Archivo de la etiqueta: Lugar geométrico

Geometría Moderna I: Circunferencia de Apolonio

Introducción

En esta entrada veremos dos lugares geométricos importantes, uno es la caracterización de arco de circunferencia y el otro la circunferencia de Apolonio.

Arco de circunferencia

Teorema 1. Dados un segmento $\overline{BC}$ y un ángulo $\alpha < \pi$ el lugar geométrico de los puntos $A$ que están sobre un mismo lado de la recta $\overline{BC}$ y tal que el ángulo $\angle BAC = \alpha$, es un arco de circunferencia que pasa por $B$ y $C$.

Demostración. Sea $A$ un punto tal que $\angle BAC = \alpha$, consideremos el circuncírculo $\Gamma (O)$ de $\triangle ABC$, entonces todos los puntos $A’$ en el arco $\overset{\LARGE{\frown}}{CB}$  cumplen que $\angle BA’C =\alpha$ pues $\angle BAC$ y $\angle BA’C$ abarcan el mismo arco $\overset{\LARGE{\frown}}{BC}$.

Figura 1

Por lo tanto, el arco $\overset{\LARGE{\frown}}{CB}$ es parte del lugar geométrico.

$\blacksquare$

Ahora tomemos $A’$ del mismo lado que $A$ respecto de $\overline{BC}$  pero $A’ \notin \overset{\LARGE{\frown}}{CB}$ y consideremos $B’ =  A’B \cap \overset{\LARGE{\frown}}{CB}$ y $C’ = A’C \cap \overset{\LARGE{\frown}}{CB}$.

Si $A’$ está dentro del circuncírculo de $\triangle ABC$ (izquierda figura 2), entonces los teoremas de la medida del ángulo interior y el ángulo inscrito nos dicen que
$\angle BA’C = \dfrac{\angle BOC + \angle B’OC’}{2} > \dfrac{\angle BOC}{2} = \angle BAC$.

Por tanto, $A’$ no está en el lugar geométrico.

Figura 2

Si $A’$ esta fuera del circuncírculo de $\triangle ABC$ (derecha figura 2) , entonces la medida del ángulo exterior es
$\angle BA’C = \dfrac{\angle BOC – \angle C’OB’}{2} < \dfrac{\angle BOC}{2} = \angle BAC$

En consecuencia no existe $A’$ en el lugar geométrico fuera del arco $\overset{\LARGE{\frown}}{CB}$ y así queda demostrado el teorema.

$\blacksquare$

Observación. Si quitamos la condición de que los puntos $A$ estén de un mismo lado respecto de $\overline{BC}$ entonces obtendremos dos arcos de circunferencia que son simétricos respecto de $\overline{BC}$.

Corolario. Dados un segmento $\overline{BC}$  el lugar geométrico de los puntos $A$ tal que el ángulo $\angle BAC = \dfrac{\pi}{2}$, es una circunferencia de diámetro $\overline{BC}$.

Demostración. Por el teorema 1 y la observación el lugar geométrico son dos arcos de circunferencia simétricos respecto de $\overline{BC}$, además, por el teorema de Thales, $\overline{BC}$ es diámetro de cada uno de estos arcos, por tanto los dos arcos forman una misma circunferencia.

$\blacksquare$

Teorema de las cuerdas

Teorema 2. Considera dos segmentos $\overline{AC}$, $\overline{BD}$ que se intersecan en $E = \overline{AC} \cap \overline{BD}$, entonces $A$, $B$, $C$ y $D$ son cíclicos si y solo si $AE \times EC = BE \times ED$.

Demostración. Supongamos que $A$, $B$, $C$, y $D$ son cíclicos.

Figura 3

$\angle BAC = \angle BDC$ pues abarcan el mismo arco, además $\angle AEB = \angle CED$, por ser opuestos por el vértice, por criterio de semejanza AA, $\triangle ABE \sim \triangle DCE$.
$\Rightarrow \dfrac{AE}{ED} = \dfrac{BE}{EC}$,
$\Rightarrow AE \times EC = BE \times ED$.

Ahora supongamos que se cumple $AE \times EC = BE \times ED$,
$\Rightarrow \dfrac{AE}{ED} = \dfrac{BE}{EC}$.

