Archivo del Autor: Pedro Rivera Herrera

Conexidad y compacidad en un espacio métrico

Introducción

En esta entrada abordaremos los conceptos de conexidad y compacidad para caracterizar a los conjuntos de $\mathbb{C}$, además de que veremos que tanto la conexidad como la compacidad son invariantes respecto a una función continua, es decir, son propiedades topológicas, concluyendo así que entre espacios métricos homeomorfos los conjuntos conexos y compactos están en correspondencia biunívoca.

Intuitivamente al hablar de un conjunto conexo pensamos en conjuntos que están constituidos por una sola pieza, conjuntos que no están formados por piezas separadas. Esta característica nos devuelve muchas propiedades importantes que se obtienen al trabajar con este tipo de conjuntos.

Mientras que el concepto de conjunto conexo es fácil de interpretar intuitivamente, el concepto de conjunto compacto no lo es, sin embargo podemos pensar a la compacidad como una generalización topológica de conjunto finito, lo cual es de suma utilidad pues nos permite dotar de propiedades importantes, que se cumplen en conjuntos finitos, a los conjuntos compactos.

Conexidad en un espacio métrico

Definición 10.1. (Subespacio métrico.)
Si $(X,d_X)$ es un espacio métrico y $A\subset X$ se define para todo $x,y\in A$ la métrica inducida por $d_X$ como:
\begin{equation*}
d_A(x,y) = d_X(x,y).
\end{equation*} Esta es claramente una métrica en $A$. Al conjunto $A$ dotado con está métrica se le llama un subespacio métrico de $X$ y lo denotamos como $(A, d_A)$.

Definición 10.2. (Conexidad.)
Un espacio métrico $(X,d_X)$ se dice que es conexo si los únicos subconjuntos de $X$ tales que ambos son abiertos y cerrados en $X$ son el conjunto $\emptyset$ y $X$. Si $A\subset X$, entonces $A$ es un subconjunto conexo de $X$ si el subespacio métrico $(A, d_A)$ es conexo.
Equivalentemente, un espacio métrico $X$ se dice que no es conexo o que es disconexo si existen subconjuntos $A$ y $B$ de $X$, ambos abiertos en $X$ y tales que: \begin{equation*}
A\neq\emptyset, \,\, B\neq\emptyset, \,\, A\cap B = \emptyset \,\,\, \text{y} \,\,\, X = A \cup B.
\end{equation*} Considerando estas condiciones se tiene que $A$ y $B$ son también cerrados en $X$ desde que $A=X\setminus B$ y $B=X\setminus A$.

Ejemplo 10.1.
a) Dado que $\mathbb{C}$ y $\emptyset$ son los únicos subconjuntos abiertos y cerrados en $\mathbb{C}$, ejemplo 7.1(d), tenemos que $(\mathbb{C},d)$ es conexo.
b) Los números reales $\mathbb{R}$ dotados con la métrica euclidiana dada por el valor absoluto, es decir para $a, b\in\mathbb{R}$ se define $d(a,b) = |a\,-\,b|$, forman un espacio métrico conexo.
c) Sea $X = A \cup B$ donde $ A = \{ z\in\mathbb{C} : |\,z\,| \leq 1 \} $ y $B = \{ z\in\mathbb{C} : |\,z – 4\,| < 2\}$, dotado con la métrica euclidiana. Veamos que el subespacio métrico $(X,d_X)$ es disconexo, figura 48.
Solución. Dado que $X\subset\mathbb{C}$ está dotado con la métrica euclidiana, entonces $(X, d_X)$ es un espacio métrico. Por lo que $A = \overline{B}(0,1)$ es un conjunto cerrado en $X$ y $B = B(4,2)$ es un conjunto abierto en $X$. Veamos que $A$ también es abierto. Sea $w \in A$, notemos que para todo $\rho \in (0,1)$ se cumple que:
\begin{equation*}
B(w,\rho) = \{ z \in X \, : \, |z-w|<\rho \} \subset A,
\end{equation*} por lo que $A$ es abierto.
Es claro que $A\neq \emptyset$, $B\neq \emptyset$, $A \cap B = \emptyset$ y $X = A \cup B$. Dado que $A$ y $B$ son abiertos en $X$, entonces $(X, d_X)$ es disconexo.

Figura 48: Conjuntos $A=\overline{B}(0,1)$ y $B=B(4,2)$ son una disconexión del conjunto $X=A\cup B$.

Recordemos el siguiente resultado del espacio métrico $(\mathbb{R}, d)$, donde $d(a,b)=|a\,-\,b|$ para $a,b\in\mathbb{R}$.

Proposición 10.1.
Un conjunto $I\subset \mathbb{R}$ es conexo si y sólo si $I$ es un intervalo.

Demostración. Ejercicio.

$\blacksquare$

Definición 10.3. (Región o dominio.)
Un conjunto $S\subset\mathbb{C}$ abierto y conexo se llama región o dominio.

Ejemplo 10.2.
a) El conjunto $\mathbb{C}$ es una región.
b) Dado $z_0\in\mathbb{C}$, se tiene que para todo $\rho>0$ una $\rho$-vecindad de $z_0$ es una región, figura 41(a).
c) El conjunto $X = \{z\in\mathbb{C} \, : \, 1 < \operatorname{Re}(z) + \operatorname{Im}(z) < 4\} \cap \{ z\in\mathbb{C} \, : \, |\,\operatorname{Re}(z) – \operatorname{Im}(z)\,|< 2\}$ es una región, figura 49.

Figura 49: El conjunto $X$ del ejemplo 10.2(c) es una región en $\mathbb{C}$.

Definición 10.4. (Segmento de recta.)
Sean $z_1,z_2\in\mathbb{C}$, entonces el segmento de recta que va de $z_1$ a $z_2$, denotado por $[z_1, z_2]$, se define como:
\begin{equation*}
[z_1, z_2] = \{ z_1 + t(z_2 -z_1) \, : \, 0\leq t \leq 1 \}
\end{equation*}

Definición 10.5. (Polígono o poligonal.)
Sean $z,w\in\mathbb{C}$, con $z\neq w$. Un polígno o poligonal de $z$ a $w$ se define como el conjunto de $n$-segmentos de recta que unen a dichos puntos, es decir: \begin{align*}
P & = \bigcup\limits_{k=1}^{n} [z_k, w_k]\\
& = [z, z_2, \ldots , z_n, w],
\end{align*} donde $z=z_1$, $w=w_n$ y $w_k = z_{k+1}$ para $1\leq k \leq n-1$.

Figura 50: Polígono o poligonal que une a los puntos $z$ y $w$ mediante $n-1$ segmentos de recta.

Definición 10.6. (Poligonal conexo.)
Un conjunto $S\subset\mathbb{C}$ se llama poligonal conexo si para cualesquiera dos puntos $z, w\in S$ existe un polígono de $z$ a $w$ tal que está totalmente contenido en $S$.

Ejemplo 10.3.
Sean $\rho_1, \rho_2, \rho_3 \in (0,\infty)$ con $\rho_1 < \rho_2 < \rho_3$. Consideremos a los siguientes conjuntos de $\mathbb{C}$:
a) $X = \overline{B}(z_1,\rho_1) \cup \left( \, \overline{B}(z_1,\rho_3) \setminus \overline{B}(z_1,\rho_2) \right)$, figura 51(a).
b) $Y = B(z_0,\rho_2) \setminus B(z_0,\rho_1)$, figura 51(b).

Figura 51: El conjunto $X$ no es poligonal conexo, mientras que el conjunto $Y$ sí es poligonal conexo..

De acuerdo con la figura 51(a) podemos ver que el conjunto $X$ no es poligonal conexo, ya que si tomamos a $z_1 \in \overline{B}(z_1,\rho_1)$ y $z_2 \in \overline{B}(z_1,\rho_3) \setminus \overline{B}(z_1,\rho_2)$, entonces no es posible trazar una poligonal que una a dichos puntos y que se quede contenida en $X$.

Por otra parte, considerando la figura 51(b) es claro que para cualesquiera dos puntos en $Y$ es posible encontrar una poligonal que los una y que se quede contenida en $Y$, por lo que dicho conjunto sí es poligonal conexo.

Teorema 10.1.
Un conjunto $S \subset \mathbb{C}$ abierto es conexo si y solo si es poligonal conexo.

Demostración.
$\Rightarrow)$
Supongamos que $S$ es un dominio y sea $\zeta \in S$ un punto fijo. Dar una construcción explícita de un polígono $P$ que vaya de $\zeta$ a un punto $w \in S$ tal que $P\subset S$, puede resultar un tanto complicado. Sin embargo solo basta con garantizar que existe dicho polígono. Definamos el siguiente conjunto:
\begin{equation*}
A = \{w \in S \, : \, \text{existe un polígono} \, \, P \,\, \text{de} \, \, \zeta \,\, \text{a} \,\, w \,\, \text{tal que} \,\, P \subset S \}.
\end{equation*} Notemos que $A\neq\emptyset$ ya que $\zeta\in A$. Veamos que $A$ es abierto en $S$. Sea $w\in A$ y sea $P = [\zeta, z_2, \ldots, z_n, w]$ un polígono de $\zeta$ a $w$ tal que $P\subset S$. Dado que $S$ es abierto entonces existe $\rho>0$ tal que $B(w,\rho)\subset S$. Notemos que si $z\in B(w,\rho)$, entonces se cumple que $[w,z] \subset B(w,\rho)$ (¿por qué?) Así el polígono $Q = P \cup [w,z]$ es un polígono de $\zeta$ a $z$ tal que $Q \subset S$, por lo que $z \in A$. Entonces $B(w,\rho) \subset A$, es decir $A$ es abierto.
Veamos que $A$ es cerrado en $S$. Probemos que $S\setminus A$ es abierto en $S$. Es claro que si $A = S$, entonces $S\setminus A = \emptyset$ es abierto, por lo que $A$ es cerrado.
Sin pérdida de generalidad supongamos que existe $z \in S\setminus A$. Dado que $S$ es abierto entonces existe $\rho>0$ tal que $B(z,\rho) \subset S$. Si suponemos que existe $w\in B(z,\rho) \cap A$, entonces podemos construir un polígono $Q = [\zeta, z_2, \ldots, z_n, w] \cup [w, z]$ que va de $\zeta$ a $z$ tal que $Q\subset S$, pero entonces $z \in A$, lo cual es una contradicción. Entonces no existe $w\in B(z,\rho) \cap A$, es decir $B(z,\rho) \cap A = \emptyset$. Por lo que $B(z,\rho) \subset S\setminus A$, de donde concluimos que $S\setminus A$ es abierto. Por lo tanto $A$ es cerrado en $S$.
Dado que $S$ es conexo y considerando que $A$ es abierto y cerrado en $S$, con $A \neq \emptyset$, entonces concluímos que $A = S$.

$(\Leftarrow$
Supongamos que $S$ es poligonal conexo, procedemos por reducción al absurdo. Supongamos que $S$ no es conexo, entonces existen $A\neq\emptyset$ y $B\neq\emptyset$ abiertos tales que $S = A \cup B$, $A \cap B = \emptyset$. Sea $z \in A$ y $w \in B$, por hipótesis sabemos que existe un polígono $P$ que va de $z$ a $w$ tal que $P \subset S$. Desde que $P \subset A \cup B $ y $A \cap B = \emptyset$ al menos uno de los segmentos que forman a $P$ debe tener un punto final en $A$, digamos $z_k$, y otro punto final en $B$, digamos $w_k$. Entonces dicho segmento es $[z_k, w_k]$. Definamos los siguientes conjuntos:
\begin{align*}
S = \{ s\in[0,1] \, : \, z_k + s(w_k – z_k) \in A \},\\
T = \{ t\in[0,1] \, : \, z_k + t(w_k – z_k) \in B \}.
\end{align*} Notemos que $0 \in S$ y $1\in T$, además dado que $A \cap B = \emptyset$ y $[z_k, w_k] \subset P \subset A \cup B$ es fácil ver que $S \cap T = \emptyset$ y $S \cup T = [0,1]$.
Lema 10.1.
Los conjuntos $S$ y $T$ son abiertos en $[0,1]\subset\mathbb{R}$ con la métrica euclidiana.
Demostración. Ejercicio.
$\blacksquare$

De acuerdo con lo anterior y considerando el lema 10.1 tenemos que $[0,1] = T \cup S$ es disconexo, lo cual contradice la proposición 10.1. Por lo tanto $S$ es conexo.

$\blacksquare$

Observación 10.1.
Notemos que en la prueba del teorema, al probar que un conjunto poligonal conexo es conexo no utilizamos que $S$ es abierto, entonces ¿un conjunto conexo es poligonal conexo?

Proposición 10.2.
Sea $(X,d_X)$ un espacio métrico. Entonces las siguientes condiciones son equivalentes:

  1. $(X,d_X)$ es disconexo.
  2. Existe una función sobreyectiva y continua de $(X,d_X)$ en el espacio métrico discreto de dos elementos $(X_0,d_{X_0})$, donde $X_0 = \{0,1\}$ y $d_{X_0}$ es la métrica discreta, es decir $d_{X_0}(0,1) = 1$.

Demostración.
1. $\Rightarrow)$ 2.
Sea $X = A\cup B$, donde $A$ y $B$ son dos subconjuntos de $X$ abiertos no vacíos tales que $A \cap B = \emptyset$. Definimos la función $f:X \to X_0$ dada por:
\begin{equation*}
f(x)= \left\{ \begin{array}{lcc}
0 & \text{si} & x \in A,\\
1 & \text{si} & x \in B.
\end{array} \right.
\end{equation*} Es claro que la función $f$ es suprayectiva. Notemos que los conjuntos abiertos de $X_0$ son (¿por qué?): \begin{equation*}
\emptyset, \{0\}, \{1\}, X_0.
\end{equation*} Notemos que $f^{-1}\left(\emptyset\right) = \emptyset$, $f^{-1}\left(X_0\right) = X$, y sabemos que los conjuntos $X$ y $\emptyset$ son abiertos en $X$. Por otra parte, tenemos que $f^{-1}\left(\{0\}\right) = A$ y $f^{-1}\left(\{1\}\right) = B$, los cuales con conjuntos abiertos en $X$. Entonces por la proposición 9.2 se sigue que $f$ es continua en $X$.

2. $\Rightarrow)$ 1.
Sea $f:X \to X_0$ una función continua y sobreyectiva. Dado que $f$ es sobreyectiva tenemos que los conjuntos $A = f^{-1}\left(\{0\}\right)$ y $B = f^{-1}\left(\{1\}\right)$ son dos subconjuntos de $X$ no vacíos. Notemos que $A,B$ son abiertos en $X$, ya que los conjuntos $\{0\}$ y $\{1\}$ son abiertos en $X_0$, por lo que al ser $f$ una función continua se sigue de la proposición 9.2 que sus imágenes inversas son abiertas en $X$. Más aún, se tiene que los conjuntos $A$ y $B$ son tales que $X = A \cup B$ y $A \cap B = \emptyset$, por lo que $(X, d_X)$ es disconexo.

$\blacksquare$

Podemos reformular el resultado anterior y obtener el siguiente:

Corolario 10.1
Sea $(X, d_X)$ un espacio métrico. Las siguientes condiciones son equivalentes:

  1. $(X, d_X)$ es conexo.
  2. Las únicas funciones continuas de $(X, d_X)$ en $(X_0, d_{X_0})$ son las funciones constantes, es decir las funciones $f(x) = 1$ para todo $x\in X$ y $g(x) = 0$ para todo $x\in X$.

$\blacksquare$

Proposición 10.3.
Sean $(X, d_X)$ y $(Y, d_Y)$ dos espacios métricos y sea $f: X \to Y$ una función continua. Si $(X, d_X)$ es conexo, entonces el subespacio métrico $(f(X), d^*)$, donde $d^*$ es la métrica inducida por $d_Y$, es conexo.

Demostración. Dadas las hipótesis, procedamos por reducción al absurdo, supongamos que $(f(X), d^*)$ es disconexo. Entonces por la proposición 10.2 tenemos que existe una funcion sobreyectiva y continua, digamos $g$, entre $(f(X), d^*)$ y $(X_0, d_{X_0})$. Entonces por la proposición 9.3 se sigue que la función $g \circ f : X \to X_0$ es continua y como $g$ es sobreyectiva se tiene que $g(f(X))=X_0$, lo cual contradice la conexidad de $(X, d_X)$ de acuerdo con el corolario 10.1.

Por lo tanto $(f(X), d^*)$ es conexo.

$\blacksquare$

Un resultado importante que se prueba en Cálculo es el teorema del valor intermedio, el cual resulta ser un caso particular de la proposición 10.3.

Teorema 10.2. (Teorema del valor intermedio.)
Si $f:[a,b] \to \mathbb{R}$ es una función continua en $[a,b]$ con $f(a)<f(b)$, entonces para todo $y$ tal que $f(a) \leq y \leq f(b)$ existe $x\in[a, b]$ tal que $f(x) = y$.

Demostración. Dadas las hipótesis, tomemos a $y\in\mathbb{R}$ tal que $f(a) \leq y \leq f(b)$.

Como $[a, b]\subset\mathbb{R}$ es un intervalo, por la proposición 10.1 se sigue que $([a, b], \,d)$ es conexo, donde $d$ es la métrica inducida por el valor absoluto en $\mathbb{R}$. Dado que $f$ es una función continua y $([a, b], \, d)$ es conexo, por la proposición 10.3 se tiene que $(f([a, b]), \, d^*)$ es conexo, donde $d^*$ es la métrica inducida por el valor absoluto en $\mathbb{R}$. Por la proposición 10.1 tenemos que el conjunto $f([a,b])$ es un intervalo en $\mathbb{R}$. Es claro que dicho intervalo es no vacío desde que $f(a)$ y $f(b)$ pertenecen a dicho conjunto.

Dado que $f(a) \leq y \leq f(b)$ y $f(a),f(b)\in f([a,b])$ entonces se sigue que $y\in f([a,b])$. Por lo tanto existe algún $x\in[a, b]$ tal que $f(x) = y$. Como $y$ era arbitrario se sigue el resultado para todo $y\in\mathbb{R}$ tal que $f(a) \leq y \leq f(b)$.

$\blacksquare$

Proposición 10.4.
Sea $(X, d_X)$ un espacio métrico. Si $Y\subset X$ es conexo en $X$, entonces cualquier conjunto $Z$ tal que $Y \subset Z \subset \overline{Y}$ es conexo.

Demostración. Dadas las hipótesis, supongamos que $Z$ no es conexo. Entonces existen $A\neq \emptyset$ y $B\neq \emptyset$ tales que $Z = A\cup B$ y $A \cap B = \emptyset$.
Como $Y \subset Z \subset \overline{Y}$, entonces $\overline{Y} \subset \overline{Z}$, de donde se sigue que $Y$ es denso en $Z$, por lo que $Y \cap A \neq \emptyset$ y $Y \cap B \neq \emptyset$ son conjuntos abiertos en $Y$ (¿por qué?), además se tiene que: \begin{align*}
(Y \cap A) \cup (Y \cap B) = Y,\\
(Y \cap A) \cap (Y \cap B) = \emptyset,
\end{align*} lo cual contradice la conexidad de $Y$, por lo tanto $Z$ es conexo.

$\blacksquare$

Observación 10.2.
Dado que $Y\subset \overline{Y} \subset \overline{Y}$, de la proposición 10.4 se tiene que $\overline{Y}$ es conexo si $Y$ es conexo en $(X, d_X)$.

Proposición 10.5.
Sea $(X, d_X)$ un espacio métrico y sea $\{Y_j \,:\, j\in J\}$, con $J$ un conjunto de índices, una familia de conjuntos conexos en dicho espacio métrico tal que $\bigcap_{j\in J} Y_j \neq \emptyset$. Entonces $Y = \bigcup_{j\in J} Y_j$ es conexo.

Demostración. Dadas las hipótesis, procedamos por reducción al absurdo. Supongamos que $Y$ no es conexo. Entonces existen subconjuntos no vacíos de $Y$, digamos $A$ y $B$, los cuales son abiertos en $Y$ y tales que $Y = A\cup B$ y $A \cap B \neq \emptyset$. Sea $y \in \bigcap_{j\in J} Y_j \neq \emptyset$. Sin pérdida de generalidad supongamos que $y\in A$. Por hipótesis tenemos que $B\neq \emptyset$, por lo que debe existir al menos algún $j\in J$ tal que $B \cap Y_j \neq \emptyset$. Entonces $y\in A \cap Y_j$, es decir $A \cap Y_j \neq \emptyset$. Es claro que los conjuntos $A \cap Y_j$ y $B \cap Y_j$ son abiertos en $Y_j$ y además notemos que: \begin{align*}
(A \cap Y_j) \cup (B \cap Y_j) = Y_j,\\
(A \cap Y_j) \cap (B \cap Y_j) = \emptyset,
\end{align*} lo cual contradice la conexidad de $Y_j$.

