Archivo del Autor: Pedro Rivera Herrera

Variable Compleja I: Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja.

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos definido y trabajado con los conceptos de diferenciabilidad y analicidad de una función compleja, en particular hemos visto que dichos conceptos no son equivalentes, desde que la analicidad de una función compleja en un punto $z_0$ implica la diferenciabilidad de la función en todo un $\varepsilon$-vecindario de $z_0$.

Como hemos visto a lo largo de la unidad 2, toda función compleja está totalmente definida a través de un par de funciones reales de dos variables, a las cuales hemos llamado su parte real e imaginaria. Más aún, hemos caracterizado algunos conceptos matemáticos importantes como el de límite y continuidad a través de dichas funciones, por lo que resulta natural cuestionarnos acerca de si es posible caracterizar la diferenciabilidad de una función compleja mediante estás funciones reales.

La entrada anterior deducimos las ecuaciones de Cauchy-Riemann y vimos que para una función compleja $f(z)=u(x,y) + iv(x,y)$ analítica en un conjunto abierto $U\subset\mathbb{C}$ las funciones $u$ y $v$, correspondientes con su parte real e imaginaria, deben satisfacer dichas ecuaciones. Sin embargo, vimos que dichas ecuaciones son solamente una condición necesaria, pero no suficiente, que las funciones $u$ y $v$ deben satisfacer. En esta entrada veremos que además de las ecuaciones de C-R, es necesario imponer unas condiciones extras sobre las funciones $u$ y $v$ para garantizar que una función compleja es analítica.

Recordemos la definición de diferenciabilidad de una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 18.1. (Diferenciabilidad de funciones reales de dos variables.)
Sea $U\subset\mathbb{R}^2$ un conjunto abierto. Una función real de dos variables $u:U \to \mathbb{R}$, es diferenciable en $(x_0,y_0) \in U$ si existen $A,B\in\mathbb{R}$ constantes tales que: \begin{equation*} \lim_{(x,y) \to (x_0, y_0)} \frac{u(x,y) – u(x_0, y_0) – A(x-x_0) – B(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0, \end{equation*} en tal caso $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$.

Observación 18.1.
De acuerdo con la definición 18.1, tenemos que una función real de dos variables $u$, definida sobre un abierto $U\subset \mathbb{R}^2$, es diferenciable en $(x_0,y_0)\in U$ si puede escribirse de la forma: \begin{equation*} u(x,y) = u(x_0,y_0) + A(x-x_0) + B(y-y_0) + \varepsilon(x,y)\sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{equation*} donde $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$ son constantes reales y $\lim\limits_{(x,y) \to (x_0,y_0)}\varepsilon(x,y) = 0$.

Consideremos el siguiente resultado.

Proposición 18.1.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función. Entonces, $f$ es analítica en $z_0\in U$ si y solo si $f$ se puede escribir de la forma: \begin{equation*} f(z) = f(z_0) + c(z-z_0) + \varepsilon(z)(z-z_0), \tag{18.2} \end{equation*} donde $c\in\mathbb{C}$ es una constante, $\varepsilon: U \to \mathbb{C}$ es continua en $z_0$ y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$. En tal caso se tiene que $f'(z_0) = c$.

Demostración. Dadas las hipótesis, tenemos lo siguiente.

$\Rightarrow)$
Supongamos que $f'(z_0)$ existe, entonces definimos la función: \begin{equation*} \varepsilon(z)= \left\{ \begin{array}{lcc} \dfrac{f(z)- f(z_0)}{z – z_0} – f'(z_0) & \text{si} & z\neq z_0, \\ 0 & \text{si} & z = z_0. \end{array} \right. \end{equation*} Es claro que dicha función satisface que $\lim_{z \to z_0} \varepsilon(z) = 0$ y además es una función continua en $z_0$.

$(\Leftarrow$
Supongamos que $f(z)$ se puede escribir como (18.2) con $c\in\mathbb{C}$ constante, entonces para $z\neq z_0$, tenemos que: \begin{equation*} \frac{f(z) – f(z_0)}{z – z_0} = c + \varepsilon(z), \end{equation*} por lo que, tomando límites en la igualdad anterior: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} = \lim_{z\to z_0} \left(c + \varepsilon(z)\right) = c, \end{equation*} de donde $f'(z_0) = c$.

$\blacksquare$

La proposición anterior establece que la diferenciabilidad de una función compleja $f(z)$ en $z_0$ es equivalente a que dicha función se puede aproximar en $z_0$ por la función lineal $f(z_0) + c(z-z_0)$, con $c\in\mathbb{C}$ constante, en el sentido que cuando $z$ está cerca de $z_0$ la diferencia entre $f(z)$ y $f(z_0) + c(z-z_0)$ es pequeña comparada con $|\,z-z_0\,|$.

Procedemos ahora a responder nuestra pregunta sobre cuáles son las condiciones suficientes que se deben imponer sobre las funciones $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, además de las ecuaciones de C-R, para garantizar la analicidad de una función compleja.