Figura 4

$\angle AEB = \angle CED$, por ser opuestos por el vértice, por criterio de semejanza LAL, $\triangle AEB \sim \triangle DEC$, $\Rightarrow \angle BAC = \angle BDC$

Por el teorema 1 $A$ y $D$ se encuentran en un arco de circunferencia que pasa por $B$ y $C$. Por tanto, $A$, $B$, $C$ y $D$ son cíclicos.

$\blacksquare$

Circunferencia de Apolonio

Teorema 3. El lugar geométrico de los puntos $A$ tales que la razón de las distancias a dos puntos fijos $B$ y $C$ es igual a una razón dada $\dfrac{p}{q}$, es una circunferencia llamada circunferencia de Apolonio.

Demostración. Sea $BC = a$, construimos un triángulo de lados $p$, $q$ y $a$, si $p + q < a$ entonces tomamos un múltiplo $mp$ y $mq$ tal que $m(p + q) > a$.

Figura 5

Sea $A$ el vértice construido tal que $AB = p$ y $AC = q$, por el teorema de la bisectriz, las bisectrices interna $\overline{AD}$ y externa $\overline{AE}$ de $\angle A$ dividen al segmento $\overline{CB}$ en la razón dada
$\dfrac{p}{q} = \dfrac{AB}{AC} = \dfrac{BD}{DC} = \dfrac{BE}{CE}$.

De esta manera, hemos encontrado dos putos $D$ y $E$ en la recta $\overline{BC}$ del lugar geométrico.

Sea $A’$ cualquier punto en el lugar geométrico, entonces $\dfrac{A’B}{A’C} = \dfrac{p}{q} = \dfrac{BD}{DC} = \dfrac{BE}{CE}$.

Por el reciproco del teorema de la bisectriz esto implica que las cevianas $\overline{AD}$ y $\overline{AE}$ son las bisectrices interna y externa del ángulo $\angle BA’C$.

Figura 6

Como las bisectrices interna y externa de todo ángulo son perpendiculares entre si tenemos que $\angle DA’C = \dfrac{\pi}{2}$.

Por el corolario anterior, $A’ \in \Gamma$, la circunferencia cuyo diámetro es $\overline{DE}$.

$\blacksquare$

Ahora, sea $A \in \Gamma$, entonces $\overline{AD} \perp \overline{AE}$ ya que $\overline{DE}$ es diámetro.

Figura 7

Por $C$ trazamos las paralelas a $\overline{AE}$ y $\overline{AD}$ las cuales intersecan a $\overline{AB}$ en $P$ y en $Q$ respectivamente, como $\overline{AD} \perp \overline{AE}$ entonces $\overline{PC} \perp \overline{CQ}$.

Aplicando el teorema de Thales a $\triangle BQC$ y $\triangle BAE$ tenemos
$\begin{equation} \dfrac{AB}{AQ} = \dfrac{BD}{DC} \end{equation}$
$\begin{equation} \dfrac{AB}{AP} = \dfrac{BE}{CE} \end{equation}$

Por construcción $\dfrac{BD}{DC} = \dfrac{BE}{CE}$
$\Rightarrow \dfrac{AB}{AQ} = \dfrac{AB}{AP} \Rightarrow AP = AQ$

Es decir, $A$ es el punto medio de la hipotenusa en el triángulo rectángulo $\triangle CPQ$, por tanto, equidista a los tres vértices del triangulo
$\Rightarrow AP = AQ = AC$

Reemplazando en las ecuaciones $(1)$ y $(2)$ obtenemos
$\dfrac{AB}{AC} = \dfrac{BD}{DC} = \dfrac{BE}{CE} = \dfrac{p}{q}$

Por tanto, $A$ está en el lugar geométrico.

$\blacksquare$

Observación 1. Notemos que, si la razón dada es $1$, el lugar geométrico son los puntos que equidistan a los puntos dados, esto es la mediatriz del segmento que une los puntos dados.

Observación 2. Si $B$, $C$ son los puntos fijos y $\dfrac{p}{q}$ es la razón dada, los puntos $A$ tales que $\dfrac{AB}{AC} = \dfrac{p}{q}$, describen una circunferencia de Apolonio, pero los puntos $A’$ tales que $\dfrac{A’C}{A’B} = \dfrac{p}{q}$ también describen una circunferencia de Apolonio, estos dos lugares no coinciden a menos que $\dfrac{p}{q} = 1$.