Por lo tanto $Y = \bigcup_{j\in J} Y_j$ es conexo.

$\blacksquare$

De este resultado se deduce por inducción el siguiente:

Corolario 10.2.
Sea $(X, d_X)$ un espacio métrico y sea $\{Y_j\}_{1\leq j \leq n}$ una sucesión de conjuntos conexos en dicho espacio métrico tal que $Y_j \cap Y_{j+1} \neq \emptyset$, con $1 \leq j \leq n-1$. Entonces $\bigcup_{j=1}^n Y_j$ es conexo en $(X, d_X)$.

$\blacksquare$

Definición 10.7. (Componente conexa.)
Sea $(X,d_X)$ un espacio métrico y $z\in X$. La componente conexa de $z$ es el conjunto: \begin{equation*}
C(z) = \bigcup \{A \subset X \, : \, z\in A \,\, \text{y}\,\, A \,\, \text{es conexo}\}. \end{equation*}

Observación 10.2.
De la definición y de la proposición 10.4 es claro que $C(z)$ es el subconjunto conexo máximo de $X$.(¿Por qué?)

Por otra parte notemos que un espacio métrico disconexo puede ser descompuesto únicamente en sus componentes conexas.

Ejemplo 10.4.

  1. Si $X$ es conexo, entonces $C(z) = X$ para todo $z\in X$.
  2. Sea $X = (0, 2) \setminus {1}$ dotado con la métrica inducida por el valor absoluto en $\mathbb{R}$. Las componentes conexas de $X$ son los intervalos $(0, 1)$ y $(1, 2)$.
  3. Consideremos al conjunto $U = \{z\in\mathbb{C} \,:\, \operatorname{Re}(z)\neq 0\}$. Sus componentes conexas son: \begin{equation*}
    D_1 = \{z\in\mathbb{C} \,:\, \operatorname{Re}(z) > 0}, \quad D_2 = {z\in\mathbb{C} \,:\, \operatorname{Re}(z) < 0\}.
    \end{equation*}
  4. Sea $V = \{ z\in\mathbb{C} \,:\, \operatorname{Re}(z)\not\in\mathbb{Z}\}$. Entonces sus componentes conexas son $G_n = \{z\in\mathbb{C} \,:\, n< \operatorname{Re}(z) < n+1\}$, para cada $n\in\mathbb{Z}$.

Proposición 10.6.
Sea $(X, d_X)$ un espacio métrico. Entonces se cumple lo siguiente.

  1. Cada subconjunto conexo de $(X, d_X)$ está contenido únicamente en una componente conexa.
  2. Cada subconjunto conexo y no vacío de $(X, d_X)$ que es abierto y cerrado en $X$ es una componente de $(X, d_X)$.
  3. Cada componente de $(X, d_X)$ es cerrada.

Demostración.

  1. Primeramente notemos que para $z,y \in X$, si $C(z) \cap C(y) \neq \emptyset$, entonces por la proposición 10.5 se tiene que $C(z) \cup C(y)$ es conexo lo cual contradice la maximalidad de $C(z)$ a menos de que $C(z) = C(y)$. Es decir, si $C(z) \neq C(y)$, entonces $C(z) \cap C(y) = \emptyset$. Sea $A \subset X $ un conjunto conexo tal que $z\in A$. Por la maximalidad de $C(z)$ es claro que $A \subset C(z)$. Dado que dos componentes distintas son ajenas entre sí, es claro que cada conjunto $A\subset X$ conexo tal que $z \in A$ únicamente está contenido en una componente conexa.
  2. Sea $A \subset X$ un conjunto conexo abierto y cerrado en $(X, d_X)$ y sea $z \in A$. Tenemos que $A \subset C(z)$, por lo que $A$ es abierto y cerrado en $(C(z), d_{C(z)})$ (¿por qué?), por lo que por la conexidad de $C(z)$ se debe cumplir que $C(z) = A$.
  3. Sea $z\in X$. Sabemos que $C(z) \subset \overline{C(z)}$. De acuerdo con la proposición 10.4 y la observación 10.2, tenemos que al ser $(C(z), d_{C(z)})$ un subespacio conexo, entonces $\overline{C(z)}$ es también conexo, por lo que por la maximalidad de $C(z)$ se cumple que $\overline{C(z)} \subset C(z)$, por lo que $\overline{C(z)} = C(z)$, es decir $C(z)$ es cerrado.

$\blacksquare$

Observación 10.3.
El inciso 1 de la proposición 10.6 nos dice que el conjunto $X$ se puede expresar como la unión de sus componentes conexas.

Observación 10.4.
Notemos que una componente conexa no necesariamente tiene que ser un conjunto abierto en $(X, d_X)$. Consideremos al siguiente conjunto: \begin{equation*}
X = \{0\} \cup \left\{\frac{1}{n} \,:\, n\in\mathbb{N}^+\right\},
\end{equation*} dotado con la métrica inducida por el valor absoluto en $\mathbb{R}$. No es díficil convencerse de que cada componente conexa de $X$ es un punto y cada punto es una componente. Además cada componente ${\frac{1}{n}}$ es un conjunto abierto en $X$, mientras que la componente conexa ${0}$ es cerrada en $X$ desde que su complemento es abierto en $X$, pero no es abierta ya que dada cualquier $\varepsilon$-vecindad de 0 a esta siempre pertenecerá $\frac{1}{n}$ para algún $n\in\mathbb{N}^+$.

Compacidad en un espacio métrico

Definición 10.8. (Cubierta abierta.)
Sea $(X,d)$ un espacio métrico y $K\subset X$. Una familia de subconjuntos de $X$, digamos $\mathcal{G} = \{G_i : i\in I\}$, donde $I$ es un conjunto arbitrario de índices, tal que: \begin{equation*}
K \subset \bigcup_{i \in I} G_i,
\end{equation*} se llama una cubierta de $K$. Si además cada conjunto de $\mathcal{G}$ es un conjunto abierto en $X$, entonces diremos que es una cubierta abierta de $K$.

Definición 10.9.
Sea $(X,d)$ un espacio métrico. Se dice que un conjunto $K\subset X$ es compacto si toda cubierta abierta $\mathcal{G}$ contiene un subconjunto finito $\{G_1, G_2, \ldots, G_n\} \subset \mathcal{G}$ tal que: \begin{equation*}
K \subset G_1 \cup G_2 \cup \cdots \cup G_n.
\end{equation*}

Ejemplo 10.5.

  1. El conjunto vacío y todo conjunto finito son compactos.
  2. El conjunto $B(0,1) = \left\{ z\in\mathbb{C} : |\,z\,|<1\right\}$ no es un conjunto compacto. Sea $G_n = \{z\in\mathbb{C} : |\,z\,| < 1 – \frac{1}{n+1}\}$ para toda $n\in\mathbb{N}^+$, entonces $\{G_1, G_2, G_3, \ldots \}$ es una cubierta abierta de $B(0,1)$, pero no existe una subcubierta finita.

Para el espacio métrico $(\mathbb{C},d)$ consideraremos válida en el curso las siguientes caracterizaciones de subconjuntos compactos de $(\mathbb{R}^2, d)$, donde $d$ es la distancia usual de $\mathbb{R}^2$.

Proposición 10.7.
Sea $ S \subset \mathbb{C}$. Las siguientes condiciones son equivalentes:

  1. $S$ es compacto.
  2. Todo subconjunto infinito de puntos de $S$ tiene algún punto de acumulación en $S$.
  3. Toda sucesión de números complejos ${z_n}_{n\geq 1}$ de $S$ tiene alguna subsucesión convergente a un punto $z\in S$.
  4. $S$ es cerrado y acotado. (Teorema de Heine – Borel.)

$\blacksquare$

Proposición 10.8.
Sea $(X,d)$ un espacio métrico compacto, entonces $(X,d)$ es completo.

$\blacksquare$

Proposición 10.9.
Sean $(X, d_X)$ y $(Y, d_Y)$ dos espacios métricos y sea $f: X \to Y$ una función continua. Si $X$ es compacto, entonces $f(X)$ es un subconjunto compacto de $Y$.

$\blacksquare$

Proposición 10.10.
Sea $(X, d_X)$ un espacio métrico, sea $K\subset X$ y sea $f: K \to \mathbb{R}$ una función continua. Si $K$ es un conjunto compacto, entonces $f$ alcanza sus valores máximo y mínimo y ambos son finitos.

$\blacksquare$

Ejemplo 10.6.
Sea $z_0\in\mathbb{C}$ fijo y sea $\rho>0$. Todo disco cerrado $\overline{B}(z_0, \rho)$ es compacto.

Tarea moral

  1. Realiza la demostración de la proposición 10.1.
  2. Prueba el lema 10.1. Hint: Considera la función $\gamma:[0,1] \to\mathbb{C}$ tal que $\gamma(t) = z + t(w-z)$, con $z,w\in\mathbb{C}$ y utiliza la proposición 9.2.
  3. Considera la definición 10.4. Sean $z,w\in\mathbb{C}$. Demuestra que el segmento de recta $[z,w]$ es un conjunto conexo. Hint: Considera la proposición 10.3 y el ejercicio anterior.
  4. Consideremos el conjunto dado en el ejercicio 8 de la entrada 7, es decir: \begin{equation*}
    S = \{z\in\mathbb{C} \,:\, |\,\operatorname{Im}(z)\,|<|\operatorname{Re}(z)|\}. \end{equation*} Prueba que dicho conjunto dotado con la métrica euclidiana de $\mathbb{C}$ no es conexo. Determina sus componentes conexas.
  5. Consideremos a $(\mathbb{C}, d)$, donde $d$ es la métrica euclidiana. Sean $X,Y\subset \mathbb{C}$ dos conjuntos conexos. Supon que $X \cap Y \neq \emptyset$, entonces ¿el conjunto $X \cap Y$ es necesariamente conexo? Realiza la prueba o da un contraejemplo.
  6. Da un bosquejo de la demostración de la proposición 10.7.
  7. Considera los siguientes conjuntos:
    a) $X = \left\{ \frac{1}{n} + i \frac{1}{m} \,: \, n,m\in\mathbb{N}^+ \right\}$.
    b) $Y = \{z\in\mathbb{C} \,:\, \operatorname{Re}(z), \operatorname{Im}(z) \in \mathbb{Q}\}$.
    c) $W = \bigcup_{n\in\mathbb{Z}} B(n, 1/2)$.
    Determina sus componentes conexas.
  8. ¿Cuáles de los siguientes subconjutnos de $\mathbb{C}$, dotados con la métrica inducida por el módulo complejo, son conexos?
    a) $A = \{z\in\mathbb{C} \,:\, |\,z\,|\leq 1\} \cup \{z\in\mathbb{C} \, : \, |\,z-2\,|<1\}$.
    b) $B = [0, 1) \cup \left\{1+\frac{1}{n} \, : \, n\in\mathbb{N}^+ \right\}$.
    Si alguno no es conexo determina sus componentes conexas.

Más adelante…

En esta entrada hemos abordado los conceptos de conexidad y compacidad para conjuntos de algún espacio métrico, con lo cual logramos caracterizar a los conjuntos de $\mathbb{C}$ mediante dichos conceptos. Es importante mencionar que existen muchos más resultados para los conjuntos con estas propiedades, sin embargo aquí únicamente mencionamos algunos de los cuales nos serán de utilidad a lo largo del curso. Asimismo solo hemos trabajado con las definiciones que requeriremos, por lo que es importante complementar estos temas con bibliografía adicional sobre espacios métricos.

La siguiente entrada abordaremos el concepto del infinito desde la perspectiva de los números complejos, por lo que realizaremos una extensión de $\mathbb{C}$ dotando a este campo con un nuevo elemento y considerando un nuevo modelo, la Esfera de Riemann, el cual nos permitirá trabajar de forma idónea con este nuevo elemento llamado el punto al infinito e inducir una nueva métrica.

Entradas relacionadas

Continuidad en un espacio métrico

Introducción

La idea de continuidad es uno de los conceptos estructurales de la Topología y el Análisis Matemático. Al hablar de esta idea generalmente asociamos el concepto con la ininterrupción de la gráfica de una función, lo cual es claro cuando trabajamos con funciones reales definidas en algún intervalo, intuitivamente pensamos en la ininterrupción de una función considerando que para cualquier punto $z$ en el dominio de una función $f$, se tendrá que $f(x)$ no estará muy separada de $f(z)$ siempre que $x$ se mantenga lo suficientemente cerca de $z$ en el dominio. Pero, ¿qué pasa con las funciones que cuya gráfica no podemos visualizar? Hablar de continuidad para los espacios métricos resulta de gran importancia, ya que mediante la definición de métrica resulta posible generalizar el concepto de continuidad para funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$, con lo cual podemos responder nuestra pregunta y obtener así una idea clara y general sobre lo que es la continuidad.

En esta entrada abordaremos el concepto de continuidad entre espacios métricos desde una perspectiva general, además de establecer la estrecha relación que existe entre los conceptos de sucesión, límite y continuidad, para obtener así una serie de resultados que nos permitirán caracterizar al espacio métrico $(\mathbb{C},d)$, con $d$ la métrica euclidiana, y facilitar nuestro estudio de la continuidad entre funciones complejas que estudiaremos a detalle en la siguiente unidad.

Continuidad en espacios métricos

Definición 9.1. (Continuidad.)
Sean $(X,d_X)$ y $(Y,d_Y)$ dos espacios métricos y sea $A\subset X$. Una función $f:A \to Y$ se dice que es continua en $a\in A$ si para todo $\varepsilon>0$ existe algún $\delta>0$ (que depende de $a$ y $\varepsilon$) tal que:
\begin{equation*}
d_Y\left( f(x), f(a) \right) < \varepsilon \quad \text{si} \quad d_X(x,a)<\delta. \end{equation*} Decimos que $f$ es continua en $A$ si es continua en todo punto de $A$.

Lema 9.1.
Sea $f:X \to Y$ una función arbitraria y sean $A\subset X$ y $B\subset Y$. Entonces:
\begin{equation*}
f(A) \subset B \quad \text{si y solo si} \quad A \subset f^{-1}(B).
\end{equation*}

Demostración. Ejercicio.

$\blacksquare$

Proposición 9.1
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $f: (X,d_X) \to (Y, d_Y)$ una función. Entonces $f$ es continua en un punto $x_0\in X$ si y solo si para todo $\varepsilon>0$ existe $\delta>0$ tal que:
\begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right],
\end{equation*} donde $B(x,r)$ denota una $r$-vecindad de $x$.

Demostración. Una función $f:X \to Y$ es continua en $x_0\in X$ si y solo si para todo $\varepsilon>0$ existe $\delta>0$ tal que:
\begin{equation*}
d_Y\left( f(x_0), f(x) \right) < \varepsilon,
\end{equation*} para toda $x\in X$ tal que $d_X(x_0,x)<\delta$, es decir:
\begin{equation*}
\text{si} \,\, x\in B\left(x_0,\delta\right) \,\, \text{entonces} \,\, f(x)\in B\left(f(x_0),\varepsilon\right),
\end{equation*} o equivalentemente: (¿por qué?)
\begin{equation*}
f\left[B\left(x_0,\delta\right)\right] \subset B\left(f(x_0),\varepsilon\right). \end{equation*} Pero por el lema 9.1 esta última condición es equivalente a:
\begin{equation*}
B\left(x_0,\delta\right) \subset f^{-1}\left[B\left(f(x_0),\varepsilon\right)\right].
\end{equation*}

$\blacksquare$

Proposición 9.2.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $f: (X,d_X) \to (Y, d_Y)$ una función. Las siguientes afirmaciones son equivalentes:

  1. $f$ es continua en $X$.
  2. Si $A$ es abierto en $Y$, entonces $f^{-1}(A)$ es abierto en $X$.
  3. Si $B$ es cerrado en $Y$, entonces $f^{-1}(B)$ es cerrado en $X$.

Demostración.
1. $\Rightarrow$ 2.
Sea $f$ una función continua y sea $A\subset Y$ un conjunto abierto. Como queremos probar que $f^{-1}(A)$ es abierto en $X$ y dado que $X$ y $\emptyset$ son abiertos en $X$ supongamos que $f^{-1}(A)\neq X$ y $f^{-1}(A)\neq \emptyset$. Sea $x_0 \in f^{-1}(A)$, entonces tenemos que $f(x_0)\in A$ (¿por qué?). Dado que $A$ es abierto en $Y$, entonces existe $\varepsilon>0$ tal que $B(f(x_0),\varepsilon)\subset A$. Como $f$ es continua tenemos por la proposición 9.1 que existe $\delta>0$ tal que: \begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right]\subset f^{-1}(A). \end{equation*} De donde se sigue que todo punto de $f^{-1}(A)$ es un punto interior, por lo tanto $f^{-1}(A)$ es abierto en $X$.

2. $\Rightarrow$ 1.
Supongamos que $f^{-1}(A)$ es abierto en $X$ para todo conjunto $A$ abierto en $Y$. Sea $x_0\in X$. Por la proposición 6.2 sabemos que para todo $\varepsilon>0$ se cumple que la bola abierta $B(f(x_0),\varepsilon)$ es un conjunto abierto en $Y$, por lo que $f^{-1}\left[B(f(x_0),\varepsilon)\right]$, es abierto en $X$. Notemos que:
\begin{equation*}
x_0\in f^{-1}\left[B(f(x_0),\varepsilon)\right],
\end{equation*} por lo que existe $\delta>0$ tal que:
\begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right].
\end{equation*} Por lo que por la proposición 9.1 se sigue que $f$ es continua en $x_0$.

2. $\Leftrightarrow$ 3.
Ejercicio.

$\blacksquare$

Proposición 9.3. (Composición de funciones.)
Supongamos que $(X,d_X)$, $(Y,d_Y)$ y $(Z,d_Z)$ son espacios métricos y sean $g:X \to Y$ y $f:Y \to Z$ dos funciones. Si $f$ y $g$ son continuas, entonces la composición $f \circ g$ es continua.

Demostración. Dadas las hipótesis, supongamos que $A$ es un subconjunto abierto de $Z$. Entonces por la proposición 9.2 se sigue que $f^{-1}(A)$ es abierto en $Y$, por lo que $g^{-1}(f^{-1}(A))$ es abierto en $X$. Dado que $g^{-1}(f^{-1}(A)) = (f\circ g)^{-1}(A)$, entonces por la proposición 9.2 tenemos que la función $f \circ g$ es continua.

$\blacksquare$

Proposición 9.4.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos, $f:A\subset X \to Y$ una función y sea $a \in A$. Entonces se cumple que:

  1. Si $a\in A\setminus A’$, es decir si $a$ es un punto aislado, entonces $f$ es continua en $a$.
  2. Si $a\in A\cap A’$, es decir si $a$ es un punto de acumulación, entonces $f$ es continua en $a$ si y solo si \begin{equation*}
    \lim_{x \to a} f(x) = f(a).
    \end{equation*}

Demostración. Ejercicio.

$\blacksquare$

Proposición 9.5.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $A\subset X$. Una función $f:A \to Y$ es continua en $a \in A$ si y solo si para cualquier sucesión $\{x_n\}_{n\geq1}\subset A$ convergente a $a$ la sucesión $\{f(x_n)\}_{n\geq1}$ converge a $f(a)$.

Demostración.
$\Rightarrow)$
Supongamos que $f:A\to Y$ es una función continua en $a\in A$ y sea $\{x_n\}_{n\geq1}$ una sucesión de $A$ tal que $\lim_{n\to\infty} x_n = a$. Veamos que la sucesión $\{f(x_n)\}_{n\geq1}$ converge a $f(a)$.

Sea $\varepsilon>0$, por la continuidad de $f$ en $a$ existe $\delta>0$ tal que para todo $x\in A$ con $d_X(x,a)<\delta$ se cumple que $d_Y(f(x),f(a))<\varepsilon$. Dado que $\lim_{n\to\infty} x_n = a$, entonces existe algún $N\in\mathbb{N}^+$ tal que: \begin{equation*}
d_X(x_n,a)<\delta, \quad \forall n\geq N,
\end{equation*} por lo que si $n\geq N$ entonces: \begin{equation*} d_Y(f(x_n),f(a))<\varepsilon,
\end{equation*} es decir $\lim_{n\to\infty} f(x_n) = f(a)$.

