Sea $P$ un punto en el interior de $\triangle ABC$, denota por $R_a$, $R_b$, $R_c$ los circunradios de los triángulos $\triangle PBC$, $\triangle PAC$ y $\triangle PAB$ respectivamente, prueba que $\dfrac{PB \times PC}{R_a} + \dfrac{PA \times PC}{R_b} + \dfrac{PA \times PB}{R_c} \leq PA + PB + PC$.
  4. Si $a$, $b$ y $c$ son los lados de un triangulo prueba que $(a + b)(b + c)(a + c) \geq 8(a + b – c)(b + c – a)(a + c -b)$.
  5.  Sean $\triangle ABC$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, muestra que $\cos \alpha + \cos \beta + \cos \gamma \leq \dfrac{3}{2}$.
  6. Sean $\triangle ABC$, $AD$, $BE$, $CF$, sus alturas y $H$ el ortocentro muestra que:
    $i)$ $\dfrac{AD}{HD} + \dfrac{BE}{HE} + \dfrac{CF}{HF} \geq 9$,
    $ii)$ $\dfrac{HD}{HA} + \dfrac{HE}{HB} + \dfrac{HF}{HC} \geq \dfrac{3}{2}$.
Figura 5
  1. Sea $\triangle ABC$ un triángulo rectángulo con catetos $a$ y $b$ e hipotenusa $c$, muestra que se cumple la siguiente desigualdad $a + b \leq \sqrt{2}c$.
  2. Considera $A’$ y $B’$ los puntos medios de $BC$ y $AC$ en $\triangle ABC$, muestra que $3(BC + AC) > 2(AA’ + BB’)$.

Más adelante…

En la próxima entrada estudiaremos algunas propiedades de las medianas y el centroide de un triángulo.

Entradas relacionadas

Fuentes

  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 287-297.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 27-29, 98-103.
  • Art of Problem Solving
  • Wikipedia
  • Cut the Knot

Seminario de Resolución de Problemas: Desigualdades básicas

Introducción

En las entradas correspondientes a esta parte del curso aprenderemos varias técnicas que nos permitirán resolver problemas que involucren desigualdades. El área es enorme y hay libros enteros dedicados a ello. Nosotros sólo veremos algunas técnicas. Comenzaremos con desigualdades básicas y nos enfocaremos en los siguientes temas:

  • Desigualdad $x^2\geq 0$ y desigualdad del triángulo
  • Desigualdades de medias
  • La desigualdad de Cauchy-Schwarz
  • Técnicas de cálculo en desigualdades

En esta entrada veremos el primer inciso, que consiste de dos ideas muy sencillas:

Desigualdad $x^2\geq 0$. El cuadrado de cualquier número real es mayor o igual a cero. Es cero si y sólo si el número es cero.

Desigualdad del triángulo. Si $V$ es un espacio vectorial con norma $\norm{\cdot}$, entonces para cualesquiera vectores $u$ y $v$ se tiene que $$\norm{u}+\norm{v}\geq \norm{u+v}.$$

La desigualdad $x^2\geq 0$ parece muy inocente. Sin embargo, es una herramienta muy versátil cuando se combina con manipulaciones algebraicas creativas. La desigualdad del triángulo la estamos enunciando para espacios vectoriales con norma en general. Dos casos particulares que a lo mejor te son más familiares son los siguientes:

Desigualdad del triángulo para $\mathbb{R}$. Si $a$ y $b$ son números reales, entonces $|a|+|b| \geq |a+b|$.

Desigualdad del triángulo en $\mathbb{R}^n$. Si $ABC$ es un triángulo en el plano (o dimensiones más altas) , de lados de longitudes $\overline{AB}=c$, $\overline{BC}=a$ y $\overline{CA}=b$, entonces
\begin{align*}
a+b&\geq c\\
b+c &\geq a\\
c+a &\geq b.
\end{align*}

Si una de las igualdades se da, $ABC$ es un triángulo degenerado, es decir, con sus tres vértices alineados. En otro caso, todas las desigualdades son estrictas.

Veamos aplicaciones de estas desigualdades básicas.

La desigualdad $\frac{a^2+b^2}{2}\geq \sqrt{ab}$

Comenzaremos probando de dos formas distintas una desigualdad que también resulta útil en otras ocasiones.

Problema. Sean $a$ y $b$ números reales mayores o iguales a cero. Muestra que $$\frac{a+b}{2}\geq \sqrt{ab},$$ y que la igualdad se da si y sólo si $a$ y $b$ son iguales.

A esta desigualdad se le conoce como la desigualdad MA-MG para dos números reales. También forma parte de las desigualdades básicas que te ayudará conocer. Se llama así pues en el lado izquierdo tenemos a la media aritmética de los números $a$ y $b$, y al lado derecho tenemos la media geométrica de los números $a$ y $b$. En realidad la desigualdad se vale para más reales no negativos, pero esto lo veremos en otra entrada.