En consecuencia, para un segmento dado y una razón dada tenemos dos circunferencias de Apolonio.

Construcción de un triangulo ($a$, $h_a$, $\dfrac{c}{b}$)

Problema. Construye un triángulo $\triangle ABC$ dados la base, la altura trazada por el vértice opuesto y la razón entre los lados restantes ($BC = a$, $AD = h_a$, $\dfrac{AB}{AC} = \dfrac{c}{b}$).

Solución. Construimos un segmento $\overline{BC}$ de longitud $a$ y trazamos la circunferencia de Apolonio $\Gamma$ de los puntos $P$ tales que la razón de las distancias a $B$ y a $C$ es la razón dada, $\dfrac{PB}{PC} = \dfrac{c}{b}$.

Figura 8

Luego trazamos una recta $l$ paralela a $\overline{BC}$ y a una distancia $h_a$. Una de las intersecciones de $l$ con $\Gamma$ es el tercer vértice del triángulo $\triangle ABC$.

Sea $D$ el pie de la perpendicular a $\overline{BC}$ trazado desde $A$, entonces por construcción $BC = a$, $AD = h_a$ y $\dfrac{AB}{AC} =\dfrac{c}{b}$.

$\blacksquare$

Círculos de Apolonio de un triángulo

Definición 1. Consideremos un triángulo $\triangle ABC$, el lugar geométrico de los puntos $P$ tales que $\dfrac{PB}{PC} = \dfrac{AB}{AC}$, es la A-circunferencia de Apolonio de $\triangle ABC$. De esta manera todo triangulo tiene tres circunferencias de Apolonio asociadas a él, una que pasa por cada vértice.

Definición 2. Decimos que dos circunferencias son ortogonales si se intersecan y los radios trazados desde el punto de intersección son perpendiculares.

Proposición. Cada circunferencia de Apolonio asociada a un triángulo es ortogonal con el circuncírculo del triángulo.

Demostración. Sean $\triangle ABC$, $D$ y $E$ los pies de la bisectriz interior y exterior respectivamente de $\angle A$, consideremos $M$ el punto medio de $\overline{DE}$, entonces la circunferencia con centro $M$ y radio $\overline{AM}$, $(M, AM)$ es la A-circunferencia de Apolonio de $\triangle ABC$.

Figura 9

Tenemos lo siguiente
$\dfrac{\pi}{2} = \angle DAE = \angle DAC + \angle CAM + \angle MAE = \dfrac{\angle BAC}{2} + \angle CAM + \dfrac{\angle AMB}{2}$

$\Rightarrow \pi = \angle BAC + 2\angle CAM + \angle AMB = \angle BAM + \angle AMB + \angle CAM$
$\Rightarrow \angle CBA = \pi – (\angle BAM + \angle AMB)$
$\begin{equation} = \angle CAM \end{equation}$

Ahora consideremos el circuncírculo $(O, AO)$ de $\triangle ABC$, y supongamos que $\overline{AM}$ es secante a $(O, AO)$ en $A$ y $F$, tenemos dos casos:

  • $F$ esta entre $A$ y $M$,
Figura 10

$\Rightarrow \angle CBA = \dfrac{\angle COA}{2} > \dfrac{\angle COF}{2} = \angle CAF = \angle CAM$.

  • $A$ esta entre $F$ y $M$,
Figura 11

$\Rightarrow \angle CAM > \angle CFA = \angle CBA$.

Ninguno de los dos casos anteriores es posible, puesto que por la ecuación $(3)$, $\angle CBA = \angle CAM$, por lo tanto, $\overline{MA}$ es tangente a $(O, AO)$ y así $(O, AO)$ y $(M, AM)$ son ortogonales.

La prueba para las otras dos circunferencias de Apolonio de $\triangle ABC$ es análoga.