$(\Leftarrow$
Supongamos que para toda sucesión $\{x_n\}_{n\geq1}\subset A$ convergente a $a$ se cumple que $\lim_{n\to\infty} f(x_n) = f(a)$. Veamos que $f$ es continua en $a$.

Por reducción al absurdo supongamos que $f$ no es continua en $a$. Entonces existe algún $\varepsilon>0$ para el cual todo $\delta<0$ tal que $d_X(x,a)<\delta$, para todo $x\in A$, implique que $d_Y(f(x),f(a))<\varepsilon$. Es decir que para todo $\delta>0$ existe $x\in A$ tal que $d_X(x,a)<\delta$ y $d_Y(f(x),f(a))\geq \varepsilon$. Notemos que para cada $n\in\mathbb{N}^+$ el número $\frac{1}{n}$ es positivo, por lo que debe existir $x_n\in A$ tal que $d_X(x_n,a)<\frac{1}{n}$ y $d_Y(f(x_n),f(a))\geq \varepsilon$, es decir que la sucesión $\{x_n\}_{n\geq1}$ converge a $a$, pero la sucesión $\{f(x_n)\}_{n\geq1}$ no converge a $f(a)$, lo cual contradice nuestra hipótesis, por lo que $f$ debe ser continua en $a$.

$\blacksquare$

Ejemplo 9.1.
Sea $(X,d_X)$ un espacio métrico y consideremos al espacio métrico $(\mathbb{R}^n, d)$, donde $d$ es la distancia euclidiana, es decir:
\begin{equation*}
d(x,y) = \left(\sum_{k=1}^n (x_k – y_k)^2\right)^{1/2},
\end{equation*} para todo $x=(x_1, \ldots, x_n)$, $y=(y_1, \ldots, y_n)$ en $\mathbb{R}^n$. Si $f_k : X \to \mathbb{R}$, con $k\in{1,2, \ldots, n}$, son funciones continuas, entonces la función $f : X \to \mathbb{R}^n$ dada por $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$ es continua.

Solución. Sea $\varepsilon>0$, entonces existen $\delta_k > 0$, tales que si $d_X(x,a) < \delta_k$ entonces:
\begin{equation*}
d(f_k(x),f_k(a)) = |\,f_k(x) – f_k(a)\,| < \frac{\varepsilon}{\sqrt{n}},
\end{equation*} para toda $k\in{1,2, \ldots, n}$. Por lo que tomando $\delta = \text{mín}{\delta_1, \ldots, \delta_n}$, tenemos que si $d_X(x,a) < \delta$, entonces: \begin{equation*}
d(f(x),f(a)) = \left(\sum_{k=1}^n (f_k(x) – f_k(a))^2\right)^{1/2} < \varepsilon, \end{equation*} de donde se sigue el resultado.

Por otra parte, considerando que toda función $f:X \to \mathbb{R}^n$ se puede expresar en términos de sus funciones componentes, es decir $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$ para toda $x\in X$, y dado que para toda $k\in{1, 2, \ldots, n}$ se cumple:
\begin{equation*}
|\,f_k(x) – f_k(y)\,| \leq \left(\sum_{k=1}^n (f_k(x) – f_k(y))^2\right)^{1/2} = d(f(x),f(y)), \end{equation*} por lo que si $f$ es una función continua, entonces cada función componente $f_k : X \to \mathbb{R}^n$ es continua.

Definición 9.2. (Homeomorfismo.)
Sean $(X,d_X)$ y $(Y,d_Y)$ dos espacios métricos. Un homeomorfismo entre $X$ y $Y$ es una función $f:X\to Y$ tal que:

  1. $f$ es biyectiva.
  2. $f$ es continua en $X$.
  3. La inversa de $f$ es continua en $Y$, es decir, $f^{-1}: Y \to X$ es continua.

Si existe un homeomorfismo entre $X$ y $Y$, entonces diremos que los espacios métricos $(X,d_X)$ y $(Y,d_Y)$ son homeomorfos.

Observación 9.1.
Formalmente no hemos definido lo que es una función compleja de variable compleja, sin embargo para ejemplificar los conceptos de esta entrada podemos considerar la siguiente función sin mayor problema. En caso de existir duda de dicha definición puede consultarse la entrada 12 en la cual se aborda dicho concepto de manera formal.

Ejemplo 9.2.
Sea $D = B(0,1)\subset\mathbb{C}$. Consideremos a la función $f:\mathbb{C} \to D$ dada por:
\begin{equation*}
f(z) = \frac{z}{1+|\,z\,|}, \quad z\in\mathbb{C}.
\end{equation*} Veamos que $f$ induce un homeomorfismo entre $D$ y $\mathbb{C}$.

Solución. Primeramente verifiquemos que $f$ es biyectiva. Sean $z_1,z_2\in\mathbb{C}$, es claro que si $z_1 \neq z_2$, entonces $|\,z_1\,| \neq |\,z_2\,|$, por lo que:
\begin{equation*}
\frac{z_1}{1+|\,z_1\,|} \neq \frac{z_2}{1+|\,z_2\,|},
\end{equation*} es decir que $f(z_1) \neq f(z_2)$, por lo que $f$ es inyectiva.
Por otra parte, si $w\in D$ tenemos que $|\,w\,|<1$, por lo que $1 – |\,w\,|>0$. Entonces tomando: \begin{equation*}
z = \frac{w}{1-|\,w\,|},
\end{equation*} es claro que $w = f(z)$. Como $w\in D$ era arbitrario entonces tenemos que $f$ es sobreyectiva.
Por lo tanto, como $f$ es biyectiva tenemos que existe la función inversa de $f$, es decir $f^{-1}:D \to \mathbb{C}$ dada por:
\begin{equation*}
f^{-1}(z) = \frac{z}{1-|\,z\,|}, \quad z\in\mathbb{C}.
\end{equation*} Considerando los resultados de esta entrada es fácil probar que $f$ y $f^{-1}$ son continuas, por lo que se deja como ejercicio.

Proposición 9.6.
Sean $(X,d_X)$, $(Y,d_Y)$ y $(Z, d_Z)$ espacios métricos y sean $g:X \to Y$ y $f:Y \to Z$ dos funciones.

  1. Si $g$ es un homeomorfismo, entonces $f$ es continua si y sólo si $f \circ g$ es continua.
  2. Si $f$ es un homeomorfismo, entonces $g$ es continua si y sólo si $f \circ g$ es continua.

Demostración.

  1. Dadas las hipótesis, por la proposición 9.3 es claro que $f = (f\circ g) \circ g^{-1}$ es continua si y sólo si $f \circ g$ es continua.
  2. Dadas las hipótesis, por la proposición 9.3 es claro que $g = f^{-1}\circ(f\circ g)$ es continua si y sólo si $f \circ g$ es continua.

$\blacksquare$

Tarea moral

  1. Demuestra el lema 9.1.
  2. Completa la demostración de la proposición 9.2.
  3. Prueba que las funciones $f$ y $f^{-1}$ del ejemplo 9.2 son continuas.
  4. Sean $a, b\in\mathbb{R}\setminus{0}$. Considera a los siguientes conjuntos: \begin{align*}
    X = \{x+iy \,:\, x^2+y^2 = 1\},\\
    Y = \left\{x + iy \, : \, \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\right\}. \end{align*} Demuestra que $X$ y $Y$, dotados con la métrica euclidiana de $\mathbb{C}$, son homeomorfos. Hint: Considera la función $f(x+iy) = ax + iby$.
  5. Demuestra la proposición 9.4.

Más adelante…

En esta entrada hemos dado una definición clara y general del concepto de continuidad, caracterizando así a los espacios métricos mediante dicho concepto y obteniendo resultados que nos permitieron relacionar a los conceptos de sucesión y de límite con el de continuidad. Estos resultados serán de gran utilidad en las siguientes entradas al estudiar a las funciones complejas (de variable compleja).

La siguiente entrada abordaremos los conceptos de conexidad y compacidad de un espacio métrico, en particular caracterizaremos a los conjuntos de $\mathbb{C}$ mediante estos conceptos, definiremos nuevos conceptos y obtendremos nuevos resultados que relacionan a los conceptos de continuidad, conexidad y compacidad en un espacio métrico, los cuales utilizaremos a lo largo del curso al trabajar con funciones de $\mathbb{C}$ en $\mathbb{C}$.

Entradas relacionadas

El plano complejo extendido $\mathbb{C}_{\infty}$

Introducción

Al estudiar matemáticas un concepto que no puede pasar desapercibido es el del infinito. Intuitivamente cuando pensamos en el infinito estamos considerando a algo que no tiene fin, algo sin límites. Aunque dicho concepto aparece en diversas ramas de las matemáticas como el cálculo, el análisis, la geometría, la teoría de conjuntos, entre otras, es claro que la idea que tenemos sobre él es equivalente entre todas estas ramas y su importancia radica en que nos permite entender y describir mejor alguna problemática puntual. Por ejemplo cuando queremos hablar sobre el comportamiento de una sucesión conforme está crece cada vez más y más hacemos uso del límite al infinito de nuestra variable, o cuando hablamos de la cardinalidad de un conjunto que tiene una cantidad de elementos numerable, intuitivamente pensamos en que dicho conjunto tiene una infinidad de elementos.

Lo anterior no es la excepción al estudiar Variable Compleja. Desde que el campo de los números complejos $\mathbb{C}$ no puede ordenarse bajo la relación de ser positivo, la idea de que un número complejo $z = a + ib$ crezca o decrezca no tiene sentido. Sin embargo podemos preguntarnos en qué sucede con su módulo $|\,z\,|$, ya que conforme crece $|\,z\,|$ de manera arbitraria tendremos que el número complejo $z$ se alejará más del origen. Entonces, al pensar en que $z \rightarrow \infty$ no tendremos que distinguir entre las direcciones de los ejes, sino simplemente recordar que estamos pensando en que el módulo $|\,z\,|$ crece sin límite a lo largo de los ejes real e imaginario, por lo que la notación $|\,z\,| \rightarrow \infty$ será lo mismo que $a^2+b^2 \rightarrow \infty$.

En su momento veremos que es necesario estudiar funciones de variable compleja para las que el módulo de la variable crezca de manera arbitraria, por lo que resulta conveniente agregar al plano complejo un punto ideal, llamado el punto al infinito, denotado por $\infty$.

Definición 11.1. (El plano complejo extendido.)
Se define al plano complejo extendido como el conjunto dotado con el punto $z_\infty=\infty$ como: \begin{equation*}
\mathbb{C}_{\infty} := \mathbb{C}\cup \{\infty\}.
\end{equation*}

Observación 11.1.
Es claro que en el plano complejo $\mathbb{C}$ no existe un lugar destinado para el punto al infinito. Sin embargo, ¿qué pasa con aquellos puntos $z\in\mathbb{C}$ tales que $|\,z\,|>\frac{1}{\varepsilon}$ para todo $\varepsilon>0$ suficientemente pequeño? El punto al infinito nos permite responder esta pregunta, ya que a los puntos con dicha propiedad los podemos pensar como un $\varepsilon$-vecindario del punto al infinito.

Primeramente debemos establecer las siguientes reglas aritméticas para poder operar con este nuevo punto del plano complejo extendido: \begin{align*}
z \pm \infty = \infty \pm z = \infty, \quad \forall z \in \mathbb{C}.\\
z \cdot \infty = \infty \cdot z = \infty, \quad \text{si}\,\,\, z \neq 0.\\
\frac{z}{0} = \infty, \quad \text{si}\,\,\, z \neq 0.\\
\frac{z}{\infty} = 0, \quad \text{si}\,\,\, z \neq \infty.\
\end{align*}

Un módelo que nos permite representar al plano complejo extendido es la esfera unitaria en $\mathbb{R}^3$, cuyo centro es el punto $(0,0,1)$, situada sobre el plano complejo $\mathbb{C}$, figura~\ref{fig:f52}, es decir el conjunto: \begin{equation*}
\mathbb{S} = \{ (x,y,u) \in \mathbb{R}^3 \, : \, x^2 + y^2 + (u-1)^2 = 1 \},
\end{equation*} dotada con los puntos $N=(0,0,2)$, llamado el polo norte o el punto al infinito y $O=(0,0,0)$ llamado el polo sur o el origen. A dicho modelo se le denomina la esfera de Riemann.

Es posible identificar a $\mathbb{S}\setminus\{N\}$ con el plano complejo si consideramos a $\mathbb{C}$ como el plano: \begin{equation*}
\Pi = \{(a,b,0)\in\mathbb{R}^3 \, : \, a,b \in \mathbb{R}\}, \tag{11.1}
\end{equation*} y al punto $N$ con el punto al infinito.

Figura 52: La esfera de Riemann $\mathbb{S}$, dada por $x^2 + y^2 + (u-1)^2 = 1$, y el plano complejo $\mathbb{C}$, dado por (11.1), relacionados mediante la proyección estereográfica.

De acuerdo con la gráfica, tenemos que un número complejo $z=a+ib$ con un módulo demasiado grande se aleja del origen $(0,0,0)$ conforme el punto $P=(x_0,y_0,u_0)$ está más cerca del punto al infinito $N$.

Notemos que si trazamos una recta desde $N$ hasta el número complejo $z=a+ib$ en el plano complejo, al cual le corresponde el punto $(a,b,0)$ en $\mathbb{R}^3$, entonces existe un único punto $P=(x_0, y_0, u_0)$ en la esfera de Riemann tal que pertenece a dicha recta. Por otra parte, para un punto $P=(x_0, y_0, u_0)\in\mathbb{S}$, distinto de $N$, es posible extender el segmento de recta que une a $N$ con dicho punto $P$ hasta intersecar al plano complejo $\mathbb{C}$ en un único punto $z=a+ib$, figura 52.

Lo anterior nos deja ver que existe una relación biunívoca entre $\mathbb{S}\setminus\{N\}$ y $\mathbb{C}$, pensado como el plano (11.1), descrita a continuación.

Podemos escribir a la recta que pasa por los puntos $N=(0,0,2)$ y $P=(x_0,y_0,u_0)$ en su forma paramétrica como:
\begin{equation*}
N + (P-N)t, \quad t\in\mathbb{R}.
\tag{11.2} \end{equation*} Dado que la recta (11.2) interseca al plano $\mathbb{C}$, dado por (11.1), en el número complejo $z=a+ib$, es decir el punto $(a,b,0)$, entonces se tiene que para algún $t\in\mathbb{R}$: \begin{align*}
(a,b,0) &= N + (P-N)t\\
& = (tx_0,ty_0, 2 + t(u_0-2)).
\end{align*} De lo anterior tenemos el siguiente sistema de ecuaciones: \begin{align*}
a = t x_0,\tag{11.3.1} \\
b = t y_0,\tag{11.3.2} \\
2(t-1) = t u_0. \tag{11.3.3}
\end{align*} Además de (11.3.3) es claro que: \begin{equation*}
t = \frac{2}{2-u_0}. \tag{11.3.4}
\end{equation*} Sustituyendo (11.3.4) en (11.3.1) y (11.3.2) tenemos: \begin{align*}
a = \frac{2x_0}{2-u_0},\\
b = \frac{2y_0}{2-u_0}. \tag{11.4}
\end{align*}

Por otra parte, sabemos que $P=(x_0,y_0,u_0) \in \mathbb{S}$, por lo que satisface: \begin{equation*}
x_0^2 + y_0^2 + (u_0 – 1)^2 = 1.
\end{equation*}

Multiplicando ésta última expresión por $t^2$ obtenemos: \begin{align*}(tx_0)^2 + (ty_0)^2 + (tu_0 -t)^2 = t^2\\
\\
\Longrightarrow \quad (tx_0)^2 + (ty_0)^2 + (tu_0)^2 = 2t^2 u_0. \tag{11.5.1} \end{align*}

Dado que $z=a+ib\in\mathbb{C}$, sabemos que $|\,z\,|^2 = a^2 + b^2 $, por lo que sustituyendo (11.3.1), (11.3.2) y (11.3.3) en (11.5.1) tenemos:
\begin{align*}
a^2 + b^2 + 4(t-1)^2 = 4t(t-1).\\
\\
\Longrightarrow \quad t = \frac{|\,z\,|^2 + 4}{4}\tag{11.5.2}
\end{align*}

De (11.3.1), (11.3.2), (11.3.3) y (11.5.2) se sigue que: \begin{align*}
x_0 = \frac{a}{t} = \frac{4a}{|\,z\,|^2 + 4},\\
y_0 = \frac{b}{t} = \frac{4b}{|\,z\,|^2 + 4}, \tag{11.6}
\end{align*} \begin{equation*}
u_0 = \frac{2(t-1)}{t} = \frac{2\,|\,z\,|^2}{|\,z\,|^2 + 4}.
\end{equation*}

Esta forma de asociar o hacer corresponder a los putos $z$ de $\mathbb{C}$ con la esfera de Riemann $\mathbb{S}$, dotada con $N=(0,0,2)$ y $O=(0,0,0)$, se le conoce como la proyección estereográfica.

Definición 11.2. (La proyección estereográfica.)
Definimos a la proyección estereográfica como la función $\varphi:\mathbb{S} \to \mathbb{C}_{\infty}$ tal que para $P=(x,y,u)\in \mathbb{S}$: \begin{equation*}
\varphi(P) = \left\{\begin{array}{lcc}
\infty, & \text{si} & P=N=(0,0,2),\\
\\ z= a+ib, & \text{si} & P \neq N,
\end{array}
\right.
\end{equation*} donde $z=a+ib\in\mathbb{C}$ representa al punto $(a,b,0)$ de $\mathbb{R}^3$ tal que $a = \dfrac{2x}{2-u}$, $b=\dfrac{2y}{2-u}$.

Proposición 11.1.
Sea $\mathbb{S}^* = \mathbb{S}\setminus{N}$. La proyección estereográfica es un homeomorfismo entre $(\mathbb{S}^*,d_{\mathbb{R}^3})$ y $(\mathbb{C},d)$, donde $d_{\mathbb{R}^3}$ es la distancia usual de $\mathbb{R}^3$ y $d$ la métrica euclidiana en $\mathbb{C}$.

Demostración. Veamos que está función es biyectiva. Es claro que si $P,Q\in\mathbb{S}^*$, entonces para algún $z_1, z_2 \in \mathbb{C}$ se tiene:
\begin{align*}
\varphi(P) = \varphi(Q) \quad & \Longrightarrow \quad z_1 = z_2\\
& \Longrightarrow \quad \operatorname{Re}(z_1) = \operatorname{Re}(z_2)\\
& \quad \quad \quad \, \operatorname{Im}(z_1) =\operatorname{Im}(z_2)\\
& \quad \quad \quad \, \, \text{y} \,\, |\,z_1\,| = |\,z_2\,|. \end{align*} Por lo que $P=Q$, entonces $\varphi$ es inyectiva.

Consideremos a $z=a+ib \in\mathbb{C}$, notemos que si $P=(x_0,y_0,u_0)\in\mathbb{S}^*$, con $x_0$, $y_0$ y $u_0$ dados como en (11.6) entonces: \begin{align*}
\varphi(P) & = \varphi\left(\frac{4a}{|\,z\,|^2+4}, \frac{4b}{|\,z\,|^2+4}, \frac{2\,|\,z\,|^2}{|\,z\,|^2+4}\right)\\
& = \frac{2\left(\frac{4a}{|\,z\,|^2+4}\right)}{2-\frac{2\,|\,z\,|^2}{|\,z\,|^2+4}} + i\, \frac{2\left(\frac{4b}{|\,z\,|^2+4}\right)}{2-\frac{2\,|\,z\,|^2}{|\,z\,|^2+4}}\\
& = a + ib\\
& = z.
\end{align*} Por lo tanto, como $z\in\mathbb{C}$ era arbitrario se sigue que para todo número complejo $z$ existe un punto $P\in\mathbb{S}^*$ tal que $\varphi(P) = z$. Por lo tanto $\varphi$ es sobreyectiva.

Dado que la proyección estereográfica es una función biyectiva, entonces existe la función inversa de $\varphi$, digamos $\varphi^{-1}$, la cual es una función que va de $\mathbb{C}_\infty$ a $\mathbb{S}$ tal que para $z\in\mathbb{C}_\infty$: \begin{equation*}
\varphi^{-1}(z) = \left\{\begin{array}{lll}
N=(0,0,2), & \text{si} & z = \infty,\\
P= \left( \dfrac{4a}{|\,z\,|^2 + 4}, \dfrac{4b}{|\,z\,|^2 + 4}, \dfrac{2\,|\,z\,|^2}{|\,z\,|^2 + 4}\right), & \text{si} & z = a+ib \in\mathbb{C}.
\end{array}
\right.
\end{equation*}
Considerando las ecuaciones que definen a las funciones $\varphi$ y $\varphi^{-1}$, dadas en (11.4) y en (11.6), no es difícil verificar que ambas funciones son continuas en su respectivo dominio, por lo que se deja como ejercicio.