Sugerencia pre-solución. El problema se puede resolver tanto de manera algebraica, (usando $x^2\geq 0$) como de manera geométrica (usando la desigualdad del triángulo).

Para resolverlo de la primera forma, trabaja hacia atrás. Haz manipulaciones algebraicas para formular problemas equivalentes hasta que llegues a una desigualdad obvia.

Para resolverlo de la segunda forma, haz una figura en la que puedas representar tanto a la media geométrica como a la aritmética. Una forma de hacerlo es comenzar con una semicircunferencia de diámetro $a+b$.

Para identificar el caso de igualdad, haz un análisis de casos.

Solución algebraica. Queremos mostrar que $$\frac{a+b}{2}\geq \sqrt{ab}.$$ Pasando el dos multiplicando, y luego $2\sqrt{ab}$ restando al lado izquierdo, esta desigualdad igualdad ocurre si y sólo si $$a+b-2\sqrt{ab}\geq 0.$$ En el lado izquierdo identificamos un binomio al cuadrado, que se puede factorizar para dar la desigualdad equivalente $$\left(\sqrt{a}-\sqrt{b}\right)^2\geq 0.$$

Esta desigualdad es de la forma $x^2\geq 0$, así que es claramente cierta. La igualdad ocurre si y sólo si $\sqrt{a}-\sqrt{b}=0$, lo cual sucede si y sólo si $a=b$. Todos los pasos que hicimos son reversibles. Esto termina la solución.

$\square$

Solución geométrica. Consideremos la siguiente figura, en donde tenemos una semicircunferencia de diámetro $\overline{AB}=a+b$ y centro $O$. Aquí $C$ es un punto en $AB$ tal que $\overline{AC}=a$ y entonces $\overline{CB}=b$. Además, $D$ es un punto sobre la circunferencia tal que $DC$ es perpendicular a $AB$. Llamemos $d=\overline{CD}$.

Prueba visual de la desigualdad entre la media aritmética y media geométrica usando desigualdades básicas
Prueba visual de MA-MG

Como $\triangle AOD$ y $\triangle BOD$ son isósceles por tener dos lados iguales al radio de la circunferencia, tenemos que $\angle ADO = \angle DAO$ y $\angle BDO = \angle DBO$. Usando estas igualdades y que la suma de los ángulos internos de $\triangle ABD$ es $180^\circ$, se puede mostrar que el ángulo $ADB$ es de $90^\circ$.

De este modo, $\triangle ACD$ y $\triangle DCB$ son semejantes (por ser ambos semejantes a $\triangle ABD$ por criterio AA). Por la semejanza, tenemos que $$\frac{a}{d}=\frac{d}{b},$$ de donde $d=\sqrt{ab}$.

Para terminar la demostración, tomamos un punto $E$ sobre $DO$ tal que $\angle EOC = \angle ECO$. Por la desigualdad del triángulo en $\triangle DEC$, tenemos que

\begin{align*}
\sqrt{ab}&=\overline{DC}\\
&\leq \overline{DE} + \overline{EC}\\
&= \overline{DE} + \overline {EO}\\
&= \overline{DO}\\
&=\frac{a+b}{2}.
\end{align*}

Con esto demostramos la desigualdad. Para terminar el problema, necesitamos ver cuándo se dan los casos de igualdad. Se tiene la igualdad si y sólo si $\triangle DEC$ es un triángulo degenerado, lo cual sucede si y sólo si $E$ está en el segmento $DC$. Esto sólo es posible cuando $DO$ es perpendicular a $AB$, lo cual sucede si y sólo si $C=O$, si y sólo si $AC=CB$, si y sólo si $a=b$.

$\square$

Desigualdades básicas aplicadas a un problema de la Olimpiada Mexicana de Matemáticas

El siguiente problema apareció como parte de los exámenes selectivos que el Comité Nacional de la Olimpiada Mexicana de Matemáticas envía a los estados para seleccionar a sus estudiantes en distintas etapas. Tiene muchas formas de resolverse, pero veamos cómo se puede resolver con desigualdades básicas.

Problema. Sean $a,b,c,d$ reales positivos con $a^2+b^2+c^2+d^2=4$. Muestra que $$a^5+b^5+c^5+d^5 \geq a+b+c+d$$

Sugerencia pre-solución. Modifica el problema a mostrar como desigualdad auxiliar que para un real no negativo $x$ se tiene que $$x^5-2x^2-x+2\geq 0.$$ Esta desigualdad se puede demostrar usando que los cuadrados son no negativos.

Solución. Vamos a probar primero la desigualdad $$x^5-2x^2-x+2\geq 0.$$ Para que sea un poco más fácil, factorizaremos la expresión del lado izquierdo.