$\blacksquare$

Tarea moral

  1. Dada una circunferencia, muestra que el lugar geométrico de los puntos medios de las cuerdas que pasan por un punto dado es una circunferencia, si el punto esta dentro o en la circunferencia. Analiza el caso cuando el punto se encuentra fuera de la circunferencia.
  2. Considera dos segmentos $\overline{AD}$ y $\overline{BC}$ cuya intersección $E$ se encuentra en la extensión de ambos segmentos, muestra que $A$, $B$, $C$ y $D$ son cíclicos si y solo si $AE \times DE = BE \times CE$.
Figura 12
  1. Dados dos segmentos consecutivos $\overline{AB}$ y $\overline{BC}$ sobre una misma recta encuentra el lugar geométrico de los puntos $P$ tales que $\angle APB = \angle BPC$.
  2. Dados tres puntos $A$, $B$, $C$ y un ángulo $\alpha$, construye una circunferencia que pase por $A$ y $B$ y tal que el ángulo entre las tangentes trazadas desde $C$ a la circunferencia sea igual a $\alpha$.
Figura 13
  1. Construye un triangulo dados:
    $i)$ la base, la mediana trazada desde el vértice opuesto y la razón entre los lados restantes,
    $ii)$ la base, la bisectriz del ángulo opuesto y la razón entre los lados restantes.
  2. Muestra que las tres circunferencias de Apolonio de un triangulo concurren en dos puntos.
Figura 14

Más adelante…

En la siguiente entrada estudiaremos un par de métodos generales que nos pueden ayudar a resolver problemas de construcciones geométricas.

Entradas relacionadas

Geometría Moderna I: Desigualdad del triángulo y lugar geométrico

Introducción

En esta ocasión estudiaremos una propiedad muy importante de los triángulos, la desigualdad del triángulo que básicamente nos dice que la distancia mas corta entre dos puntos es el segmento de recta que los une; también veremos lo que es un lugar geométrico y mostraremos un par de ejemplos importantes.

Desigualdad del triángulo

Proposición 1. En todo triángulo al mayor de los lados se opone el mayor de los ángulos.

Demostración. Sea $\triangle ABC$ tal que $AB > AC$, debemos mostrar que $\angle C > \angle B$.

Figura 1

Como $AB > AC$, podemos construir un punto $D \in \overline{AB}$ tal que $AD = AC$, ya que $\triangle ADC$ es isósceles, por la proposición de la entrada anterior, se cumple $\angle CDA = \angle ACD$, de aquí se sigue que:
$\begin{equation} \angle C = \angle ACB > \angle ACD = \angle DCA \end{equation}$.

como $\angle ADC$ es un ángulo exterior de $\triangle DBC$ entonces $\angle ADC$ es mayor que los ángulos internos de $\triangle DBC$, no adyacentes a él, en particular
$\begin{equation} \angle ADC > CBD = \angle B \end{equation}$.

De $(1)$ y $(2)$ se sigue que $\angle C > \angle B$.

$\blacksquare$

Corolario. En todo triángulo el ángulo mayor es opuesto al lado mayor.

Demostración. Sea $\triangle ABC$ tal que $\angle A > \angle B$, por demostrar que $BC > AC$. Supongamos lo contrario.

Figura 2

Caso 1. Si $BC = AC$, entonces $\triangle ABC$ es isósceles por lo que $\angle A = \angle B$, lo que es una contradicción a nuestra hipótesis.

Caso2. Si $BC < AC$, entonces por la proposición anterior $\angle B > \angle A$, esto nuevamente contradice la hipótesis.

Por lo tanto, no queda otra opción más que $\angle A > \angle B$.

$\blacksquare$

Proposición 2. Si dos lados de un triángulo son iguales a dos lados de un segundo triángulo, pero el ángulo comprendido entre el primer par de lados es mayor que el ángulo formado por los lados del segundo triangulo, entonces el lado restante del primer triángulo será mayor al tercer lado del segundo triangulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $\angle A > \angle A’$, por demostrar que $BC > B’C’$.

Figura 3

Sobre $\overline{A’B’}$ y tomando como vértice $A’$ construimos un ángulo igual a $\angle A$, y construimos $D$ tal que $A’D = AC$, entonces por criterio LAL, $\triangle ABC \cong \triangle A’B’D$ por lo que $B’D = BC$.

Notemos que $\triangle C’A’D$ es isósceles, entonces $\angle DC’A = \angle A’DC’$.

Ahora en $\triangle DC’B’$ tenemos $\angle DC’B’ = \angle A’C’B’ + \angle DC’A$
$\Rightarrow \angle DC’B’ > \angle DC’A = \angle A’DC’$.

Pero $\angle A’DC’ = \angle A’DB’ + \angle B’DC’$
$\Rightarrow \angle A’DC’ > \angle B’DC’$.

Por transitividad, $\angle DC’B’ > \angle B’DC’$.