$\blacksquare$

Observación 11.2.
Consideremos la ecuación general de un plano, es decir: \begin{equation*}
Ax+By+Cu+D=0.
\end{equation*} Si dicho plano pasa por el centro de la esfera $\mathbb{S}$, es decir por el punto $(0,0,1)$, entonces dicho plano es de la forma: \begin{equation*}
Ax+By+C(u-1)=0. \tag{11.7}
\end{equation*} Más aún, al intersecar a la esfera $\mathbb{S}$ con un plano de la forma (11.7) se obtiene una circunferencia máxima.

Observación 11.3.
Notemos que bajo la proyección estereográfica los lugares geométricos del plano complejo $\mathbb{C}$ corresponden con lugares geométricos de la esfera de Riemann $\mathbb{S}$ y viceversa. Es importante recordar que no existe un punto en el plano complejo destinado para el punto al infinito, sin embargo no es difícil observar de manera geométrica que líneas longitudinales que pasan por el polo norte $N$, como el meridiano 0 o meridiano de Greenwich, corresponden con rectas en el plano complejo $\mathbb{C}$ que pasan por el origen $z=0$. Por otra parte, en la esfera de Riemann las líneas de latitud, como el ecuador, corresponden con circunferencias en el plano complejo $\mathbb{C}$ centradas en el origen $z=0$, mientras que una circunferencia arbitraria en la esfera de Riemann, que no pase por el polo norte $N$, corresponde con una circunferencia en el plano complejo $\mathbb{C}$. No debe ser difícil notar que conforme el radio de las circunferencias tiende a infinito, las líneas de latitud en la esfera tienden al polo norte $N$ que corresponde con el punto al infinito.

Figura 53: La proyección estereográfica manda circunferencias que pasan por el polo norte en rectas.
Figura 54: La proyección estereográfica manda circunferencias que no pasan por el polo norte en circunferencias.

Proposición 11.2.
Bajo la proyección esterográfica, circunferencias en la esfera de Riemann, $\mathbb{S}$, corresponden con circunferencias o rectas en el plano complejo $\mathbb{C}$, figuras 53 y 54.

Demostración. Ejercicio.

$\blacksquare$

Observación 11.4.
De nuestros cursos de Geometría Analítica y Cálculo sabemos que una trayectoria o camino en $\mathbb{R}^n$ es una función $\gamma:(c,d)\rightarrow \mathbb{R}^n$, y al conjunto $\Gamma = \{ \gamma(t) \, : \, t\in(c,d)\}$ lo llamamos la curva descrita por $\gamma$. Además sabemos que podemos expresar a una trayectoria $\gamma$ por medio de sus funciones componentes, por ejemplo en $\mathbb{R}^3$ tenemos que $\gamma(t) = \left(x(t),y(t),z(t)\right)$ donde $x(t),y(t),z(t)$ son sus funciones componentes.
Por otra parte, decimos que una curva es suave en $(c,d)$ si es diferenciable en $(c,d)$, es decir si sus funciones componentes son derivables en $(c,d)$ y sus derivadas no se anulan simultáneamente en $(c,d)$, excepto quizás en $c$ o $d$.

Observación 11.5.
Por otra parte, sabemos que el ángulo $\theta$ entre dos vectores $u,v$ en $\mathbb{R}^2$ o $\mathbb{R}^3$ se puede obtener mediante: \begin{equation*}
\operatorname{cos}(\theta) = \frac{u \cdot v}{\left\lVert u \right\rVert \left\lVert v \right\rVert},
\end{equation*} donde $\cdot$ representa el producto interior entre $u$ y $v$, mientras que $\left\lVert \cdot \right\rVert$ la norma de cada vector.

Dadas dos curvas suaves, descritas por $\gamma_1$ y $\gamma_2$, podemos definir el ángulo entre ellas como el ángulo que se forma entre las rectas tangentes a cada curva en un punto de intersección. Es claro que dadas dos rectas tangentes, que se intersecan entre sí, se obtienen dos ángulos distintos, digamos $\theta_1$ y $\theta_2$ cuya relación entre ellos está dada por $\theta_1 + \theta_2 = \pi$, por lo que para evitar confusión sobre cuál de los dos ángulos obtenidos se está considerando, diremos que el ángulo $\theta$ que se forma entre dos curvas suaves será tal que $\theta\in(0,\pi/2)$. Con esta consideración tenemos que $\operatorname{cos}(\theta)>0$.

Una pregunta interesante que podemos hacernos es ¿qué pasa con los ángulos entre cualesquiera dos curvas suaves en el plano complejo $\mathbb{C}$ o en la esfera de Riemann $\mathbb{S}$?, es decir, ¿bajo la proyección estereográfica se conserva el ángulo entre dos curvas suaves? Para responder esta pregunta primeramente podemos realizar un análisis geométrico.

De acuerdo con nuestros cursos de Cálculo y Geometría sabemos que es posible encontrar el plano tangente a la esfera $\mathbb{S}$ en el punto $P$, digamos $\Pi_P$. Consideremos al plano $u=2$, es decir el plano tangente a $\mathbb{S}$ en el polo norte $N$, digamos $\Pi_N$ y consideremos al plano que pasa por el centro de $\mathbb{S}$, por el polo norte $N$ y por el punto $P$, digamos $\Pi_{CNP}$. No es difícil convencerse de que la intersección de dicho plano con la esfera $\mathbb{S}$ determina una circunferencia máxima, digamos $\mathcal{C}$, además la intersección del plano $\Pi_{CNP}$ con los planos $\Pi_P$, $\Pi_N$ y $\mathbb{C}$ determina tres rectas, digamos $\mathcal{L}_P$, $\mathcal{L}_N$ y $\mathcal{L}_O$, la primera recta es tangente a $\mathcal{C}$ en $P$ y la segunda recta es tangente a $\mathcal{C}$ en $N$, mientras que la tercera recta es tangente a $\mathbb{S}$ en el origen y pasa por el punto $z_0=\varphi(P)$. Notemos que $\mathcal{L}_P$ y $\mathcal{L}_N$ se intersecan en un punto $Q\in\mathbb{R}^3$ y las rectas $\mathcal{L}_P$ y $\mathcal{L}_O$ se intersecan en un punto $w\in\mathbb{C}$. Por otra parte la intersección de los planos $\Pi_N$ y $\mathbb{C}$ con el plano $\Pi_P$ determinan otras dos rectas, digamos $\mathcal{L}_Q$ y $\mathcal{L}_w$, la primera pasa por $Q$ y la segunda pasa por $w$. Por construcción es claro que la recta $\mathcal{L}_N$ pasa por el punto $Q$, figura 55.

Dada la perfecta simetría de la esfera, es fácil concluir que los planos $\Pi_N$ y $\Pi_P$ forman los mismos ángulos con la recta que pasa por $N$ y $P$, digamos $\mathcal{L}_{NP}$, y que la recta $\mathcal{L}_Q$ es perpendicular a la recta $\mathcal{L}_{NP}$. Para ver esto más claro consideremos el corte transversal hecho sobre la esfera $\mathbb{S}$ con el plano $\Pi_{CNP}$. Más aún, como el plano $\Pi_N$ es paralelo al plano complejo $\mathbb{C}$, es claro que los planos $\Pi_P$ y $\mathbb{C}$ forman los mismos ángulos con la recta $\mathcal{L}_{NP}$ en el punto $z_0\in\mathbb{C}$ dado por la proyección estereográfica, figura 55. De acuerdo con la figura 56 es claro que los triángulos $NQP$ y $Pwz_0$ son semejantes.

Supongamos que dos curvas suaves en $\mathbb{S}$, digamos $\Gamma_1$ y $\Gamma_2$, se intersecan en un punto $P\in\mathbb{S}$ con $P\neq N$. Sean $\mathcal{L}_{1T}$ y $\mathcal{L}_{2T}$ las respectivas rectas tangentes a las curvas $\Gamma_1$ y $\Gamma_2$ en el punto $P$ y sea $\beta$ el ángulo entre ellas, es decir $\beta\in(0,\pi/2)$.

Sin perder generalidad consideremos a la recta tangente $\mathcal{L}_{2T}$ en el punto $P\in\mathbb{S}$. Es fácil convencerse que la recta tangente bajo la proyección estereográfica en el punto $z_0=\varphi(P)\in\mathbb{C}$, digamos $\varphi\left(\mathcal{L}_{2T}\right)$, está dada por la intersección de un plano que contiene a $\mathcal{L}_{2T}$ y $\mathcal{L}_{NP}$, digamos $\pi$, con el plano complejo $\mathbb{C}$. Considerando lo anterior tenemos que las rectas tangentes $\mathcal{L}_{2T}$ y $\varphi\left(\mathcal{L}_{2T}\right)$ forman los mismos ángulos con $\mathcal{L}_{NP}$. Más aún, dado que la intersección del plano $\Pi_P$ con $\mathbb{C}$ determina a la recta $\mathcal{L}_w$ entonces es fácil concluir que las rectas tangentes $\mathcal{L}_{2T}$ y $\varphi\left(\mathcal{L}_{2T}\right)$ forman los mismos ángulos con $\mathcal{L}_w$, figura 57.

Haciendo lo mismo con la recta tangente $\mathcal{L}_{1T}$ concluimos que los ángulos que forman las dos rectas tangentes a las curvas $\Gamma_1$ y $\Gamma_2$ en el punto de intersección $P\in\mathbb{S}$, es decir $\mathcal{L}_{1T}$ y $\mathcal{L}_{2T}$ forman los mismos ángulos que las rectas tangentes a las imágenes de las curvas, digamos $\varphi\left(\Gamma_1\right)$ y $\varphi\left(\Gamma_2\right)$, dadas por la proyección estereográfica en el punto de intersección $z_0=\varphi(P)\in\mathbb{C}$, figura 58.

Figura 55: Intersección de los planos tangentes, $\Pi_{N}$, $\Pi_{P}$ y $\mathbb{C}$, a $\mathbb{S}$ en los puntos $N$, $P$ y $O$, con el plano $\Pi_{CNP}$.
Figura 56: Circunferencia máxima $\mathcal{C}$ dada por la intersección de la esfera $\mathbb{S}$ con el plano $\Pi_{CNP}$. Las líneas $\mathcal{L}_P$ y $\mathcal{L}_{N}$ forman los mismos ángulos con la línea $\mathcal{L}_{NP}$.
Figura 57: Rectas tangentes $\mathcal{L}_{2T}$ y $\varphi\left(\mathcal{L}_{2T}\right)$, dadas por las intersecciones de los planos $\pi$ con $\Pi_P$ y $\pi$ con $\mathbb{C}$ respectivamente, forman los mismos ángulos con las rectas $\mathcal{L}_w$ y $\mathcal{L}_{NP}$.
Figura 58: Las rectas tangentes $\mathcal{L}_{1T}$ y $\mathcal{L}_{2T}$ forman el mismo ángulo, que sus imágenes bajo la proyección estereográfica.

Hasta ahora hemos argumentado de manera geométrica que bajo la proyección estereográfica el ángulo que se forma entre dos curvas suaves $\Gamma_1$ y $\Gamma_2$ se conserva, ahora haremos una prueba analítica de esta propiedad, para ello consideremos lo siguiente.

Observación 11.6.
Notemos que para cualesquiera dos curvas suaves en la esfera de Riemann $\mathbb{S}$, al hablar del ángulo $\alpha$ que se forma entre ellas en un punto de intersección $P\in\mathbb{S}$ necesitamos pensar en el ángulo $0<\theta<\pi/2$ que se forma entre sus rectas tangentes en dicho punto, pero ¿cómo obtenemos una recta tangente a una curva suave en un punto $P\in\mathbb{S}$? Supongamos que una curva suave en $\mathbb{S}$ está descrita por la trayectoria $\gamma:(c,d)\rightarrow\mathbb{S}\subset\mathbb{R}^3$ cuyas funciones componentes son $x(t)$, $y(t)$ y $z(t)$, es decir $\gamma(t) = (x(t), y(t), z(t))$. Dado que la curva es suave en $(c,d)$ tenemos que existe $\gamma'(t)=(x'(t), y'(t), z'(t)) \neq 0$ para toda $t\in(c,d)$. Considerando que la curva descrita por $\gamma$ pasa por el punto $P=(x_0,y_0,u_0)\in\mathbb{S}$, entonces para algún $t_0\in(c,d)$ se cumple que $\gamma(t_0) = P$, por lo que podemos determinar a la recta tangente a dicha curva en el punto $P$, digamos $\mathcal{L}_{T}$, de forma paramétrica como: \begin{equation*}
\mathcal{L}_T: \quad P + \gamma'(t_0) \lambda, \quad \lambda\in\mathbb{R}.
\end{equation*}

Observación 11.7.
De manera geométrica es claro que $\mathcal{L}_T$ se puede obtener mediante la intersección de un plano tangente a la esfera $\mathbb{S}$ en el punto $P$, digamos $\Pi_T$, y un plano que pasa por el centro de la esfera y por $P$, digamos $\Pi_{CP}$. Considerando el plano $\Pi_{CP}$, por la observación 11.2 tenemos que existe una circunferencia máxima que que cae en dicho plano y que además pasa por el punto $P\in\mathbb{S}$. Entonces podemos concluir que para una recta tangente a la esfera en un punto $P$ existe una circunferencia máxima que pasa por dicho punto y que cae en el plano $\Pi_{CP}$.

De acuerdo con lo anterior, ver qué pasa con el ángulo $0<\theta<\pi/2$ que forman las rectas tangentes a dos curvas suaves en un punto de intersección $P\in\mathbb{S}$ bajo la proyección estereográfica, es equivalente a ver qué sucede con el ángulo que se forma entre dos circunferencias máximas de la esfera $\mathbb{S}$ bajo la proyección estereográfica, el cual está dado por el ángulo que se forma entre los planos en los que caen dichas circunferencias.

Proposición 11.3.
La proyección estereográfica es conforme o isogonal, es decir preserva ángulos.

Este resultado nos dice que el ángulo $\theta\in(0,\pi/2)$ que forman dos curvas suaves en la esfera $\mathbb{S}$, en un punto de intersección $P\in\mathbb{S}$, se preserva bajo la proyección estereográfica, es decir que en el plano complejo $\mathbb{C}$ las rectas tangentes de las imágenes de dichas curvas bajo la proyección estereográfica, en la imagen del punto de intersección, formarán nuevamente un ángulo $\theta$.
Recíprocamente para dos curvas suaves que se intersecan en el plano complejo $\mathbb{C}$, es decir en el plano $\Pi$ dado por (11.1), el ángulo $\theta\in(0,\pi/2)$ formado por sus rectas tangentes en el punto de intersección se preserva bajo la proyección estereográfica.

Figura 57: El ángulo $\theta$ que se forma entre las curvas $\Gamma_1$ y $\Gamma_2$ en el punto $P\in\mathbb{S}$ se preserva bajo la proyección estereográfica.

Demostración. Sean $\Gamma_1$ y $\Gamma_2$ dos curvas suaves en $\mathbb{S}$, descritas por $\gamma_1:(c,d)\rightarrow\mathbb{R}^3$ y $\gamma_2:(e,f)\rightarrow\mathbb{R}^3$, las cuales se pueden escribir considerando sus funciones componentes como: \begin{align*}
\gamma_1(t) = (x_1(t),y_1(t),u_1(t)),\\
\gamma_2(t) = (x_2(t),y_2(t),u_2(t)).
\end{align*} Para probar este resultado consideremos los siguientes casos:

  1. El ángulo $\theta\in(0,\pi/2)$ que se forma entre $\Gamma_1$ y $\Gamma_2$ que se intersecan en el polo norte $N$ (o en el polo sur $O$) se preserva bajo la proyección estereográfica.
  2. El ángulo $\theta\in(0,\pi/2)$ que se forma entre $\Gamma_1$ y $\Gamma_2$ que se intersecan en un punto $P\neq N$ se preserva bajo la proyección estereográfica.

Caso 1. Dado que el polo norte $N$ y el polo sur $O$ son puntos antipodales en $\mathbb{S}$, una circunferencia máxima que pase por el polo norte también pasa por el polo sur. Entonces, considerando la observación 11.7, tenemos que es indistinto si las dos curvas $\Gamma_1$ y $\Gamma_2$ se intersecan en el polo norte o en el polo sur, pues el ángulo que forman sus rectas tangentes en cualquiera de dichos puntos será el mismo que forman las dos circunferencias máximas que pasan por dichos puntos, es decir, el ángulo que se forma entre los dos planos que contienen a cada una de las circunferencias máximas.

Entonces, sin pérdida de generalidad supongamos que $\Gamma_1$ y $\Gamma_2$ se intersecan en el polo norte $N=(0,0,2)$. Por la observación 11.7 sabemos que cada recta tangente a cada curva, en el punto $N=(0,0,2)$, se obtiene mediante la intersección de un plano tangente a la esfera $\mathbb{S}$ en el polo norte, es decir el plano $u=2$, y un plano que pasa por el centro de la esfera y por el punto $N=(0,0,2)$, digamos $\Pi_{CN}$. De acuerdo con la observación 11.2 dichos planos son de la forma: \begin{align*}
\Pi_{1CN}: \quad A_1x+B_1y=0,\\
\Pi_{2CN}: \quad A_2x+B_2y=0.
\end{align*} Más aún, sabemos que en cada uno de estos planos cae una circunferencia máxima que pasa por $N=(0,0,2)$ y por $O=(0,0,0)$. Por lo que considerando las observaciones 11.5 y 11.7 tenemos que el ángulo $0<\theta<\pi/2$ que forman dichas circunferencias es tal que: \begin{align*}
\operatorname{cos}(\theta) & = \frac{(A_1,B_1,0) \cdot (A_2,B_2,0)}{\left\lVert (A_1,B_1,0) \right\rVert \left\lVert (A_2,B_2,0) \right\rVert}\\
& = \frac{A_1 A_2 + B_1 B_2}{\left\lVert (A_1,B_1,0) \right\rVert \left\lVert (A_2,B_2,0) \right\rVert}.
\end{align*} De acuerdo con la proposición 11.1, tenemos que bajo la proyección estereográfica las dos circunferencias máximas en la esfera $\mathbb{S}$, que pasan por el polo norte $N$, corresponden con dos rectas en el plano complejo $\mathbb{C}$ que pasan por el origen (¿por qué?), cuyas ecuaciones están dadas por: \begin{align*}
A_1x + B_1y =0, \quad u=0,\\
A_2x + B_2y =0,\quad u=0.
\end{align*} Es claro que el ángulo $0<\beta<\pi/2$ que forman estas rectas tangentes a las imágenes de las curvas $\Gamma_1$ y $\Gamma_2$ bajo la proyección estereográfica, en el punto de intersección $z=0$, es tal que: \begin{align*}
\operatorname{cos}(\beta) & = \frac{(A_1,B_1,0) \cdot (A_2,B_2,0)}{\left\lVert (A_1,B_1,0) \right\rVert \left\lVert (A_2,B_2,0) \right\rVert}\\
& = \frac{A_1 A_2 + B_1 B_2}{\left\lVert (A_1,B_1,0) \right\rVert \left\lVert (A_2,B_2,0) \right\rVert}.
\end{align*} Por lo que, el ángulo $\alpha$ que forman las curvas $\Gamma_1$ y $\Gamma_2$ en el polo norte o en el polo sur se conserva bajo la proyección estereográfica.

Caso 2. Supongamos que $\Gamma_1$ y $\Gamma_2$ se intersecan en un punto $P\in\mathbb{S}$ con $P=(x_0,y_0,u_0)\neq N$.