Notemos que $1$ es una raíz de $x^5-2x^2-x+2$, de modo que por el teorema del factor podemos factorizar $x-1$ del polinomio. Obtenemos que $$x^5-2x^2-x+2=(x-1)(x^4+x^3+x^2-x-2).$$

Notemos que, nuevamente, $1$ es una raíz de $(x^4+x^3+x^2-x-2)$. Al factorizar $x-1$ de nuevo, obtenemos que $$x^5-2x^2-x+2=(x-1)^2(x^3+2x^2+3x+2).$$

Ya estamos listos para probar la desigualdad que queremos. Notemos que $(x-1)^2\geq 0$ y que $x^3+2x^2+3x+2$ es mayor o igual que cero para $x\geq 0$ pues es un polinomio con puros coeficientes positivos. Esto prueba la desigualdad auxiliar. Reescribiéndola, tenemos que $$x^5\geq 2x^2+x-2.$$ Aplicándola en esta forma a los cuatro reales positivos $a,b,c,d$ del problema, y usando que la suma de cuadardos es $4$, obtenemos que
\begin{align*}
a^5 & + b^5+c^5+d^5\\
&\geq 2(a^2+b^2+c^2+d^2)+a+b+c+d-8\\
&=2\cdot 4 + a+b+c+d-8\\
&=a+b+c+d.
\end{align*}

Esto termina el problema.

$\square$

El primer paso parece un poco artificial. ¿Por qué queremos probar esa desigualdad auxiliar? En otra entrada de blog escribí cómo se puede llegar a las ideas de esta solución.

Desigualdad del triángulo aplicada a la construcción de tetraedros

Si pegamos cuatro triángulos equiláteros en el espacio se hace un tetraedro regular. De manera similar, si pegamos cuatro triángulos como el siguiente, también se hace un tetraedro en el espacio:

Pegar cuatro triángulos congruentes para hacer un tetraedro

La intuición nos dice que debería poderse con cualquier triángulo. Pero esta intuición está mal.

Problema. Sea $ABC$ un triángulo con un ángulo mayor a $90^\circ$. Muestra que no existe ningún tetraedro en el espacio tal que sus cuatro caras sean congruentes a $ABC$.

Sugerencia pre-solución. Procede por contradicción. Por simetría, puedes asumir que el ángulo mayor a $90^\circ$ es el ángulo en $A$. Usa como punto auxiliar al punto medio de $BC$ y usa desigualdades.

Solución. Una observación inicial es que si $ABC$ es un triángulo, $M$ es el punto medio de $BC$ y su ángulo interno en $A$ es mayor a $90^\circ$, entonces $2\overline{AM}<\overline{BC}$. Esto se muestra trazando una circunferencia de diámetro $BC$.

Desigualdad para la mediana en términos del ángulo que hace.

De hecho,

  • Un punto $X$ está sobre la circunfencia si y sólo si $\angle BXC = 90 ^\circ$, si y sólo si $\overline{OX}=\overline{OA}$.
  • $X$ está dentro de la circunferencia si y sólo si $\angle BXC > 90^\circ$, si y sólo si $\overline{OX}<\overline{OA}$ y
  • $X$ está fuera de la circunferencia si y sólo si $\angle BXC < 90^\circ$, si y sólo si $\overline{OX}>\overline{OA}$.

Resolvamos el problema. Sin pérdida de generalidad, el ángulo en $A$ es mayor a $90^\circ$. Entonces $\overline{AM}<\frac{\overline{BC}}{2}$, de donde $2\overline{AM}<\overline{BC}$.

Supongamos que se pudiera hacer en el espacio un tetraedro $WXYZ$ tal que cada una de las caras es congruente al triángulo $ABC$. Sin pérdida de generalidad, tenemos que
\begin{align*}
\overline{WX}&=\overline{YZ}=\overline{AB}\\
\overline{XY}&=\overline{ZW}=\overline{BC}\\
\overline{WY}&=\overline{XZ}=\overline{CA}.
\end{align*}

Tomemos el punto medio $M$ de $XY$. En $\triangle ZMW$, tenemos que
\begin{align*}
\overline{ZM}&=\overline{AM}\\
\overline{WM}&=\overline{AM}.
\end{align*}

Así, usando la desigualdad del triángulo en $\triangle ZMW$ tenemos que \begin{align*}
2\overline{AM}&=\overline{ZM}+\overline{WM}\\
&\geq \overline{ZW}\\
&=\overline{BC}.
\end{align*}

Esto es una contradicción con la desigualdad $2\overline{AM}<\overline{BC}$ que ya habíamos mostrado.

$\square$

Más problemas

Puedes encontrar más problemas de desigualdades básicas en la sección 7.1 del libro Problem Solving through Problems de Loren Larson. También puedes consultar más técnicas y problemas en el libro Desigualdades de la Olimpiada Mexicana de Matemáticas.

Modificar el problema

HeuristicasOtra técnica de resolucion de problemas es proponer un problema que ayude, pero que no necesariamente sea equivalente. Esto puede ser a través de problemas más particulares o de problemas más difíciles.

En esta serie de videos veremos esta técnica en acción en cuatro problemas.

Ir a los videos…