Aplicando el corolario obtenemos $B’D > B’C’$ pero $B’D = BC$
$\Rightarrow BC > B’C’$.

$\blacksquare$

Teorema 1. Desigualdad del triángulo. Para todo triangulo se cumple que la suma de cualesquiera dos de sus lados es mayor al lado restante.

Demostración. Sea $\triangle ABC$, sobre la recta que pasa por $B$ y $C$, construimos un punto $D$ tal que $CD = AC$.

Figura 4

Como $\triangle ACD$ es isósceles, $\angle CAD = \angle ADC$, entonces en $\triangle ABD$ tenemos $\angle BAD > \angle CAD = \angle ADC = \angle ADB$, por el corolario anterior $BD > AB$.

Pero $BD = BC + CD = BC + AC$, por lo tanto, $AC + BC > AB$.

$\blacksquare$

Las otras desigualdades, $AB + BC > AC$ y $AB + AC > BC$, se muestran de manera similar. El reciproco de este teorema también es cierto y lo mostramos a continuación.

Construcción de un triángulo y un ángulo

Teorema 2. Si $a$, $b$ y $c$ son tres números positivos tales que $a + b > c$, $a + c > b$ y $b + c > a$, entonces es posible construir un triángulo de lados $a$, $b$ y $c$.

Demostración. Construyamos un segmento $\overline{BC}$ de longitud $a$, trazamos una circunferencia con centro en $B$ y radio $c$ $(B, c)$, trazamos otra circunferencia con centro en $C$ y radio $b$ $(C, b)$.

$(B, c)$ y $(C, b)$ se intersecan en dos puntos, sea $A$ uno de estos puntos. $AB = c$ por ser radio de $(B, c)$, $AC = b$ por ser radio de $(C, b)$ y $BC = a$ por construcción.

Figura 5

Notemos que si $(B, c)$ y $(C, b)$ se intersecaran en un solo punto entonces la intersección estaría sobre $\overline{BC}$ o su extensión, y en tal caso se tendría alguna de las siguientes igualdades
$a = b + c$, $b = a + c$ o $c = a + b$, figura 6.

Figura 6

Y si $(B, c) \cap (C, b) = \varnothing$, entonces alguna de las cantidades seria mayor que la suma de las otras dos, $a > b + c$, $b > a + c$ o $c > a + b$, figura 7, lo que sería una contradicción a nuestras hipótesis.

Figura 7

Por lo tanto, $\triangle ABC$ es el triángulo buscado.

$\blacksquare$

Problema. Sobre una recta dada construir un ángulo igual a un ángulo dado.

Solución. Sea $\angle AOB$ el ángulo dado y $l$ la recta dada.

Con centro en $O$ y radio arbitrario $r > 0$ trazamos una circunferencia $(O, r)$ que corte a $\overline{OA}$ en $C$ y a $\overline{OB}$ en $D$.

Figura 8

Tomamos $O’ \in l$ y construimos una circunferencia con centro en $O’$ y radio $r$, $(O’, r)$, tomamos una de las intersecciones de $l$ con $(O’, r)$, digamos $D’$, trazamos otra circunferencia con centro en $D’$ y radio $CD$, $(D’, CD)$, sea $C’$ una de las intersecciones de $(O’, r)$ con $(D´, CD)$, entonces por criterio LLL $\triangle COD \cong \triangle C’O’D’$, por lo tanto, $\angle AOB = \angle C’O’D’$.

$\blacksquare$

Lugar geométrico

Un lugar geométrico es un conjunto de puntos que cumplen un conjunto de condiciones dadas. Para probar que una figura geométrica es un lugar geométrico por lo general la prueba se divide en dos partes.

  • Probar que todos los puntos que satisfacen las condiciones pertenecen a la figura.
  • Probar que todos los puntos que pertenecen a la figura satisfacen las condiciones.

Teorema 3. El lugar geométrico de los puntos que equidistan a dos puntos dados, es la mediatriz del segmento que une los puntos dados.

Demostración. Sean $\overline{AB}$ un segmento dado, $M$ el punto medio y $m$ la mediatriz de $\overline{AB}$ respectivamente.

Figura 9

Primero vemos que los puntos en la mediatriz de $\overline{AB}$  equidistan de $A$ y $B$.

Sea $P \in m$, por definición de mediatriz, $m \cap \overline{AB} = M$ y $l \perp \overline{AB}$.