Dado que dichas curvas se intersecan en el punto $P=(x_0,y_0,u_0)\in\mathbb{S}\setminus\{N\}$, entonces existen $t_0\in(c,d)$ y $t_0^*\in(e,f)$ tales que: \begin{align*}
\gamma_1(t_0) = (x_1(t_0),y_1(t_0),u_1(t_0)) = P,\\
\gamma_2(t_0^*) = (x_2(t_0^*),y_2(t_0^*),u_2(t_0^*)) = P. \tag{11.8.1}
\end{align*} Como $\Gamma_1$ y $\Gamma_2$ son suaves, tenemos que $\gamma_1$ es diferenciable en $(c,d)$ y $\gamma_2$ es diferenciable en $(e,f)$, por lo que: \begin{align*}
\gamma_1′(t_0) \neq 0,\quad \text{para}\,\, t_0\in(c,d),\\
\gamma_2′(t_0^*) \neq 0, \quad \text{para}\,\, t_0^*\in(e,f). \tag{11.8.2} \end{align*} Así, por la observación 11.6, las rectas tangentes a cada curva son respectivamente: \begin{align*}
\mathcal{L}_{1T}: \quad P + \gamma_1′(t_0) \lambda_1, \quad \lambda_1\in\mathbb{R},\\
\mathcal{L}_{2T}: \quad P + \gamma_2′(t_0^*) \lambda_2, \quad \lambda_2\in\mathbb{R}.
\end{align*} Entonces, considerando la observación 11.5, tenemos que el ángulo $0<\theta<\pi/2$ que se forma entre $\mathcal{L}_{1T}$ y $\mathcal{L}_{2T}$ en el punto de intersección $P\in\mathbb{S}$ es tal que: \begin{align*}
\operatorname{cos}(\theta) & = \frac{\gamma_1′(t_0) \cdot \gamma_2′(t_0^*)}{\left\lVert\gamma_1′(t_0)\right\rVert\left\lVert\gamma_2′(t_0^*) \right\rVert}\\
&=\frac{x_1′(t_0)\,x_2′(t_0^*) + y_1′(t_0)\,y_2′(t_0^*) + u_1′(t_0)\,u_2′(t_0^*)}{\sqrt{x_1′(t_0)^2 + y_1′(t_0)^2 + u_1′(t_0)^2} \sqrt{x_2′(t_0^*)^2 + y_2′(t_0^*)^2 + u_2′(t_0^*)^2}}. \tag{11.9}
\end{align*} Dado que las curvas $\Gamma_1$ y $\Gamma_2$ están en $\mathbb{S}$ se cumple que: \begin{align*}
x_1(t)^2 + y_1(t)^2 + (u_1(t)-1)^2 = 1, \quad \forall t\in(c,d),\\
x_2(t)^2 + y_2(t)^2 + (u_2(t)-1)^2 = 1, \quad \forall t\in(e,f). \tag{11.10.1} \end{align*} Y considerando (11.8.1) tenemos que: \begin{align*}
x_1′(t)^2 + y_1′(t)^2 + u_1′(t)^2 \neq 0, \quad \forall t\in(c,d),\\
x_2′(t)^2 + y_2′(t)^2 + u_2′(t)^2 \neq 0, \quad \forall t\in(e,f). \tag{11.10.2}
\end{align*}

Por otra parte, el punto de intersección $P\in\mathbb{S}\setminus\{N\}$ de las curvas $\Gamma_1$ y $\Gamma_2$ bajo la proyección estreográfica corresponde con el punto $z_0=a_0+ib_0\in\mathbb{C}$, donde: \begin{align*}
a_0 = \frac{2x_0}{2-u_0},\\
b_0 = \frac{2y_0}{2-u_0}.
\end{align*} Considerando a $\mathbb{C}$ como el plano dado por (11.1), tenemos que dicho punto $z_0$ lo podemos asociar con el punto $(a_0,b_0,0)$ de $\mathbb{R}^3$.

Mientras que bajo la proyección estereográfica las imágenes de las curvas $\Gamma_1$ y $\Gamma_2$, digamos $\varphi(\Gamma_1)$ y $\varphi(\Gamma_2)$, están descritas por las funciones $\alpha_1:(c,d)\to\mathbb{R}^3$ y $\alpha_2:(e,f)\to\mathbb{R}^3$ en el plano complejo $\mathbb{C}$ y se pueden escribir considerando sus funciones componentes como: \begin{align*}
\alpha_1(t) = (a_1(t),b_1(t),0),\\
\alpha_2(t) = (a_2(t),b_2(t),0),
\end{align*} donde para cada $i=1,2$ se tiene que: \begin{align*}
a_i(t) = \frac{2x_i(t)}{2-u_i(t)},\\
b_i(t) = \frac{2y_i(t)}{2-u_i(t)}. \tag{11.11}
\end{align*}

De acuerdo con lo anterior, es claro que las curvas $\varphi(\Gamma_1)$ y $\varphi(\Gamma_2)$ obtenidas bajo la proyección estereográfica son también curvas suaves en sus respectivos dominios $(c,d)$ y $(e,f)$, por lo que considerando el punto de intersección $z_0$ tenemos que para los valores $t_0\in(c,d)$ y $t_0^*\in(e,f)$ dados se cumple que: \begin{align*}
\alpha_1(t_0) = (a_1(t_0),b_1(t_0),0) = z_0,\\
\alpha_2(t_0^*) = (a_2(t_0^*),b_2(t_0^*),0) = z_0. \tag{11.12.1}
\end{align*} Más aún, como las funciones $\alpha_1$ y $\alpha_2$ son diferenciables en $(c,d)$ y $(e,f)$ respectivamente, entonces tenemos que para $t_0\in(c,d)$ y $t_0^*\in(e,f)$ se cumple: \begin{align*}
\alpha_1′(t_0) = (a_1′(t_0),b_1′(t_0),0) \neq 0,\\
\alpha_2′(t_0^*) = (a_2′(t_0^*),b_2′(t_0^*),0) \neq 0. \tag{11.12.2}
\end{align*} Por lo que las rectas tangentes a las curvas $\varphi(\Gamma_1)$ y $\varphi(\Gamma_2)$ en el punto de intersección $z_0$ tienen como ecuaciones: \begin{align*}
\ell_{1T}: \quad z_0 + \alpha_1′(t_0) \delta_1, \quad \delta_1\in\mathbb{R},\\ \ell_{2T}: \quad z_0 + \alpha_2′(t_0^*) \delta_2, \quad \delta_2\in\mathbb{R}.
\end{align*} Entonces, considerando la observación 11.5, tenemos que el ángulo $0<\beta<\pi/2$ que se forma entre $\ell_{1T}$ y $\ell_{2T}$ en el punto de intersección $z_0\in\mathbb{C}$ es tal que: \begin{align*}
\operatorname{cos}(\beta) & = \frac{ \alpha_1′(t_0) \cdot \alpha_2′(t_0^*)}{\left\lVert \alpha_1′(t_0) \right\rVert \left\lVert \alpha_2′(t_0^*) \right\rVert}\\
& = \frac{a_1′(t_0) \, a_2′(t_0^*) + b_1′(t_0)\,b_2′(t_0^*)}{\sqrt{a_1′(t_0)^2 + b_1′(t_0)^2} \sqrt{a_2′(t_0^*)^2 + b_2′(t_0^*)^2}}.\tag{11.13}
\end{align*}

Para probar que el ángulo $\theta$, que forman las curvas $\Gamma_1$ y $\Gamma_2$ en el punto de intersección $P\in\mathbb{S}\setminus\{N\}$, se preserva bajo la proyección estereográfica veamos que las ecuaciones (11.9) y (11.13) son iguales.

Derivando las ecuaciones dadas en (11.11) tenemos para cada $i=1,2$ que: \begin{align*}
a_i'(t) = \frac{2}{(2-u_i(t))^2}\left[u_i'(t)\,x_i(t)+x_i'(t)\,(2-u_i(t))\right],\\
b_i'(t) = \frac{2}{(2-u_i(t))^2}\left[u_i'(t)\,y_i(t)+y_i'(t)\,(2-u_i(t))\right]. \tag{11.14}
\end{align*} Considerando las ecuaciones dadas en (11.6), obtenemos la relación inversa entre las curvas suaves $\varphi(\Gamma_1)$ y $\varphi(\Gamma_2)$ en el plano complejo $\mathbb{C}$ con las curvas suaves $\Gamma_1$ y $\Gamma_2$ en la esfera $\mathbb{S}$. Considerando dicha relación es fácil verificar que para $i=1,2$ se cumple: \begin{equation*}
x_i'(t) \, x_i(t) + y_i'(t)\,y_i(t) + u_i'(t)\left[u_i(t)-1\right] = 0. \tag{11.15}
\end{equation*}

Considerando (11.8.1), (11.10.1), (11.12.1), (11.14) y (11.15) es fácil verificar que para $t_0\in(c,d)$ y para $t_0^*\in(e,f)$ se cumple respectivamente: \begin{align*}
a_1′(t_0)^2 &+ b_1′(t_0)^2\\
&=\frac{4}{(2-u_1(t_0))^4}\Bigg(\left[x_1′(t_0)^2+y_1′(t_0)^2+u_1′(t_0)^2\right](2-u_1(t_0))^2\Bigg),\\
&=\frac{4}{(2-u_0)^4}\Bigg(\left[x_1′(t_0)^2+y_1′(t_0)^2+u_1′(t_0)^2\right](2-u_0)^2\Bigg), \tag{11.16.1}
\end{align*} \begin{align*}
a_2′(t_0^*)^2 &+ b_2′(t_0^*)^2\\
&=\frac{4}{(2-u_2(t_0^*))^4} \Bigg( \left[x_2′(t_0^*)^2 + y_2′(t_0^*)^2 + u_2′(t_0^*)^2\right] (2-u_2(t_0^*))^2 \Bigg),\\
&=\frac{4}{(2-u_0)^4} \Bigg( \left[x_2′(t_0^*)^2 + y_2′(t_0^*)^2 + u_2′(t_0^*)^2\right] (2-u_0)^2 \Bigg). \tag{11.16.2}
\end{align*} Dado que el punto $P=(x_0,y_0,u_0)\neq N$, entonces $u_0 \neq 2$, por lo que podemos simplificar (11.16.1) y (11.16.2) como: \begin{equation*}
a_1′(t_0)^2 + b_1′(t_0)^2 = \frac{4}{(2-u_0)^2} \Bigg( x_1′(t_0)^2 + y_1′(t_0)^2 + + u_1′(t_0)^2 \Bigg), \tag{11.17.1}
\end{equation*} \begin{equation*}
a_2′(t_0^*)^2 + b_2′(t_0^*)^2 = \frac{4}{(2-u_0)^2} \Bigg(x_2′(t_0^*)^2 + y_2′(t_0^*)^2 + u_2′(t_0^*)^2 \Bigg). \tag{11.17.2}
\end{equation*} Además como $P\in\mathbb{S}$ se cumple que: \begin{equation*}
x_0^2+y_0^2=u_0(2-u_0). \tag{11.18}
\end{equation*}

Considerando (11.12.2), (11.14), (11.15), (11.18) y que $u_0\neq2$ es fácil verificar que: \begin{align*}
\alpha_1′(t_0) \cdot \alpha_2′(t_0^*) & = a_1′(t_0)\,a_2′(t_0^*) + b_1′(t_0)\,b_2′(t_0^*)\\
& = \frac{4}{(2-u_0)^2}\Bigg(x_1′(t_0)\,x_2′(t_0^*) + y_1′(t_0)\,y_2′(t_0^*) + u_1′(t_0)\,u_2′(t_0^*)\Bigg) \tag{11.19}
\end{align*}

Sustituyendo (11.17.1), (11.17.2) y (11.19) en (11.13) tenemos que: \begin{align*}
\operatorname{cos}(\beta) & = \frac{x_1′(t_0)\,x_2′(t_0^*) + y_1′(t_0)\,y_2′(t_0^*) + u_1′(t_0)\,u_2′(t_0^*)}{\sqrt{x_1′(t_0)^2 + y_1′(t_0)^2 + u_1′(t_0)^2} \sqrt{x_2′(t_0^*)^2 + y_2′(t_0^*)^2 + u_2′(t_0^*)^2}}\\
& = \operatorname{cos}(\theta).
\end{align*}
Por lo tanto el ángulo $\theta$ que se forma entre las curvas $\Gamma_1$ y $\Gamma_2$ en un punto de intersección $P\in\mathbb{S}$, distinto del polo norte (o del polo sur), se preserva bajo la proyección estereográfica.

$\blacksquare$

Del mismo modo en que introducimos una métrica en $\mathbb{C}$, es posible definir una métrica en $\mathbb{C}_\infty$, la cual nos permitirá caracterizar y analizar las propiedades de este nuevo conjunto.

Dados dos puntos $z,w\in\mathbb{C}_\infty$ debemos definir una forma de medir distancia entre ellos, es decir una métrica $d:\mathbb{C}_\infty \times \mathbb{C}_\infty \to [0, \infty)$. Desde que la proyección estereográfica nos da una biyección entre el plano complejo extendido $\mathbb{C}_\infty$ y la esfera de Riemann $\mathbb{S}$, podemos definir la métrica de $\mathbb{C}_\infty$ considerando la distancia usual entre dos puntos $P,Q\in\mathbb{R}^3$, es decir la métrica euclidiana de $\mathbb{R}^3$. Tenemos que si $P=(x_1,y_1,u_1)$ y $Q=(x_2,y_2,u_2)$ son dos puntos de $\mathbb{R}^3$ entonces: \begin{equation*}
d_{\mathbb{R}^3}(P,Q) = \sqrt{(x_1 \,-\, x_2)^2 + (y_1 \,-\, y_2)^2 + (u_1 \,-\, u_2)^2}. \tag{11.20}
\end{equation*}
Considerando la proyección estereográfica, podemos hacer corresponder los puntos $z=a+ib$ y $w=\alpha+i\beta$ en $\mathbb{C}_\infty$ con los puntos $P,Q\in\mathbb{S}$ respectivamente, entonces de acuerdo con (11.20) podemos definir la distancia entre $z$ y $w$ como: \begin{equation*} \chi(z,w) = \sqrt{(x_1 \,-\, x_2)^2 + (y_1 \,-\, y_2)^2 + (u_1 \,-\, u_2)^2}. \tag{11.21} \end{equation*}
Dado que $P$ y $Q$ son puntos de $\mathbb{S}$, entonces se cumple que: \begin{align*}
x_1^2 + y_1^2 +(u_1 -1)^2 = 1,\\
x_2^2 + y_2^2 +(u_2 -1)^2 = 1. \tag{11.22}
\end{align*} De acuerdo con (11.22) y considerando (11.8), es fácil ver que:
\begin{align*}
(x_1 \,-\, x_2)^2 + (y_1 \,-\, y_2)^2 + (u_1 \,-\, u_2)^2 & = 2\left(u_1 + u_2 \,-\, x_1 x_2 \,-\, y_1 y_2 \,-\, u_1 u_2\right)\\
& = \frac{16 |\, z \,-\, w \,|^2}{\left(|\,z\,|^2 + 4\right)\left(|\,w\,|^2 + 4\right)}. \tag{11.23}
\end{align*} Entonces por (11.21) y (11.23) tenemos que: \begin{equation*}
\chi(z,w) = \frac{4 |\, z \,-\, w \,|}{\sqrt{\left(|\,z\,|^2 + 4\right)\left(|\,w\,|^2 + 4\right)}}. \tag{11.24}
\end{equation*}
Notemos que los puntos $z\neq \infty$ y $w=\infty$ de $\mathbb{C}_\infty$ corresponden con los puntos $P=(x,y,u)$ y $N=(0,0,2)$ de $\mathbb{S} \subset \mathbb{R}^3$, por lo que considerando (11.20) es fácil ver que: \begin{equation*}
\chi(z,\infty) = \frac{4}{\sqrt{|\,z\,|^2 + 4}}. \tag{11.25}
\end{equation*}

Considerando (11.24) y (11.25) tenemos que: \begin{equation*}
\chi(z,w)= \left\{ \begin{array}{lcc}
\dfrac{4 |\, z \,-\, w \,|}{\sqrt{|\,z\,|^2 + 4} \,\sqrt{|\,w\,|^2 + 4}}, & \text{si} & z,w\in\mathbb{C}\\
\dfrac{4}{\sqrt{|\,z\,|^2 + 4}}, & \text{si} & z\in\mathbb{C}, w=\infty,\\
0, & \text{si} & z=\infty, w=\infty.\\
\end{array}
\right.
\end{equation*}
A esta métrica en $\mathbb{C}_\infty$, inducida por la métrica euclidiana de $\mathbb{R}^3$, se le conoce como la métrica cordal.

Notemos que $\mathbb{C}_\infty$ dotado con la métrica cordal forman un espacio métrico, ver ejercicio 4. Considerando la entrada anterior podemos verificar algunas propiedades para este espacio métrico.

Primeramente, dado que la métrica cordal es inducida por la distancia usual de $\mathbb{R}^3$, debe ser claro que si $z,w\in\mathbb{C}_\infty$, entonces: \begin{equation*}
\chi(z,w) \leq 2,
\end{equation*} ya que 2 es el diámetro de $\mathbb{S}\subset\mathbb{R}^3$. Por lo que la métrica cordal es acotada.

Proposición 11.4.
El espacio métrico $(\mathbb{C}_\infty, d)$, donde $d$ es la métrica cordal, es compacto.

Demostración. Dado que $\mathbb{S} \subset \mathbb{R}^3$ es cerrado y acotado, tenemos por el teorema de Heine – Borel que $\mathbb{S}$ es compacto en $\mathbb{R}^3$. Dado que la proyección estereográfica $\varphi$ define un homeomorfismo de $\mathbb{S}$ en $\mathbb{C}_\infty$, entonces se sigue que $\mathbb{C}_\infty$ es también compacto.

$\blacksquare$

Proposición 11.5.
El espacio métrico $(\mathbb{C}_\infty, d)$, donde $d$ es la métrica cordal, es completo.

Demostración. Ejercicio.

$\blacksquare$

Tarea moral

  1. Considera la proposición 11.1. Argumenta porqué la proyección estereográfica y su inversa, es decir las funciones $\varphi$ y $\varphi^{-1}$ son continuas. Hint: Consulta la entrada 9.
  2. Demuestra la proposición 11.2. Hint: Utiliza la observación 11.2.
  3. ¿Por qué una circunferencia en $\mathbb{S}$ que pasa por $N=(0,0,2)$ y por $O=(0,0,0)$ corresponde a una recta que pasa por el origen en el plano complejo $\mathbb{C}$?
  4. Muestra que las igualdades del caso 2 de la proposición 11.2 son ciertas. Argumenta tus desarrollos.
  5. Verifica que la igualdad dada por (11.23) es cierta.
  6. Demuestra que la métrica cordal satisface las condiciones de métrica, es decir, demuestra que para cualesquiera $z_1, z_2, z_3\in\mathbb{C}_\infty$ se cumple:
    i) $\chi(z_2, z_1) \geq 0$.
    ii) $\chi(z_2, z_1) = 0$ si y solo si $z_1=z_2$.
    iii) Simetría: $\chi(z_1, z_2) = \chi(z_2, z_1)$.
    iv) Desigualdad del triángulo: $\chi(z_2, z_1) \leq \chi(z_2, z_3) + \chi(z_3, z_1)$. Hint: Utiliza los ejercicios 8 y 9 de la entrada 3, sección de tarea moral, para probar la desigualdad del triángulo.
  7. Considera a la función: \begin{equation*}
    \chi(z,w) = \frac{4 \, |\,z\,-\,w\,|}{\sqrt{|\,z\,|^2 + 4} \, \sqrt{|\,w\,|^2 + 4}}, \quad \forall z,w\in\mathbb{C},
    \end{equation*} de acuerdo con el ejercicio anterior es claro que dicha función es un métrica en $\mathbb{C}$. Prueba que dicha métrica $\chi$ y la métrica euclidiana $d(z,w) = |\,z\,-\,w\,|$ son equivalentes.
  8. De acuerdo con la entrada anterior, sea $z_0\in\mathbb{C}_\infty$ y sea $d$ la métrica cordal, una pregunta que puede resultar es, dado $\rho>0$, ¿cómo se define un $\rho$-vecindario de $z_0$ en $\mathbb{C}_\infty$? Describe a dicho conjunto.
  9. Demuestra la proposición 11.5.

Más adelante…

En esta entrada hemos hecho una compactificación del plano complejo agregándole un punto ideal, llamado el punto al infinito, obteniendo así el plano complejo extendido $\mathbb{C}_\infty$ el cual representamos mediante el módelo de la esfera de Riemann.

Hemos visto que existe una relación biunívoca entre el plano complejo extendido y la esfera de Riemann dada por la proyección estreográfica, la cual resulto tener propiedades interesantes que aparecerán más adelante para caracterizar a algunas funciones.

Además dotamos al plano complejo extendido con una métrica, llamada la métrica cordal, la cual nos permite tratar a $\mathbb{C}_\infty$ como un espacio métrico, por lo que podemos considerar algunas propiedades de la entrada anterior para caracterizar la topología de este espacio métrico.

La importancia de trabajar con esta extensión se verá a lo largo del curso cuando requiramos trabajar con funciones complejas para las cuales el módulo de la variable crezca de manera arbitraria.

Con esta entrada finalizamos la primera unidad de este curso: Introducción y preliminares. La siguiente entrada comenzaremos la segunda unidad titulada: Analicidad y funciones de variable compleja.