Teorema 18.1.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es analítica en un conjunto abierto $U\subset\mathbb{C}$ si las cuatro derivadas parciales $u_x, v_x, u_y$ y $v_y$ existen y son continuas en todo punto de $U$ (es decir $u$ y $v$ son funciones de clase $C^1$) y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3} \end{equation*}

Demostración. Dadas las hipótesis, tomemos a $z_0 = x_0 + iy_0 \in U$ fijo, entonces existe $r>0$ tal que $B(z_0, r) \subset U$. Sea $z \in B(z_0, r)$ y supongamos que $z \neq z_0$, entonces tenemos que el segmento de recta que une a $z_0$ con $z$, es decir $[z_0, z]$, está totalmente contenido en $B(z_0, r)$ (¿por qué?). Sin perdida de generalidad supongamos que $x>x_0$ y $y>y_0$ (los casos restantes son completamente análogos), figura 64, por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = u(x,y) – u(x_0, y) + u(x_0, y) – u(x_0, y_0). \end{equation*}

Segmento de recta $[z_0, z]$ contenido en el disco abierto con centro en $z_0$ y radio $r>0$. Caso $x>x_0$ y $y>y_0$.

Definimos $h = x – x_0 > 0$ y $k = y – y_0 > 0$. Sean $g_1 : [0,h] \to \mathbb{R}$ y $g_2 : [0,k] \to \mathbb{R}$ dadas por: \begin{equation*} g_1(t) = u(x_0 + t,y) \quad \text{y} \quad g_2(t) = u(x_0,y_0 + t). \end{equation*}

Tenemos que: \begin{align*} g_1′(t) & = \lim_{h\to 0} \frac{g_1(t+h)-g_1(t)}{h}\\ & = \lim_{h\to 0} \frac{u(x_0 + t + h,y)-u(x_0 + t,y)}{h}\\ & = \frac{\partial u}{\partial x}(x_0 + t,y), \end{align*} \begin{align*} g_2′(t) & = \lim_{k\to 0} \frac{g_2(t+k)-g_2(t)}{k}\\ & = \lim_{k\to 0} \frac{u(x_0,y_0 + t + k)-u(x_0,y_0 + t)}{k}\\ & = \frac{\partial u}{\partial y}(x_0,y_0+t). \end{align*}

Como $u_x$ y $u_y$ existen en $U$, entonces para $y$ fijo tenemos que $g_1$ es una función diferenciable en $[0,h]$ y para $x_0$ fijo tenemos que $g_2$ también es una función diferenciable en $[0,k]$, por lo que $g_1$ y $g_2$ son funciones continuas en $[0,h]$ y $[0,k]$ respectivamente.

Por el teorema del valor medio para funciones reales, tenemos que existen $c_1\in(0,h)$ y $c_2\in(0,k)$ tales que: \begin{align*} g_1(h) – g_1(0) = g_1′(c_1) (h – 0),\\ g_2(h) – g_2(0) = g_2′(c_2) (k – 0), \end{align*} o equivalentemente que existen $\alpha_1, \beta_1 \in (0,1)$, tales que: \begin{align*} g_1(h) – g_1(0) = h \, g_1′(h\alpha_1),\\ g_2(h) – g_2(0) = k \, g_2′(k\beta_1), \end{align*} es decir: \begin{align*} u(x, y) – u(x_0, y) & = u(x_0 + h, y_0 + k) – u(x_0, y_0 + k)\\ & = h \, u_x(x_0 +\alpha_1 h, y_0 + k), \end{align*} \begin{align*} u(x_0, y) – u(x_0, y_0) & = u(x_0, y_0 + k) – u(x_0, y_0)\\ & = k \, u_y(x_0, y_0 + \beta_1 k). \end{align*} Por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k). \end{equation*}

De manera análoga concluimos que existen $\alpha_2, \beta_2 \in (0,1)$ tales que: \begin{align*} v(x_0 + h, y_0 + k) – v(x_0, y_0 + k) = h \, v_x(x_0 +\alpha_2 h, y_0 + k),\\ v(x_0, y_0 + k) – v(x_0, y_0) = k \, v_y(x_0, y_0 + \beta_2 k), \end{align*} donde $h = x – x_0 > 0$ y $k = y – y_0 > 0$.

Por lo que: \begin{equation*} v(x,y) – v(x_0, y_0) = h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k). \end{equation*} Entonces, para $z\neq z_0$ tenemos que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{u(x,y) + iv(x,y) – \left[ u(x_0,y_0) + iv(x_0,y_0)\right]}{(x – x_0) + i (y-y_0)}\\ & = \frac{u(x,y) – u(x_0,y_0)}{h + i k} + i \left[ \frac{v(x,y) – v(x_0,y_0)}{h + i k}\right]\\ & = \frac{h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k)}{h + i k}\\ & \quad + i \left[ \frac{h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k)}{h + i k}\right]\\ & = \frac{h}{h+ik}\left[u_x(x_0 +\alpha_1 h, y_0 + k) + i v_x(x_0 +\alpha_2 h, y_0 + k)\right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0 + \beta_1 k) + i v_y(x_0, y_0 + \beta_2 k)\right], \end{align*} donde $h = x – x_0 > 0$, $k = y – y_0 > 0$ y $\alpha_i, \beta_i \in (0,1)$ para $i=1,2$. Además la igualdad anterior se cumple aún si $x = x_0$ o $y = y_0$.