Entonces por criterio LAL (lado, ángulo, lado) $\triangle PMA \cong \triangle PMB$, en consecuencia, $PA = PB$.

$\blacksquare$

Ahora veamos que todos los puntos que equidistan de $A$ y $B$, son los puntos en la mediatriz $m$ de $\overline{AB}$.

Sea $P$ un punto que satisface las condiciones dadas, entonces $PA = PB$ y así $\triangle APB$ es isósceles, en la entrada anterior vimos que la mediatriz de un triángulo isósceles, pasa por el vértice que comparten los lados iguales, por lo tanto, $P \in m$.

$\blacksquare$

Definición. Definimos la distancia de un punto $P$ a una recta $l$ como la distancia entre $P$ y el pie de la perpendicular trazada desde $P$ a $l$.

Teorema 4. El lugar geométrico de los puntos que equidistan a dos rectas que se intersecan son las bisectrices de los ángulos formados por las rectas.

Demostración. Sean $l_{1}$ y $l_{2}$, dos rectas que se intersecan en $O$, consideremos $b_{1}$ la bisectriz de uno de los ángulos formados por $l_{1}$ y $l_{2}$, digamos $\alpha$, y sea $b_{2}$ la bisectriz del ángulo suplementario a $\alpha$.

Primero veamos que todos los puntos en la bisectriz de $\alpha$ equidistan a $l_{1}$ y $l_{2}$.

Figura 10

Sea $P \in b_{1}$, y sean $A$ y $B$ las intersecciones de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente, como $b_{1}$ es bisectriz $\angle AOP = \angle POB$ además $\angle PAO = \angle OBP = \dfrac{\pi}{2}$, como la suma de los ángulos internos de todo triángulo es constante entonces $\angle OPA = \angle BPO$.

Entonces en los triángulos $\triangle PAO$ y $\triangle PBO$, $\angle AOP = \angle POB$, $\angle OPA = \angle BPO$ y $\overline{OP}$ es un lado común, por criterio LAL $\triangle PAO \cong \triangle PBO$, por lo tanto $PA = PB$, así la distancia de $P$ a $l_{1}$ y a $l_{2}$ es la misma.

De manera análoga podemos ver que los puntos en $b_{2}$ son equidistantes a $l_{1}$ y $l_{2}$.

$\blacksquare$

Ahora mostremos que todos los puntos que son equidistantes a $l_{1}$ y $l_{2}$ pertenecen a $b_{1}$ o $b_{2}$.

Sea $P$ un punto que satisface que $PA = PB$, donde $A$ y $B$ son los pies de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Figura 11

Entonces $\triangle PAO$ y $\triangle PBO$ son triángulos rectángulos donde la hipotenusa es la misma, y por hipótesis tienen un cateto igual, $PA = PB$, por criterio hipotenusa – cateto $\triangle PAO \cong \triangle PBO$, en particular $\angle AOP =\angle POB$.

Notemos que las dos rectas dividen al plano en cuatro regiones distintas y en cada región podemos hacer el mismo procedimiento, pero dos rectas que se intersecan solo tienen dos bisectrices distintas.

Por lo tanto si $PA = PB$ entonces $P \in b_{1}$ o $P \in b_{2}$.

$\blacksquare$

Tarea moral

  1. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $BC > B’C’$, muestra que $\angle A > \angle A’$.
  2. Sea $\square ABCD$ un cuadrado y $O$ un punto en el plano muestra que $OA < OB + OC + OD$.
  3. Sean $\triangle ABC$ y $A’$ un punto en el interior del triángulo, muestra que $AB + AC > A’B + A’C$ y que $\angle BA’C > \angle BAC$.
  4. En un poblado situado junto a un rio, cuyo borde es totalmente recto, hay un incendio en un punto $A$, la estación de bomberos se encuentra en un punto $B$ del mismo lado del río donde se dio el incendio, los bomberos necesitan pasar primero por el río para abastecerse de agua. ¿Qué punto $P$ en el borde del río hace que el trayecto $\overline{BP} + \overline{PA}$ sea mínimo?
  5. Muestra que si dos circunferencias se intersecan en un solo punto entonces el punto pertenece al segmento que une los centros o a su extensión.
  6. $i)$ Dados una recta y un punto en ella construye la perpendicular a la recta por el punto dado.
    $ii)$ Dados una recta y un punto fuera de ella construye la paralela a la recta por el punto dado.
    $iii)$ Dados una recta y un punto fuera de ella construye la perpendicular a la recta por el punto dado.
  7. $i)$ Dados una recta y un numero $a > 0$ encuentra el el lugar geométrico de los puntos cuya distancia a la recta es $a$.
    $ii)$ ¿Cuál es el lugar geométrico de los puntos cuya distancia a una circunferencia dada $(O, r)$ es una constante dada $b > 0$?