Entradas relacionadas

Sucesiones en el espacio métrico $(\mathbb{C},d)$

Introducción

Al trabajar con espacios métricos, las sucesiones resultan una herramienta fundamental en el estudio del concepto de las aproximaciones.

De manera particular en esta entrada abordaremos el concepto de sucesión en el sentido complejo y estudiaremos propiedades de las mismas pues veremos que estas sucesiones están estrechamente ligadas con la topología de $\mathbb{C}$. Además en su momento usaremos los resultados de esta entrada para el estudio de series de números complejos, las cuales resultarán fundamentales en el estudio de la teoría de funciones.

Sucesiones de números complejos

Definición 8.1. (Sucesión.)
Sea $(X,d_X)$ un espacio métrico. Una secuencia de puntos en $X$ es una función $f: \mathbb{N}^+ \rightarrow X$ tal que para cada $n\in\mathbb{N}^+$ asigna de manera única un elemento de $X$. Si $f(n)=x_n\in X$ para toda $n\in\mathbb{N}^+$, entonces denotamos a la secuencia como el conjunto $\left\{x_n\right\}_{n\geq1}$ o simplemente $\left\{x_n\right\}$.

Observación 8.1.
En este punto es conveniente hacer énfasis en las sucesiones de $\mathbb{C}$ pues más adalente probaremos algunos resultados del espacio métrico $(\mathbb{C},d)$. Sin embargo las definiciones que daremos a continuación son válidas en general para un espacio métrico $(X,d)$. Además será de vital importancia recordar nuestros resultados para sucesiones reales ya que nos serán de utilidad más adelante.

Definición 8.2. (Sucesión compleja convergente.)
Una sucesión de números complejos $\left\{z_n\right\}_{n\geq1}$ converge a un número complejo $z\in\mathbb{C}$, llamado el límite de $\left\{z_n\right\}_{n\geq1}$, si para toda $\varepsilon>0$ existe $N\in\mathbb{N}^+$ tal que:
\begin{equation*}
|\,z_n \,- \, z\,|<\varepsilon, \quad \forall n \geq N,
\end{equation*} lo cual denotamos como $z_n \rightarrow z$ ó $\lim_{n \to \infty} z_n = z$. De existir dicho límite, este es único. (¿Por qué?)

Notemos que geométricamente la desigualdad $|\,z_n \,- \, z\,|< \varepsilon$ nos dice que para $n\geq N$ todos los términos de la sucesión caen en la $\varepsilon$-vecindad de $z$, es decir $B(z,\varepsilon)$, figura 47.

Figura 47: Convergencia de una sucesión de números complejos.

Ejemplo 8.1.
Veamos que la sucesión de números complejos $\left\{\dfrac{i^{n+1}}{n}\right\}_{n\geq 1}$ converge a cero.
Solución.
Considerando la fórmula de De Moivre es fácil notar que: \begin{equation*}
|\,i^{n+1} \,- \, 0\,| = |\,i^{n+1}\,| = |\,i\,|^{n+1} = 1.
\end{equation*} Por otra parte, por la propiedad arquimediana se sigue que para todo $\varepsilon>0$ existe $N\in\mathbb{N}^+$ tal que: \begin{equation*}
\left|\,\frac{i^{n+1}}{n} \,- \, 0\,\right| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon, \quad \forall n\geq N.
\end{equation*} Por lo tanto $\lim_{n \to \infty} \dfrac{i^{n+1}}{n} = 0$.

Definición 8.3. (Sucesión compleja divergente.)
Una sucesión de números complejos $\left\{z_n\right\}_{n\geq1}$ diverge, lo cual denotaremos como $\lim_{n \to \infty} z_n = \infty$, si se cumple que $\lim_{n \to \infty} |z_n| = \infty$, es decir si para toda $R>0$ existe $N\in\mathbb{N}^+$ tal que: \begin{equation*}
|\,z_n\,| \geq R, \quad \forall n \geq N.
\end{equation*}

Observación 8.2.
Es común considerar a la «divergencia» como la no existencia del límite dado en la definición 8.1, es decir una sucesión se considera divergente si no es convergente. Sin embargo en el caso complejo es conveniente considerar a la divergencia como la tendencia a infinito. En este sentido tenemos que los conceptos de «no convergencia» y «divergencia» no son equivalentes. Lo cual veremos más adelante.

Definición 8.4. (Operaciones entre sucesiones.)
Sean $\{z_n\}_{n\geq1}$ y $\{w_n\}_{n\geq1}$ dos sucesiones de $\mathbb{C}$. Las operaciones de suma, resta, multiplicación y división para sucesiones se definen respectivamente como:

  1. $\{z_n\}_{n\geq1} \pm \{w_n\}_{n\geq1} = \{z_n \pm w_n\}_{n\geq1}$.
  2. $\{z_n\}_{n\geq1} \cdot \{w_n\}_{n\geq1} = \{z_n w_n\}_{n\geq1}$.
  3. Si $w_n \neq 0 $ para toda $n\in\mathbb{N}^+$, entonces $\dfrac{\{z_n\}_{n\geq1}}{\{w_n\}_{n\geq1}} = \left\{\dfrac{z_n}{w_n}\right\}_{n\geq1}$.

Considerando que una sucesión de números complejos $\{z_n\}_{n\geq 1}$ es un subconjunto de $\mathbb{C}$, entonces posible pensar en sucesiones acotadas.

Definición 8.5. (Sucesión acotada.)
Una sucesión de números complejos $\{z_n\}_{n\geq 1}$ se dice que es acotada si existe un número $M>0$ tal que $|\,z_n\,| \leq M$ para todo $n\in\mathbb{N}^+$.

Ejemplo 8.2.
La sucesión de números complejos $\{(-1)^n\}_{n \geq 1}$ es acotada, pero no es convergente.

De acuerdo con el ejemplo anterior es fácil concluir que una sucesión acotada no tendría porqué ser convergente. Sin embargo el recíproco sí es cierto, es decir:

Proposición 8.1.
Toda sucesión de números complejos $\{z_n\}_{n\geq 1}$ convergente es acotada.

Demostración.
Supongamos que la sucesión de números complejos $\{z_n\}_{n\geq 1}$ es convergente y $\lim_{n \to \infty} z_n = z$. De acuerdo con la definición 8.1 tenemos que para $\varepsilon=1$ existe $N\in\mathbb{N}^+$ tal que: \begin{equation*}
|\,z_n \,- \,z\,| < 1, \quad \forall n\geq N.
\end{equation*}
De acuerdo con la desigualdad del triángulo se tiene que para toda $n\geq N$ se cumple que $|\,z_n\,| < |\,z\,| + 1$. Sea $M = \text{máx}{1 + |\,z\,|,|\,z_1\,|,|\,z_2\,|, \ldots, |\,z_N\,|}$, entonces para toda $n\geq 1$ se cumple que $|\,z_n\,|\leq M$.

$\blacksquare$

Utilizando la definición 8.2 es fácil probar las siguientes propiedades para sucesiones complejas.

Proposición 8.2.
Sean $\{z_n\}_{n\geq1}$ y $\{w_n\}_{n\geq1}$ sucesiones de números complejos y supongamos que ambas son convergentes en $\mathbb{C}$, con $\lim_{n \to \infty} z_n = z$ y $\lim_{n \to \infty} w_n = w$. Entonces se cumple que:

  1. $\lim_{n \to \infty}(z_n \pm w_n) = z \pm w$.
  2. $\lim_{n \to \infty}(z_n w_n) = zw$.
  3. Si además $w_n\neq 0$ para toda $n \geq 1$ y $w\neq 0$, entonces $\lim_{n \to \infty} \left(\dfrac{1}{ w_n}\right) = \dfrac{1}{w}$.
  4. $\lim_{n \to \infty} \overline{z_n} = \overline{z}$.

Demostración.

  1. Dadas las hipótesis por la definición 8.1 tenemos que para cualquier $\varepsilon>0$ existen $N_1, N_2 \in \mathbb{N}$ tales que: \begin{equation*}
    |\,z_n \,-\, z\,| < \varepsilon/2, \quad \forall n \geq N_1,
    \end{equation*} \begin{equation*}
    |\,w_n \,-\, w\,| < \varepsilon/2, \quad \forall n \geq N_2.
    \end{equation*} Notemos que: \begin{align*}
    |\, (z_n \pm w_n) \,-\, (z \pm w)\,| & = |\, (z_n \,-\, z) \pm (w_n \,-\, w)\,|\\
    & \leq |\,z_n \,-\, z\,| + |\,w_n \,-\, w\,| < \varepsilon, \quad \forall n \geq N,
    \end{align*} donde $N = \text{máx}\{N_1, N_2\}$. Por lo tanto $\lim_{n \to \infty}(z_n \pm w_n) = z \pm w$.
  2. Dadas las hipótesis, tenemos por la proposición 8.1 que ambas sucesiones son acotadas por lo que sin pérdida de generalidad supongamos que existe $M>0$ tal que $|\,z_n\,|\leq M$ para toda $n\geq 1$. Por otra parte, por la definición 8.2 tenemos que para cualquier $\varepsilon>0$ existen $N_1, N_2 \in \mathbb{N}$ tales que: \begin{equation*}
    |\,z_n \,-\, z\,| < \frac{\varepsilon}{2(|\,w\,|+1)}, \quad \forall n \geq N_1,
    \end{equation*} \begin{equation*}
    |\,w_n \,-\, w\,| < \frac{\varepsilon}{2M}, \quad \forall n \geq N_2.
    \end{equation*} Notemos que: \begin{align*}
    |\, z_n w_n \,-\, z w\,| & = |\, z_n w_n \,-\, z_n w + z_n w \,-\, z w \,|\\
    & \leq |\,z_n w_n \,-\, z_n w\,| + |\,z_n w \,-\, z w\,|\\
    & = |\,z_n\,|\,|\,w_n \,-\, w\,| + |\,w\,|\,|\,z_n \,-\, z \,|\\
    & < M \left(\frac{\varepsilon}{2M}\right) + (|\,w\,|+1) \left(\frac{\varepsilon}{2(|\,w\,|+1)}\right) = \varepsilon, \quad \forall n \geq N.
    \end{align*} Por lo que $\lim_{n \to \infty}(z_n w_n) = zw$.
  3. Ejercicio.
  4. Ejercicio.

$\blacksquare$

Observación 8.3.
Considerando la definición 8.2 y la proposición 8.2 es fácil ver que si una sucesión ${z_n}_{n\geq 1}$ converge a un número complejo $z\in\mathbb{C}$ entonces se cumple (¿por qué?): \begin{equation*}
z = \lim_{n \to \infty} z_n \quad \Longleftrightarrow \quad \lim_{n \to \infty} |\,z_n – z\,| = 0.
\end{equation*} Y para $c\in\mathbb{C}$ constante: \begin{equation*}
\lim_{n\to\infty} (c z_n) = c \lim_{n\to\infty} z_n.
\end{equation*}

Sabemos que todo número complejo $z$ es caracterizado por su parte real y por su parte imaginaria, la cuales son números reales, por lo que considerando al $n$-ésimo término de una sucesión de números complejos $\{z_n\}_{n\geq 1}$ como $z_n = \operatorname{Re}(z_n) + i\operatorname{Im}(z_n)$, es fácil probar el siguiente resultado.

Proposición 8.3.
Una sucesión de números complejos $\{z_n\}_{n\geq 1}$ es convergente en $\mathbb{C}$ si y solo si las sucesiones de números reales $\{\operatorname{Re}(z_n)\}_{n\geq 1}$, $\{\operatorname{Im}(z_n)\}_{n\geq 1}$ son convergentes en $\mathbb{R}$. En dicho caso tenemos que: \begin{align*}
\lim_{n\to \infty} z_n = z \quad & \Longleftrightarrow \quad \lim_{n\to \infty} \operatorname{Re}(z_n) = \operatorname{Re}(z)\\
& \quad \quad \, \text{y} \,\,\, \lim_{n\to \infty} \operatorname{Im}(z_n) = \operatorname{Im}(z).
\end{align*}

Demostración.
Por la proposición 3.1 sabemos que: \begin{align*}
|\,\operatorname{Re}(z_n) \,-\, \operatorname{Re}(z)\,| = |\,\operatorname{Re}(z_n \,-\, z)\,|,\\
|\,\operatorname{Im}(z_n) \,-\, \operatorname{Im}(z)\,| = |\,\operatorname{Im}(z_n \,-\, z)\,|.
\end{align*} Mientras que por la observación 3.1 tenemos que:
\begin{align*}
|\,\operatorname{Re}(z_n \,-\, z)\,| \leq |\,z_n \,-\, z\,| \leq |\,\operatorname{Re}(z_n \,-\, z)\,| + |\,\operatorname{Im}(z_n \,-\, z)\,|,\\
|\,\operatorname{Im}(z_n \,-\, z)\,| \leq |\,z_n \,-\, z\,| \leq |\,\operatorname{Re}(z_n \,-\, z)\,| + |\,\operatorname{Im}(z_n \,-\, z)\,|.
\end{align*} De acuerdo con la observación 8.3 tenemos que $z = \lim_{n \to \infty} z_n$ si y solo si $\lim_{n \to \infty} |\,z_n \,-\, z\,| = 0$. Considerando lo anterior es claro que:
\begin{align*}
\lim_{n \to \infty} |\,z_n \,-\, z\,| = 0 \,\,\, & \Longleftrightarrow \,\,\, \lim_{n \to \infty} |\,\operatorname{Re}(z_n) \,-\, \operatorname{Re}(z)\,| = 0\\
& \quad \quad \text{y} \, \lim_{n \to \infty} |\,\operatorname{Im}(z_n) \,-\, \operatorname{Im}(z)\,| = 0.
\end{align*} Es decir las sucesiones de números reales $\{\operatorname{Re}(z_n)\}_{n\geq 1}$, $\{\operatorname{Im}(z_n)\}_{n\geq 1}$ son convergentes en $\mathbb{R}$ (¿por qué?), por lo que: \begin{align*}
\lim_{n\to \infty} z_n = z \quad & \Longleftrightarrow \quad \lim_{n\to \infty} \operatorname{Re}(z_n) = \operatorname{Re}(z)\\
& \quad \quad \, \text{y} \,\,\, \lim_{n\to \infty} \operatorname{Im}(z_n) = \operatorname{Im}(z).
\end{align*} De donde se sigue el resultado.

$\blacksquare$

La proposición 8.3 es de gran utilidad al trabajar con sucesiones de números complejos, ya que la convergencia de estas sucesiones se reduce a verificar la convergencia de dos sucesiones de números reales. Más aún, podemos utilizar los resultados conocidos para sucesiones reales en el estudio de las sucesiones complejas, lo cual tiene sentido pues como vimos en la entrada 2 los números reales son un subconjunto de los números complejos, por lo que se deben cumplir las propiedades que ya conocíamos de $\mathbb{R}$ en $\mathbb{C}$.

Ejemplo 8.3.
Estudiemos la convergencia de las siguientes sucesiones:
a) $\left\{\dfrac{n+2+i2^n n}{2^n(n+2)}\right\}_{n\geq 1}$.
b) $\left\{\dfrac{3+in}{n+i2n}\right\}_{n\geq 1}$.

Solución. Para cada $n\in\mathbb{N}^+$ tenemos que:

  • a) \begin{equation*}
    z_n = \dfrac{n+2+i2^n n}{2^n(n+2)} = \dfrac{1}{2^n} + i\left(\dfrac{n}{n+2}\right).
    \end{equation*} De donde $\operatorname{Re}(z_n) = \dfrac{1}{2^n}$ e $\operatorname{Im}(z_n) = \dfrac{n}{n+2}$.
    Sabemos que: \begin{align*}
    \lim_{n \to \infty} \operatorname{Re}(z_n) = \lim_{n \to \infty}\dfrac{1}{2^n} = 0.\\
    \lim_{n \to \infty} \operatorname{Im}(z_n) = \lim_{n \to \infty}\dfrac{n}{n+2} = 1.
    \end{align*} Por lo que considerando la proposición 8.3 se sigue que $\operatorname{Re}(z) = 0$ y $\operatorname{Im}(z) = 1$, es decir: \begin{equation*}
    \lim_{n \to \infty} z_n = z = i.
    \end{equation*}
  • b) \begin{equation*}
    w_n = \dfrac{3+in}{n+i2n} = \dfrac{3 + 2n}{5n} + i\left(\dfrac{n \,-\, 6}{5n}\right).
    \end{equation*} De donde $\operatorname{Re}(w_n) = \dfrac{3+2n}{5n}$ e $\operatorname{Im}(w_n) = \dfrac{n \,-\, 6}{5n}$.
    Sabemos que: \begin{align*}
    \lim_{n \to \infty} \operatorname{Re}(w_n) = \lim_{n \to \infty}\dfrac{3+2n}{5n} = \frac{2}{5}.\\
    \lim_{n \to \infty} \operatorname{Im}(w_n) = \lim_{n \to \infty}\dfrac{n \,-\, 6}{5n} = \frac{1}{5}.
    \end{align*} Por lo que considerando la proposición 8.3 se sigue que $\operatorname{Re}(w) = \dfrac{2}{5}$ e $\operatorname{Im}(w) = \dfrac{1}{5}$, es decir: \begin{equation*}
    \lim_{n \to \infty} w_n = w = \frac{2}{5} + i\frac{1}{5}.
    \end{equation*}

Completez del espacio métrico $(\mathbb{C},d)$

Definición 8.6. (Sucesión de Cauchy.)
Una sucesión $\left\{z_n\right\}_{n\geq1}$ en $\mathbb{C}$ se dice que es una sucesión de Cauchy si para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que:
\begin{equation*}
|\,z_n \,-\, z_m\,|<\varepsilon, \quad \forall\, n,m \geq N.
\end{equation*}

Proposición 8.4.
Toda sucesión convergente en $\mathbb{C}$ es de Cauchy.

Demostración.
Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos convergente con $\lim_{n \to \infty} z_n = z$ para algún $z\in\mathbb{C}$. Sea $\varepsilon>0$, entonces existe $N\in\mathbb{N}^+$ tal que:\begin{equation*}
|\,z_n \,-\, z\,| < \varepsilon, \quad \forall n \geq N.
\end{equation*} Entonces por la desigualdad del triángulo se tiene que para cualesquiera $n,m\in \mathbb{N}^+$ tales que $n,m\geq N$ se cumple: \begin{equation*}
|\,z_n \,-\, z_m\,| \leq |\,z_n \,-\, z\,| + |\,z \,-\, z_m\,| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} =\varepsilon.
\end{equation*} Por lo tanto la sucesión $\{z_n\}_{n\geq 1}$ es de Cauchy.

Considerando la proposición 8.4 es momento de dar un ejemplo para argumentar la observación 8.2, es decir veamos que la divergencia y la no convergencia no son equivalentes.

Ejemplo 8.4
Consideremos la sucesión $\left\{i^n\right\}_{n\geq 1}$. Veamos que dicha sucesión no converge ni diverge.

Solución. Sea $z_n = i^n$. Por la fórmula de De Moivre es claro que para toda $n\in\mathbb{N}^+$ se tiene que: \begin{equation*}
|\,z_n\,| = |\,i^n\,| = |\,i\,|^n = 1, \quad \Longrightarrow \quad \lim_{n \to \infty} |\,z_n\,| = 1 \neq \infty.
\end{equation*} Es decir, la sucesión $\left\{i^n\right\}_{n\geq 1}$ no diverge.

Por otra parte, veamos que dicha sucesión no es de Cauchy. Considerando el argumento principal de $i$, tenemos por la fórmula de De Moivre que: \begin{align*}
z_{4n} = i^{4n} = \left(\operatorname{cis}(2\pi)\right)^n = 1^n = 1,\\
z_{4n+2} = i^{4n+2} = i^{4n}i^{2} = 1^n(-1) = -1,
\end{align*} por lo que: \begin{align*}
|\,z_{4n} \,&-\, z_{4n+2}\,| = 2,\\
\\
& \Longrightarrow \quad \lim_{n \to \infty}|\,z_{4n} \,-\, z_{4n+2}\,| = 2 \neq 0.
\end{align*} Entonces la sucesión $\{i^n\}_{n\geq 1}$ no es de Cauchy, por lo que por la contrapuesta de la proposición 8.4, tenemos que dicha sucesión no es convergente en $\mathbb{C}$.

Así concluimos que la sucesión $\{i^n\}_{n\geq 1}$ no diverge, pero tampoco converge.

Definición 8.7. (Completez.)
Un espacio métrico $(X,d)$ se dice que es completo si toda sucesión de Cauchy es convergente en $X$.

Ejemplo 8.5.
El espacio métrico $(\mathbb{R}, d)$, con $d$ la métrica inducida por el valor absoluto, es completo.