Más adelante…

En al siguiente entrada estudiaremos a los paralelogramos y sus propiedades.

Entradas relacionadas

Seminario de Resolución de Problemas: Geometría analítica

Introducción

La geometría analítica se puede considerar la fusión de las ideas de la geometría euclidiana y el álgebra. Una de las funcionalidades de la geometría analítica es resolver problemas de geometría de una manera analítica, partiendo de la ubicación de los objetos geométricos en el plano cartesiano. A continuación veremos algunos problemas de la geometría analítica.

Un problema de rectas y puntos notables de un triángulo

Problema: Dado el triangulo $\triangle ABC$ inscrito en una circunferencias. Denotemos como $P$ a su baricentro y como $O$ a su circuncentro. Además, supongamos que $A(0,0)$, $B(a,0)$ y $C(b,c)$.
Expresa las coordenadas de $P$ y $O$ en términos de $a$, $b$ y $c$.

Solución: Tenemos que el baricentro $P$ es la intersección de las medianas del triángulo. Basta con que encontremos las ecuaciones de dos de las medianas para establecer un sistema de ecuaciones y encontrar las coordenadas de $P$.

Para obtener las medianas tenemos que determinar los puntos medios de los lados del triángulo.

Consideraremos los puntos los puntos medios de $AB$ y de $AC$, los cuales son $P_{m_{AB}}(\frac{a}{2},0)$ y $P_{m_{AC}}(\frac{b}{2},\frac{c}{2})$ respectivamente.

Ahora, determinamos la ecuación de la mediana que pasa por el punto medio de $AC$ y el vértice $B$


\begin{equation*}
\begin{align*}
y-\frac{c}{2}&=\frac{-\frac{c}{2}}{\frac{2a-b}{2}}(x-\frac{b}{2})\\
2y-c&=-\frac{c}{2a-b}(2x-b)\\
(2a-b)(2y-c)&=-2cx+bx\\
2(2a-b)y-2ac+bc&=-2cx+bc\\
2cx+2(2a-b)y&=2ac\\
cx+(2a-b)y&=ac
\end{alig*}
\end{equation*}

Para la mediana que pasa por el vértice $C$ y por el punto medio de $AB$, tenemos que

\begin{equation*}
\begin{align*}
y&=\frac{c}{\frac{2b-a}{2}}(x-\frac{a}{2})\\
(2b-a)y&=2cx-ac\\
2cx+(a-2b)y&=ac
\end{align*}
\end{equation*}

Establecemos el sistema de ecuaciones

\begin{equation*}
\begin{align*}
cx+(2a-b)y  &=ac \\
2cx + (a-2b)y &=ac
\end{align*}
\end{equation*}

Cuya solución es $x=\frac{ac+bc}{3}$ y $y=\frac{c}{3}$

Por lo tanto el punto del baricentro está dado por

\begin{equation*}
P\left(\frac{ac+bc}{3}, \frac{c}{3}\right)
\end{equation*}

Para obtener la coordenada del circuncentro tenemos que determinar las ecuaciones de las mediatrices y con ello calcular su intersección.

Tenemos que como la pendiente del segmento $AB$ es igual a $0$, tenemos entonces que la mediatriz del segmento es

\begin{equation*}
x=\frac{a}{2}
\end{equation*}

Por otro lado tenemos que la pendiente del segmento $AC$ es igual a $\frac{c}{b-a}$ con lo que la pendiente de la mediatriz de $AC$ es $\frac{a-b}{c}$, con lo que su ecuación está dada por

\begin{equation*}
\begin{align*}
y-\frac{c}{2}&=\frac{a-b}{c}(x-\frac{b}{2})\\
y&=\frac{2(a-b)(x-\frac{b}{2}+c^2}{2c}
\end{align*}
\end{equation*}

Sustituyendo $x=\frac{a}{2}$, tenemos que

\begin{equation*}
y=\frac{(a-b)^2+c^2}{2c}
\end{equation*}

Así, podemos concluir que el punto del circuncentro está dado por $O\left(\frac{a}{2},\frac{(a-b)^2+c^2}{2c}\right)$

$\square$

Recta tangente a una circunferencia


Problema: Encuentra la relación entre los parámetros $a$, $b$ y $c$ tales que la línea recta $l:\frac{x}{a}+\frac{y}{b}=1$ sea tangente a la circunferencia $C: x^2+y^2=c^2$.

Solución: Tenemos que la circunferencia está centrada el el origen $O(0,0)$ y tiene radio $r=c$.

Así, se debe cumplir que la distancia de la recta al origen debe de ser igual a $c$ para que se cumpla que sea tangente a la circunferencia.

i.e.

\begin{equation*}
\d(l,O)=\frac{|\frac{0}{a}+\frac{0}{b}-1|}{\sqrt{\frac{1}{a}+\frac{1}{b}}}=c
\end{equation*}

Tenemos entonces que

\begin{equation*}
\begin{align*}
\frac{|-1|}{\sqrt{\frac{1}{a}+\frac{1}{b}}}&=c\\
c^2\left(\frac{a+b}{ab}\right)&=1\\
\frac{a+b}{ab}&=\frac{1}{c^2}
\end{align*}
\end{equation*}

Concluimos que la condición que deben de cumplir los parámetros para que se cumpla que la recta $l$ sea tangente a la circunferencia $C$ es

\begin{equation*}
c^2=\frac{ab}{a+b}
\end{equation*}

$\square$

Circunferencia que pasa por tres puntos

Problema: Consideremos una circunferencia con centro en el origen y radio $1$. Si $M$ es un punto de la circunferencia, $N$ un punto diametralmente opuesto a $M$ y $A(2,3)$ un punto fuera de la circunferencia. Determina el lugar geométrico formado por los centros de las circunferencias que pasan por $M$, $N$ y $A$ al variar $M$

Solución: Sea $M(a,b)$, tenemos que $N$ por ser diametralmente opuesto está dado por $N(-a,-b)$. Si denotamos como $C_1(x,y)$ al centro de la circunferencia que pasa por $M$, $N$ y $A$, tenemos que las distancias desde los puntos dados al centro $C_1(x,y)$ son todas iguales.

\begin{equation*}
d(C_1,M)=d(C_1,N)=d(C_1,A)
\end{equation*}

Además,

\begin{equation*}
\begin{align*}
&d(C_1,M)=\sqrt{(x-a)^2+(y-b)^2}\\
&d(C_1,N)=\sqrt{(x+a)^2+(y+b)^2}\\
&d(C_1,A)=\sqrt{(x-2)^2+(y-3)^2}
\end{align*}
\end{equation*}

Como $d(C_1,M)=d(C_1,N)$ tenemos que

\begin{equation*}
\begin{align*}
(x-a)^2+(y-b)^2&=\sqrt{(x+a)^2+(y+b)^2}\\
-2ax-2by&=2ax+2by\\
ax+by&=0
\end{align*}
\end{equation*}

Por otro lado tenemos que $d(C_1,N)=d(C_1,M)$, entonces

\begin{equation*}
\begin{align*}
(x-a)^2+(y-b)^2&=(x-2)^2+(y-3)^2\\
-2ax-2by+a^2+b^2&=-4x-6y+2^2+3^2\\
-2ax-2by+1&=-4x-6y+4+9\\
-2ax-2by&=-4x-6y+12\\
-ax-by&=-2x-3y+6\\
(a-2)x+(b-3)y&=-6
\end{align*}
\end{equation*}

Al hacer la diferencia de esta última ecuación con la primera que obtuvimos, tenemos la ecuación:

\begin{equation*}
\begin{align*}
2x+3y&=6\\
2x+3y-6&=0
\end{align*}
\end{equation*}

Lo cual nos describe una línea recta

Por lo tanto, el lugar geométrico formado por los centros de las circunferencias que pasan por $M$, $N$ y $A$ al variar $M$, es la recta con ecuación general $2x+3y-6=0$

$\square$


Más problemas

Puedes encontrar más problemas de Geometría Analítica en la sección 8.2 del libro Problem Solving through Problems de Loren Larson.