La proposición 8.4 es válida en general para cualquier espacio métrico $(X,d)$. Sin embargo el recíproco es falso en general, por ello la importancia de la definición 8.7. Considerando que $\mathbb{R}$ es un subconjunto de $\mathbb{C}$ y que el módulo complejo de $\mathbb{C}$ es la extensi\’on del valor absoluto de $\mathbb{R}$, podemos intuir que el espacio métrico $(\mathbb{C}, d)$, con $d$ inducida por el módulo, es también completo.

Proposición 8.5.
El campo de los números complejos $\mathbb{C}$ dotado con la métrica euclidiana es completo.

Demostración. Sea $\{z_n\}_{n\geq 1}$ en $\mathbb{C}$ una sucesión de Cauchy. Usando la observación 3.1 y la proposición 3.1, como en la prueba de la proposición 8.3, es fácil convencerse de que la sucesión $\{z_n\}_{n\geq 1}$ es de Cauchy si y solo si las sucesiones reales $\{\operatorname{Re}(z_n)\}_{n\geq 1}$ e $\{\operatorname{Im}(z_n)\}_{n\geq 1}$ son de Cauchy en $\mathbb{R}$. Dado que $\mathbb{R}$ es completo con la métrica inducida por el valor absoluto, entonces las sucesiones de Cauchy $\{\operatorname{Re}(z_n)\}_{n\geq 1}$ e $\{\operatorname{Im}(z_n)\}_{n\geq 1}$ son convergentes en $\mathbb{R}$, por lo que por la proposición 8.3 se sigue que la sucesión de Cauchy $\{z_n\}_{n\geq 1}$ es convergente en $\mathbb{C}$, por lo tanto el espacio métrico $(\mathbb{C},d)$, con $d$ la métrica euclidiana, es completo.

$\blacksquare$

Proposición 8.6.
Un punto $z_0\in\mathbb{C}$ es un punto límite (o de acumulación) de un conjunto $S\subset\mathbb{C}$ si y solo si existe una sucesión $\{z_n\}_{n\geq1} \subset S$ tal que $z_n \neq z$ para todo $n\in\mathbb{N}^+$ y $\lim_{n \to \infty} z_n = z$.

Demostración.
$\Rightarrow)$
Supongamos que $z_0\in\mathbb{C}$ es un punto límite de $S$, entonces por la definición 7.7 tenemos que para todo $n\in\mathbb{N}^+$ existe: \begin{equation*}
z_n \in B\left(z_0, \tfrac{1}{n}\right)\setminus{z_0} \cap S,
\end{equation*} es decir que para todo $n\in\mathbb{N}^+$ se tiene que $z_n \in S$, $z_n\neq z_0$ y $|\,z_n \,-\, z_0\,|<\frac{1}{n}$. Consideremos a la sucesión $\{z_n\}_{n\geq 1}$ dada anteriormente. Es claro que dicha sucesión cumple las condiciones del resultado, veamos que converge a $z_0$. Por la propiedad arquimediana se sigue que para todo $\varepsilon>0$ existe $N\in\mathbb{N}^+$ tal que:
\begin{equation*}
|\,z_n \,-\, z_0\,|< \frac{1}{n} \leq \frac{1}{N} < \varepsilon, \quad \forall n \geq N.
\end{equation*} Por lo que $\lim_{n\to \infty} z_n = z_0$.

$(\Leftarrow$
Supongamos que la sucesión $\{z_n\}_{n\geq 1}$ es tal que para todo $n\in\mathbb{N}^+$ se tiene $z_n \in S$, $z_n \neq z$ y $\lim_{n\to \infty} z_n = z_0$. Por la propiedad arquimediana sabemos que dado $\varepsilon>0$ existe $N\in\mathbb{N}^+$ tal que:
\begin{equation*}
|\,z_N \,-\, z_0\,|< \frac{1}{N} < \varepsilon.
\end{equation*} Como $z_N \neq z_0$ y $z_N \in S$, entonces para todo $\varepsilon>0$ se tiene que:
\begin{equation*}
z_N \in B(z_0, \varepsilon)\setminus{z_0} \cap S.
\end{equation*} Por lo que $z_0$ es un punto límite de $S$.

$\blacksquare$

Definición 8.8. (Punto de acumulación de una sucesión.)
Un número $z\in\mathbb{C}$ se llama punto de acumulación de una sucesión de números complejos $\{z_n\}_{n\geq 1}$ si para todo $\varepsilon>0$ existe un número infinito de elementos $z_n$ de la sucesión tales que $|\,z_n \,-\, z\,|<\varepsilon$, es decir si cada $\varepsilon-$vecindad de $z_0$, $B(z_0,\varepsilon)$, contiene un número infinito de elementos de la sucesión.

Observación 8.4.
No debemos confundir esta definición con la definición 7.7 de punto límite o punto de acumulación de un conjunto. Por ejemplo la sucesión $\{(-1)^n\}_{n\geq 1}$ tiene dos puntos de acumulación los cuales son $-1$ y $1$. Sin embargo el conjunto $\{-1,1\}$, que consiste de los elementos que determinan a la sucesión, no tiene ningún punto límite o de acumulación.

Además, es fácil convencerse de que todo límite de una sucesión es un punto de acumulación de la misma. Sin embargo el recíproco no se cumple, para verlo basta considerar a la sucesión $\{i^n\}_{n\geq 1}$, la cual tiene cuatro puntos de acumulación los cuales son $1, -1, i$ y $-i$, pero dicha sucesión no converge, es decir no tiene límite.

Definición 8.9. (Subsucesión.)
Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos. Una subsucesión o sucesión parcial de $\{z_n\}_{n\geq 1}$ es cualquier sucesión de la forma $\{z_{\sigma(n)} \}_{n\geq 1}$, donde $\sigma:\mathbb{N}^+ \rightarrow \mathbb{N}^+$, con $\sigma(n) = k_n$, es una función estrictamente creciente.

Ejemplo 8.6.
Si definimos $k_n = 2n$, entonces una subsucesión de $\left\{\dfrac{i^n}{n}\right\}_{n\geq 1}$ está conformada por: \begin{equation*}
-\frac{1}{2}, \,\, \frac{1}{4}, \,\, -\frac{1}{6}, \ldots, \frac{i^{2n}}{2n}, \ldots, \end{equation*} es decir $\left\{\dfrac{i^{2n}}{2n}\right\}_{n\geq 1}$ es una subsucesión de $\left\{\dfrac{i^n}{n}\right\}_{n\geq 1}$.

Proposición 8.7
Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos. Si $z$ es un punto de acumulación de $\{z_n\}_{n\geq 1}$, entonces existe una subsucesión $\{z_{k_n}\}_{n\geq 1}$ tal que $\lim_{n\to\infty} z_{k_n} = z$.

Demostración. Dadas las hipótesis, por la definición 8.8 tenemos que para todo $\varepsilon>0$ existe un número infinito de valores de $n$ para los cuales $|\,z_n \,-\, z\,|<\varepsilon$. Entonces para $\varepsilon=1$ existe un $n=k_1$ tal que $|\,z_{k_1} \,-\, z\,| < 1$. Del mismo modo para $\varepsilon = \frac{1}{2}$ existe $n=k_2$ tal que $|\,z_{k_2} \,-\, z\,| < \frac{1}{2}$. Procediendo de forma análoga podemos obtener, en general, que para $\varepsilon = \frac{1}{n}$ existe algún $k_n>k_{n-1}$ tal que $|\,z_{k_n} \,-\, z \,| < \frac{1}{n}$, por lo que existe una subsucesión $\left\{ z_{k_n} \right\}_{n\geq 1}$ de $\{z_n\}_{n\geq 1}$. Por otra parte, tenemos por la propiedad arquimediana que para todo $\varepsilon>0$ existe algún $N\in\mathbb{N}^+$ tal que: \begin{equation*}
|\,z_{k_n} \,-\, z\,| < \frac{1}{n} \leq \frac{1}{N} < \varepsilon, \quad \forall n \geq N.
\end{equation*} Por lo tanto $\lim_{n\to \infty} z_{k_n} = z$.

$\blacksquare$

Teorema 8.1. (Teorema de Bolzano – Weierstrass.)
Una sucesión de números complejos $\{z_n\}_{n\geq 1}$ acotada tiene una subsucesión convergente.

Demostración. Dadas las hipótesis, por la observación 3.1 es fácil ver que la sucesión $\{z_n\}_{n\geq 1}$ es acotada si y solo si las sucesiones de números reales $\{\operatorname{Re}(z_n)\}_{n\geq 1}$ e $\{\operatorname{Im}(z_n)\}_{n\geq 1}$ son acotadas en $\mathbb{R}$. Por el teorema de Bolzano – Weierstrass para sucesiones de números reales sabemos que al ser la sucesión $\{\operatorname{Re}(z_n)\}_{n\geq 1}$ acotada, entonces existe una subsucesión $\{\operatorname{Re}(z_{n_j})\}_{n\geq 1}$ convergente para alguna subsucesión $\{z_{n_j}\}_{n\geq 1}$ de $\{z_n\}_{n\geq 1}$. Dado que $\{\operatorname{Im}(z_{n_j})\}_{n\geq 1}$ también es acotada entonces existe alguna subsucesión $\{z_{n_{j_k}}\}_{n\geq 1}$ de $\{z_{n_j}\}_{n\geq 1}$ tal que $\{\operatorname{Im}(z_{n_{j_k}})\}_{n\geq 1}$ también converge. Entonces $\{\operatorname{Re}(z_{n_{j_k}})\}_{n\geq 1}$ es subsucesión de una sucesión convergente, por lo que también es convergente. Por lo tanto, por la proposición 8.3 se sigue que la subsucesión $\{z_{n_{j_k}}\}_{n\geq 1}$ converge en $\mathbb{C}$.

Tarea moral

  1. Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos. Prueba que si la sucesión converge en $\mathbb{C}$, entonces dicho límite es único.
  2. Considera las siguientes sucesiones:
    a) $\left\{i^n\right\}_{n\geq 1}$.
    b) $\left\{\left(\dfrac{1}{1+i}\right)^n\right\}_{n\geq 1}$.
    c) $\left\{\left(\dfrac{1+i}{1-i}\right)^n\right\}_{n\geq 1}$.
    d) $\left\{\dfrac{n}{2n+1} + i\, \dfrac{n-1}{n}\right\}_{n\geq 1}$.
    e) $\left\{n^2\left(i^n -1\right)\right\}_{n\geq 1}$.
    Determina cuáles sucesiones son acotadas, cuáles convergen, encuentra su límite y sus puntos de acumulación.
  3. Prueba que si la sucesión $\{z_n\}_{n\geq 1}$ de números complejos converge a $z\in\mathbb{C}$, entonces la sucesión ${|\,z_n\,|}_{n\geq 1}$ converge a $|\,z\,|$. ¿Es cierto el recíproco?
  4. Sea $z\in\mathbb{C}$, prueba lo siguiente.
    a) Si $|\,z\,|<1$, entonces $\lim_{n\to \infty} z^n = 0$.
    b) Si $|\,z\,|<1$, entonces $\lim_{n\to \infty} z^n = \infty$.
  5. Considera la observación 8.3, argumenta porqué es cierto el resultado. En general prueba que para un espacio métrico $(X, d_X)$ se cumple que una sucesión de elementos de $X$, digamos $\{x_n\}_{n\geq 1}$, converge a $x\in X$ si y solo si $\lim_{n \to \infty} d_X (x_n, x) = 0$.
  6. Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos. Prueba que $\lim_{n\to \infty} z_n = 0$ si y solo si $\lim_{n\to \infty} |\,z_n\,| = 0$.
  7. Sea $\{z_n\}_{n\geq 1}$ una sucesión de números complejos, sea $z \in \mathbb{C}$ y sea $\{c_n\}_{n\geq 1}$ una secuencia de números reales no negativos. Demuestra lo siguiente.
    a) Si $\lim_{n\to \infty} c_n = 0$ y $|\,z_n – z\,| \leq c_n$ para toda $n\in\mathbb{N}^+$, entonces $\lim_{n\to \infty} z_n = z$.
    b) Si $\lim_{n\to \infty} c_n = \infty$ y $|\,z_n \,| \geq c_n$ para toda $n\in\mathbb{N}^+$, entonces $\lim_{n\to \infty} z_n = \infty$.

Más adelante…

En esta entrada hemos abordado el concepto de sucesión compleja con la finalidad de caracterizar al espacio métrico $(\mathbb{C}, d)$ como un espacio métrico completo. Para ello hicimos uso de algunos resultados para sucesiones reales y generalizamos algunos de los mismos, como el Teorema de Bolzano-Weierstrass, para números complejos.

En general vimos que muchos de los resultados que teníamos para sucesiones reales se comportan de manera similar en el sentido complejo.

Por otra parte introducimos el concepto de la divergencia a infinito, el cual será de utilidad en la entrada 11 al hablar del punto al infinito.

Los resultados de esta entrada serán de utilidad cuando hablemos de las series en el sentido complejo y sobre su convergencia. Además de que nos permitirán obtener una caracterización relacionada con los conceptos de continuidad y continuidad uniforme.

La siguiente entrada abordaremos el concepto de continuidad entre espacios métricos.

Entradas relacionadas

Variable Compleja I : Topología de $\mathbb{C}$

Introducción

De manera intuitiva podemos considerar a un espacio métrico como un conjunto en el cual se puede hablar de la “distancia” entre sus elementos, por lo que definir lo que entendemos por distancia es de suma importancia. Para ello en esta entrada introduciremos los conceptos de distancia o métrica y espacio métrico. Es importante considerar que estos conceptos se analizan en primera instancia en un curso de Cálculo III y con mayor detalle en un curso de Análisis Matemático, por lo que es recomendable acompañar estos conceptos con algún material complementario, pues algunos resultados de los espacios métricos se darán por válidos y/o conocidos. Puedes consultar los libros Metric Spaces de Satish Shirali y Metric Spaces de Mícheál Ó Searcoid, o cualquier libro sobre topología de espacios métricos.

En la entrada anterior la métrica euclidiana $d$ nos permitió describir algunos lugares geométricos del plano complejo $\mathbb{C}$ con los que ya estábamos familiarizados en $\mathbb{R}^2$. Es importante mencionar que existen otras formas de definir la distancia entre dos números complejos $z$ y $w$. Sin embargo para los fines del curso estaremos utilizando la métrica euclidiana definida en la entrada anterior.

Hablar de la «topología» en $\mathbb{C}$ hace referencia a un resultado de los espacios métricos en el que se prueba que en un espacio métrico $(X,d)$ la métrica $d$ induce una topología en el conjunto $X$. Por lo que en esta entrada analizaremos la topología inducida por la métrica euclidiana $d(z,w) = |\,z-w\,|$ en $\mathbb{C}$.

Lo anterior nos motiva a definir algunos conjuntos de puntos de $\mathbb{C}$ que serán necesarios para continuar en el estudio de la topología en $\mathbb{C}$. Por lo que introducir el concepto de disco o vecindad será de gran utilidad para caracterizar a los conjuntos de $\mathbb{C}$, así como para dar una definición formal de límite y continuidad en $\mathbb{C}$.

$\mathbb{C}$ como un espacio métrico

Definición 7.1. (Métrica y espacio métrico.)
Un conjunto $X\neq\emptyset$ dotado con una función $d: X \times X \to [0,\infty)$ es llamado un espacio métrico, lo cual se denota como $(X,d)$, si la función $d$ cumple las siguientes propiedades para todo $x,y, z\in X$:

  1. $d(x, y) \geq 0$.
  2. $d(x,y) = 0$ si y solo si $x=y$.
  3. Simetría: $d(x,y) = d(y,x)$.
  4. Desigualdad del triángulo: $d(x,y) \leq d(x,z) + d(z,y)$.

Dicha función $d$ es llamada métrica en $X$ o función distancia en $X$. Es común denotar a la métrica en $X$ como $d_X$ cuando se están trabajando con varios espacios métricos y se requiere especificar donde está definida dicha métrica.

Ejemplo 7.1.

  • a) Consideremos al conjunto de los números reales $\mathbb{R}$. La función $d:\mathbb{R} \times \mathbb{R} \to [0,\infty)$ dada por:\begin{equation*}
    d(x,y) = |\,x-y\,|,
    \end{equation*} utilizando las propiedades del valor absoluto es fácil verficar que $d$ es una métrica en $\mathbb{R}$.
  • b) Si $X = \mathbb{R}^n$, entonces para $x = (x_1, x_2, \ldots, x_n)$ y $y = (y_1, y_2, \ldots, y_n)$ en $X$ se define:\begin{equation*}
    d(x,y) = \left(\sum_{k=1}^{n} (x_k – y_k)^2 \right)^{1/2}.
    \end{equation*}
  • La función $d$ es llamada la métrica euclidiana en $\mathbb{R}^n$.
  • c) Sea $X$ cualquier conjunto no vacío, entonces se define a la métrica discreta en $X$ como la función:
    \begin{equation*}
    d(x,y) = \left\{
    \begin{array}{lcc}
    0 & \text{si} & x = y,\\
    1 & \text{si} & x \neq y.
    \end{array}
    \right.
    \end{equation*}

Usando la definición del módulo es fácil probar que la distancia euclidiana, dada en la definición 6.1 de la entrada anterior, es una función $d: \mathbb{C}\times\mathbb{C} \rightarrow [0,\infty)$ que satisface las condiciones para ser una métrica.

Proposición 7.1. (El espacio métrico $(\mathbb{C}, d)$.)
El conjunto $\mathbb{C}$ dotado con la métrica euclidiana $d(z,w) = |\,z-w\,|$, $z,w\in\mathbb{C}$, es un espacio métrico.

Demostración. Sean $z_1, z_2, z_3 \in \mathbb{C}$, entonces:

  1. $d(z_2, z_1) \geq 0$, se sigue de la definición del módulo de un número complejo.
  2. Ejercicio.
  3. Ejercicio.
  4. Queremos probar que:
    \begin{equation*}
    d(z_2, z_1) \leq d(z_2, z_3) + d(z_3, z_1),
    \end{equation*}o equivalentemente que:
    \begin{equation*}
    |\,z_2 – z_1\,| \leq |\,z_2 – z_3\,| + |\,z_3 – z_1\,|.
    \end{equation*}

Sean $z = z_2 – z_3$ y $w = z_3 – z_1$, entonces podemos reescribir $z + w = z_2 – z_1$ y así probar que:
\begin{equation*}
|\, z + w \, | \leq |\,z\,| + |\,w\,|,
\end{equation*}lo cual se sigue de la proposición 3.2.

$\blacksquare$

Observación 7.1.
De acuerdo con la proposición 7.1 y la definición 7.1 tenemos que $\mathbb{C}$ dotado con la métrica euclidiana $d$ forma un espacio métrico, denotado por $(\mathbb{C}, d)$. Es importante mencionar que en esta entrada daremos algunos resultados de manera general para un espacio métrico $(X,d_X)$ y cuando sea necesario puntualizar algo del espacio métrico $(\mathbb{C}, d)$ trabajaremos de manera particular con dicho espacio métrico.

Definición 7.2.
Dado $z_0\in\mathbb{C}$ un punto fijo y una cantidad $\rho>0$, se define a la circunferencia de centro $z_0$ y radio $\rho$ en $\mathbb{C}$, figura 40a, como el conjunto de puntos:
\begin{equation*}
C(z_0,\rho)= \left\{z\in\mathbb{C} \,: \, |\,z-z_0\,| = \rho\right\}.
\end{equation*}

De acuerdo con la entrada anterior sabemos que las ecuaciones:\begin{align*}
|\,z-z_0\,|< \rho,\\
|\,z-z_0\,|> \rho,
\end{align*} nos describen a los puntos $z\in\mathbb{C}$ que caen dentro o fuera de la circunferencia $C(z_0,\rho)$ respectivamente, figura 40b.

Definición 7.3. (Disco o $\rho$-vecindad.)
Dado $z_0\in\mathbb{C}$ un punto fijo y una cantidad $\rho>0$, se definen en $\mathbb{C}$ a los conjuntos: \begin{equation*}
B(z_0,\rho)= {z\in\mathbb{C} \,: \, |\,z-z_0\,| < \rho},
\end{equation*} \begin{equation*}
\overline{B}(z_0,\rho)= {z\in\mathbb{C} \,: \, |\,z-z_0\,| \leq \rho},
\end{equation*} como el disco abierto de radio $\rho$ y centro $z_0$ o la $\rho$-vecindad de $z_0$, figura 41(a), y el disco cerrado de radio $\rho$ y centro $z_0$, figura 41(b), respectivamente.

Figura 40: Circunferencia de centro $z_0$ y radio $\rho>0$.

Observación 7.2.
En ocasiones será necesario trabajar con una $\rho$-vecindad de $z_0$ sin considerar al punto $z_0$, es decir $B(z_0,\rho) \setminus {z_0}$, en dado caso llamaremos a ese conjunto como una $\rho$-vecindad perforada o un disco perforado
Análogamente se puede hablar de un disco cerrado perforado como el conjunto $B^*(z_0,\rho) = \overline{B}(z_0,\rho) \setminus {z_0}$.

Definición 7.4. (Punto interior y conjunto abierto.)
Sea $S\subset\mathbb{C}$. Diremos que $z_0\in \mathbb{C}$ es un punto interior de $S$ si existe $\rho>0$ tal que $B(z_0,\rho)\subset S$.
Al conjunto de puntos interiores de $S$ se le denota como $\operatorname{int}S$ o $ \mathring{S}$. Si se cumple que $S = \operatorname{int}S$, entonces diremos que $S$ es un conjunto abierto en $\mathbb{C}$.

De acuerdo con la definición de $\operatorname{int}S$, notemos $\operatorname{int}S\subset S$. De hecho, dado un espacio métrico $(X,d)$ y $S\subset X$, entonces se cumple que $\operatorname{int}S$ es un conjunto abierto y es el mayor subconjunto abierto de $X$ contenido en $S$.

Figura 41: Disco abierto y cerrado con centro $z_0$ y radio $\rho>0$.

Definición 7.5. (Conjunto cerrado.)
Un conjunto $S\subset\mathbb{C}$ se dice que es cerrado en $\mathbb{C}$ si su complemento $\mathbb{C}\setminus S$ es abierto en $\mathbb{C}$.

Observación 7.3.
Comunmente denotaremos a los conjuntos abiertos de $\mathbb{C}$ con la letra $U$ y a los conjuntos cerrados de $\mathbb{C}$ con la letra $F$.

Ejemplo 7.2.
Utilizando la desigualdad del triángulo es fácil verificar que:

  • a) El conjunto $\{z\in\mathbb{C} : 0<|\,z\,|<1\}$ es abierto en $\mathbb{C}$, figura 42a.
  • b) El conjunto $\{z\in\mathbb{C} : |\,z\,| \leq 1\}$ es cerrado en $\mathbb{C}$, figura 42b.
  • c) El conjunto $\{z\in\mathbb{C} : 0< |\,z\,| \leq 1\}$ no es abierto ni cerrado en $\mathbb{C}$, figura 43.
  • d) Los conjuntos $\emptyset$ y $\mathbb{C}$ son conjuntos abiertos y cerrados en $\mathbb{C}$, ¿por qué?

Figura 42: Conjuntos del ejemplo 7.1 inciso a) y b).

Figura 43: El conjunto $\{z\in\mathbb{C} : 0< |\,z\,| \leq 1\}$ no es cerrado ni es abierto en $\mathbb{C}$.

Definición 7.6. (Punto exterior y punto frontera.)
Sea $S\subset\mathbb{C}$ y sea $z_0\in\mathbb{C}$. Diremos que $z_0$ es un punto exterior de $S$ si existe $\rho>0$ tal que $B(z_0,\rho) \subset \mathbb{C}\setminus S$.
Por otra parte, diremos que $z_0$ es un punto frontera de $S$ si para todo $\rho>0$ se tiene que $B(z_0,\rho) \cap S \neq \emptyset$ y $B(z_0,\rho) \cap \mathbb{C}\setminus S \neq \emptyset$.

Al conjunto de los puntos exteriores de $S$ se le denota como $\operatorname{ext}S$. Mientras que al conjunto de los puntos frontera de $S$ se le denota como $\partial S$.

Definición 7.7. (Punto de acumulación o punto límite.)
Sea $S\subset \mathbb{C}$ y sea $z_0\in\mathbb{C}$. Diremos que $z_0$ es un punto de acumulación o un punto límite de $S$ si para todo $\rho>0$ se tiene:
\begin{equation*}
B(z_0,\rho)\setminus{z_0} \cap S \neq \emptyset.
\end{equation*} O equivalentemente que para todo $\rho>0$ se tiene:
\begin{equation*}
\{ z \in S : 0 < |\,z-z_0\,|<\rho\} \neq \emptyset.
\end{equation*}

Si se cumple que $z_0\in S$, pero $z_0$ no es punto de acumulación de $S$, entonces diremos que $z_0$ es un punto aislado de $S$. En este caso se tiene que existe algún $\varepsilon>0$ tal que:
\begin{equation*}
B(z_0,\varepsilon) \cap S = {z_0}.
\end{equation*}

Al conjunto de puntos de acumulación lo denotaremos como $S’$ y lo llamaremos el conjunto derivado de $S$.

Definición 7.8. (Punto de adherencia.)
Sea $S\subset \mathbb{C}$ y sea $z_0\in\mathbb{C}$. Diremos que $z_0$ es un punto de adherencia de $S$ si para todo $\rho>0$ se tiene:
\begin{equation*}
B(z_0,\rho) \cap S \neq \emptyset.
\end{equation*}

Al conjunto de puntos de adherencia lo llamaremos la cerradura o la clausura de $S$ y lo denotaremos como $\overline{S}$.

De acuerdo con la definición de $\overline{S}$, tenemos que $S \subset \overline{S}$. Además, dado un espacio métrico $(X,d)$ y $S\subset X$, entonces se cumple que $\overline{S}$ es un conjunto cerrado y es el menor subconjunto cerrado de $X$ que contiene a $S$.

De hecho, dado un espacio métrico $(X,d_X)$ y $S\subset X$, se tiene que $S$ es cerrado en $X$ si y solo si $S = \overline{S}$.

Proposición 7.2.
Consideremos al espacio métrico $(\mathbb{C}, d)$, con $d$ la métrica euclidiana. Un conjunto $S\subset\mathbb{C}$ es cerrado en $\mathbb{C}$ si y sólo si $S$ contiene a todos sus puntos de acumulación.

Demostración.
$\Rightarrow)$
Supongamos que $S$ es cerrado en $\mathbb{C}$. Sea $z_0 \in \mathbb{C}$ un punto de acumulación de $S$. Por reducción al absurdo supongamos que $z_0 \in \mathbb{C}\setminus S$. Notemos que por definición $\mathbb{C}\setminus S$ es un conjunto abierto, por lo que para algún $\rho>0$ se tiene que $B(z_0, \rho) \subset \mathbb{C}\setminus S$, es decir que al disco abierto $B(z_0,\rho)$ no pertenece ningún punto de $S$, lo cual contradice el hecho de que $z_0$ es un punto de acumulación de $S$. Por lo tanto $z_0\in S$.

$(\Leftarrow$
Supongamos que a $S$ pertenecen todos sus puntos de acumulación. Entonces para algún $z_0 \in \mathbb{C} \setminus S$ se cumple que $z_0$ no es punto de acumulación de $S$, por lo que existe $\rho>0$ tal que $B(z_0, \rho)$ no tiene puntos de $S$, por lo que $B(z_0, \rho) \subset \mathbb{C}\setminus S$, por tanto $\mathbb{C}\setminus S$ es abierto, de donde se sigue que $S$ es cerrado.

$\blacksquare$

Ejemplo 7.3.
Veamos que no necesariamente todo punto de un conjunto cerrado debe ser un punto de acumulación del mismo. Consideremos al conjunto:
\begin{equation*}
S = \left\{z\in\mathbb{C}\, : \, z = \frac{1}{n}, \,\, n\in\mathbb{N}^+ \right\} \cup \left\{0\right\}.
\end{equation*}

Es claro que $S\subset\mathbb{C}$. Notemos que el único punto de acumulación de $S$ es $z=0$. Desde que dicho punto pertenece a $S$, por la proposición 7.2 es claro que $S$ es cerrado. Por otra parte no es díficil convencerse de que salvo $z=0$, el resto de los puntos de $S$ son puntos aislados, ya que basta con tomar $\rho = \frac{1}{n} – \frac{1}{n+1} > 0$ para que se cumpla que:
\begin{equation*}
B\left(\frac{1}{n}, \rho\right) \cap S = \left\{\frac{1}{n}\right\}.
\end{equation*}

Definición 7.9. (Conjunto acotado.)
Un conjunto $S \subset \mathbb{C}$ se dice que es acotado si existe un número real $R>0$ tal que $|\,z\,| < R$ para todo $z\in S$.

Esta definición nos dice que $S$ es acotado si puede ser completamente encerrado por un $R$-vecindario del origen.

Ejemplo 7.4.
Sea $X = \left\{z\in\mathbb{C} \, : \, 0<|\,z\,|<1\right\} \cup \{2\}$, figura 44. Entonces:

  • a) Los puntos interiores de $X$ son el conjunto $\operatorname{int} X = \{z\in\mathbb{C} \, : \, 0<|\,z\,|<1\}$.
  • b) Los puntos exteriores de $X$ son el conjunto $\operatorname{ext} X = \{z\in\mathbb{C} \, : \, 1 < |\,z\,|\} \cap \{z\in\mathbb{C} \, : \, z \neq 2\}$.
  • c) La frontera de $X$ es el conjunto $\partial X = \{0, 2\} \cup \{z\in\mathbb{C} \,: \, |\,z\,|=1\}$.
  • d) Los puntos de acumulación de $X$ son el conjunto $X’ = \{z\in\mathbb{C} \, : \, |\,z\,|\leq 1\}$.
  • e) El punto $z=2$ es un punto aislado de $X$.
  • f) Tomando $R=3>0$ es claro que el conjunto $X$ es acotado ya que $|\,z\,|< R$ para todo $z\in X$.
Figura 44: Puntos del conjunto $X$ del ejemplo 7.2.

De acuerdo con nuestros cursos de Cálculo (y Análisis Matemático) sabemos que en un espacio métrico, en este caso en $(\mathbb{C},d)$, se cumple que:

Proposición 7.3.
Sea $(X,d_X)$ un espacio métrico. Sean $z_0 \in X$ y $S\subset X$, entonces:

  1. Los conjuntos $X$ y $\emptyset$ son abiertos en $X$.
  2. Para todo $\rho>0$, la $\rho$-vecindad de $z_0$, es decir el conjunto:
    \begin{equation*}
    B(z_0,\rho) = \{ z\in X \,: \, d_X(z,z_0) < \rho\},
    \end{equation*} es un conjunto abierto en $X$.
  3. Para todo $\rho>0$, el disco cerrado, es decir el conjunto:
    \begin{equation*}
    \overline{B}(z_0,\rho) = \{ z\in X \,: \, d_X(z,z_0) \leq \rho\},
    \end{equation*} es un conjunto cerrado en $X$.
  4. $S’ \subset \overline{S}$.
  5. $\overline{S} = S \cup S’$.
  6. $\overline{S} = \operatorname{int}S \cup \partial S$.
  7. $X = \operatorname{int}S \cup \operatorname{ext}S \cup \partial S$.
  8. Si $A \subset B$, entonces:
    a) $\overline{A} \subset \overline{B}$.
    b) $\operatorname{int}A \subset \operatorname{int}B$.
  9. La unión de un número arbitrario de conjuntos abiertos en $X$ es también un conjunto abierto en $X$.
  10. La intersección de un número finito de conjuntos abiertos en $X$ es un conjunto abierto en $X$.
  11. La intersección de un número arbitrario de conjuntos cerrados en $X$ es también un conjunto cerrado en $X$.
  12. La unión de un número finito de conjuntos cerrados en $X$ es un conjunto cerrado en $X$.

Demostración.

  1. Ejercicio.
  2. Dadas las hipótesis, sea $\rho>0$. Tomemos $z\in B(z_0,\rho)$ y sea $\varepsilon = \rho – d_X(z_0, z) > 0 $. Considerando la desigualdad del triángulo tenemos que para todo $w \in B(z,\varepsilon)$ se cumple que:
    \begin{equation*}
    d_X(w, z_0) \leq d_X(w, z) + d_X(z, z_0) < \varepsilon + d_X(z, z_0) = \rho,
    \end{equation*} por lo que $B(z,\varepsilon) \subset B(z_0, \rho)$ para todo $z\in B(z_0,\rho)$.
Figura 45: Todo disco abierto $B(z_0,\rho)$ es un conjunto abierto en $X$.
  1. Dadas las hipótesis, sea $\rho>0$. Tomemos $z\in \overline{\overline{B}(z_0,\rho)}$, entonces para todo $\varepsilon > 0$ existe:
    \begin{equation*}
    z_\varepsilon \in B(z,\varepsilon)\cap \overline{B}(z_0,\rho).
    \end{equation*} De acuerdo con la desigualdad del triángulo, para todo $\varepsilon > 0$ se cumple que:
    \begin{equation*}
    d_X(z, z_0) \leq d_X(z, z_\varepsilon) + d_X(z_\varepsilon, z_0) < \varepsilon + \rho,
    \end{equation*} de donde se sigue que $d(z, z_0) < \rho$, por lo que $\overline{\overline{B}(z_0,\rho)}\subset \overline{B}(z_0,\rho)$. Entonces
    \begin{equation*}
    \overline{B}(z_0,\rho) = \overline{\overline{B}(z_0,\rho)},
    \end{equation*} por lo tanto, todo disco cerrado es un conjunto cerrado en $X$.
  2. Ejercicio.
  3. Ejercicio.
  4. Ejercicio.
  5. Ejercicio.
  6. Ejercicio.
  7. Sea $\{ G_j : j\in J\}$, con $J$ un conjunto de índices, una colección de conjuntos abiertos en $X$. Tomemos a $z\in G = \bigcup\limits_{j\in J} G_j$, entonces $z \in G_j$, para algún $j\in J$, así por la definición 7.4 tenemos que existe $\rho>0$ tal que $B(z,\rho) \subset G_j \subset G$, por lo que $G$ es abierto.
  8. Sean $G_1, G_2, \ldots , G_n$ subconjuntos abiertos de $X$ y sea $z \in G = \bigcap\limits_{k=1}^{n} G_k$. Tenemos que $z\in G_k$ para $k=1,2, \ldots, n$, por lo que por la definición 7.4 se tiene que para cada $k$ existe $\rho_k > 0$ tal que $B(z,\rho_k) \subset G_k$. Si tomamos a $\rho = \operatorname{min}{\rho_k : 1 \leq k \leq n}$, entonces para cada $k$, con $1 \leq k \leq n$, se cumple que $B(z,\rho) \subset B(z,\rho_k) \subset G_k$. Entonces $B(z,\rho) \subset G$, por lo que $G$ es abierto.
  9. Ejercicio.
  10. Ejercicio.

$\blacksquare$

Es posible encontrar la prueba de estas propiedades en algún libro de topología o de topología de espacios métricos, como Topología de espacios métricos de Ignacio L. Iribarren.

Definición 7.10. (Conjunto denso.)
Sea $(X,d_X)$ un espacio métrico. Diremos que un conjunto $A\subset X$ es denso en $X$ si $\overline{A} = X$.

Ejemplo 7.5.

  • a) El conjunto de los números racionales $\mathbb{Q}$ es denso en $\mathbb{R}$ con la métrica usual de $\mathbb{R}$, $d(x,y) = |\,x-y\,|$.
  • b) El conjunto ${x+iy : x,y\in\mathbb{Q}}$ es denso en $\mathbb{C}$ con la métrica euclidiana.

Tarea moral

  1. Prueba que las siguientes funciones $d_i: \mathbb{C}\times\mathbb{C} \to [0,\infty)$, con $i=1,2$, dadas por:
    \begin{equation*}
    d_1(x+iy, a+ib) = |\,x-a\,| + |\,y-b\,|,
    \end{equation*} \begin{equation*}
    d_2(x+iy, a+ib) = \text{máx}\left\{|\,x-a\,|,|\,y-b\,|\right\},
    \end{equation*} son también una métrica en $\mathbb{C}$.
  2. Considera la observación 7.2 y argumenta porqué esos conjuntos se pueden definir respectivamente como:
    \begin{equation*}
    B^*(z_0,\rho) = \{z\in\mathbb{C}\,:\, 0<|\,z-z_0\,|<\rho\},
    \end{equation*} \begin{equation*}
    \overline{B^*}(z_0,\rho) = \{z\in\mathbb{C}\,:\, 0<|\,z-z_0\,|\leq\rho\}.
    \end{equation*} ¿Cómo son esos conjuntos en $\mathbb{C}$? ¿Cerrados, abiertos o ninguno de los dos? Describe al conjunto de puntos interiores, exteriores, frontera, de acumulación y de adherencia. ¿Son acotados esos conjuntos?
  3. Argumenta porqué los conjuntos $\emptyset$ y $\mathbb{C}$ son abiertos y cerrados en $\mathbb{C}$, ejemplo 7.2(c).
  4. Completa la demostración de las proposiciones 7.1 y 7.3.
  5. Hasta ahora sabemos que $\mathbb{R}\subset\mathbb{C}$. Por otra parte, de nuestros cursos de cálculo sabemos que un intervalo abierto en $\mathbb{R}$, es decir el conjunto:
    \begin{equation*}
    (a,b) = \{ x\in\mathbb{R} \,:\, a<x<b\},
    \end{equation*} es un conjunto abierto en $\mathbb{R}$. Prueba que dicho conjunto no es abierto en $\mathbb{C}$.
  6. Utilizando la definición describe cómo son los siguientes conjuntos de $\mathbb{C}$, es decir ¿son abiertos o cerrados o ninguna de las dos en $\mathbb{C}$? ¿Son acotados?
    a) Sean $a,b\in\mathbb{R}$ con $a<b$, definimos:\begin{align*}
    A = \{z\in\mathbb{C}\, :\, a< \operatorname{Re}(z)<b\},\\
    B = \{z\in\mathbb{C}\, :\, a< \operatorname{Im}(z)<b\}.
    \end{align*} b) $X = \{z\in\mathbb{C} \,:\ \, \operatorname{Re}(z)<0\} \cup \{0\}$.
    c) $Y = \{z\in\mathbb{C} \,:\ \, 0\leq\operatorname{Im}(z)\}$.
  1. Considera a los siguientes conjuntos:
    a) $S_1 = B(0,1)$.
    b) $S_2 = \overline{B}\left(-1-i\sqrt{2},\frac{7}{8}\right)$.
    c) $S_3 = \overline{B}\left(2+i\sqrt{3},\frac{1}{2}\right)$.
    De acuerdo con la proposición 7.2 tenemos que $S_1$ es un conjunto abierto en $\mathbb{C}$, mientras que $S_2$ y $S_3$ son conjuntos cerrados en $\mathbb{C}$. Describe los puntos interiores, exteriores y frontera de cada uno de los tres conjuntos.
  1. Considera al siguiente conjunto:
    \begin{equation*}
    S = \left\{ z\in\mathbb{C} \,:\, |\,\operatorname{Im}(z)\,| < |\,\operatorname{Re}(z)\,| \right\},
    \end{equation*} el cual está representado en la figura 46. Prueba que:
    a) $S$ es un conjunto abierto en $\mathbb{C}$.
    b) $\partial S = \{ z\in\mathbb{C} \,:\, |\,\operatorname{Re}(z)\,| = |\,\operatorname{Im}(z)\,|\}$.
    c) Los puntos de acumulación de $S$ son precisamente la clausura de $S$, es decir $\overline{S}$.
    d) $S$ no es cerrado en $\mathbb{C}$.
    e) $S$ no es acotado en $\mathbb{C}$.
Figura 46: Conjunto $S$, ejercicio 8.

Más adelante…

En esta entrada hemos hecho una breve descripción de la topología de los espacios métricos, en particular analizamos la topología del plano complejo $\mathbb{C}$. Esta caracterización de $\mathbb{C}$ como un espacio métrico nos será de gran utilidad en las siguientes entradas para poder continuar el estudio del campo de los números complejos.

En esta entrada hemos visto que existe una estrecha relación entre la topología de $\mathbb{C}$ y $\mathbb{R}^2$, lo cual no debe sorprendernos ya que como espacios vectoriales dichos conjuntos son isomorfos, ver ejercicio 6 de la entrada 2. Más adelante veremos que como espacios métricos son homeomorfos, por lo que muchas propiedades que conocemos para $\mathbb{R}^2$ nos permitirán caracterizar a los números complejos. Por otra parte es fácil convencerse que la topología de $\mathbb{C}$ induce en $\mathbb{R}$ su topología usual considerando la distancia definida mediante el valor absoluto.

La siguiente entrada abordaremos las sucesiones en $\mathbb{C}$ y discutiremos la completez del espacio métrico $(\mathbb{C}, d)$, con $d$ la métrica euclidiana.

Entradas relacionadas