Dado que $u_x, u_y, v_x$ y $v_y$ son continuas en $U$, entonces tenemos que: \begin{align*} \lim_{(h,k) \to (0,0)} u_x(x_0 +\alpha_1 h, y_0 + k) = u_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_x(x_0 +\alpha_2 h, y_0 + k) = v_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} u_y(x_0, y_0 + \beta_1 k) = u_y(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_y(x_0, y_0 + \beta_2 k) = v_y(x_0, y_0). \end{align*} Por lo que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left[u_x(x_0, y_0) + i v_x(x_0, y_0) + \varepsilon_1 \right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0) + i v_y(x_0, y_0) + \varepsilon_2 \right], \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $(h,k) \to (0,0)$ o equivalentemente si $z \to z_0$.

Como se cumplen las ecuaciones de C-R, tenemos que: \begin{align*} u_x(x_0, y_0) = A = v_y(x_0, y_0),\\ u_y(x_0, y_0) = B = – v_x(x_0, y_0), \end{align*} para algunos $A$ y $B$ números reales.

Entonces: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left(A – i B\right) + \frac{k}{h+ik} \left(B + i A\right) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = \frac{A\left(h + i k\right)}{h+ik} -i \frac{B\left(h + ik\right)}{h+ik} + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = A -iB + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}, \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $z \to z_0$.

Dado que para todo $z\in\mathbb{C}$ se cumple que $|\,\operatorname{Re}(z)\,| \leq |\,z\,|$ e $|\,\operatorname{Im}(z)\,| \leq |\,z\,|$, entonces: \begin{align*} 0<|\,h\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,h\,|}{|\,h+ik\,|} \leq 1,\\ 0<|\,k\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,k\,|}{|\,h+ik\,|} \leq 1. \end{align*} Por lo que: \begin{align*} \left| \, \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} \, \right| & \leq \left|\, \frac{h \varepsilon_1}{h+ik} \,\right| + \left|\, \frac{k \varepsilon_2}{h+ik} \,\right|\\ & = \frac{\left|\, h \,\right|}{\left|\, h+ik\,\right|} \left|\,\varepsilon_1 \,\right| + \frac{\left|\, k \,\right|}{\left|\,h+ik\,\right|} \left|\,\varepsilon_2 \,\right|\\ & \leq \left|\,\varepsilon_1 \,\right| + \left|\,\varepsilon_2 \,\right|, \end{align*} tomando límites en la desigualdad anterior concluimos que: \begin{equation*} \lim_{(h,k) \to (0,0)} \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} = \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} = 0. \end{equation*} Por tanto, tenemos que: \begin{align*} \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z-z_0} & =\lim_{z \to z_0} \left( u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} \right)\\ & =\lim_{z \to z_0} u_x(x_0, y_0) + \lim_{z \to z_0} iv_x(x_0,y_0) + \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0). \end{align*}

Entonces $f$ es analítica en $z_0 =x_0+iy_0 \in U$ y su derivada está dada por (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

El resultado anterior es un primer recíproco parcial del teorema 17.1 de la entrada anterior, en el cual vimos que las ecuaciones de C-R son solo una condición necesaria, pero no suficiente, para la analicidad de una función compleja.

Observación 18.2.
Es importante recordar que los conceptos de diferenciabilidad y analicidad de una función no son intercambiables, por lo que puede suceder que una función sea diferenciable en un punto, pero no analítica en dicho punto. Considerando el resultado anterior podemos determinar a través de las ecuaciones de C-R dónde una función sí puede ser al menos diferenciable.

Ejemplo 18.1.
Sea $z=x+iy \in \mathbb{C}$. Consideremos a la función $f(z)=x^2+y^2+2ixy$. Veamos que $f$ no es analítica en ningún punto, pero es diferenciable en todo el eje real. Más aún, veamos que en dicho conjunto de puntos se tiene que $f'(z) = 2x$.

Solución. Considerando a la función $f$ tenemos que: \begin{equation*} u(x,y) = x^2 + y^2 \quad \quad \text{y} \quad \quad v(x,y) = 2xy. \end{equation*} Claramente ambas funciones están definidas sobre todo $\mathbb{C}$, por lo que $f$ está definida en $\mathbb{C}$.

Tenemos que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x. \end{align*} Es claro que las derivadas parciales existen y son continuas para todo $z = x+iy \in \mathbb{C}$.

Notemos que $u_x = v_y$, pero $u_y \neq -v_x$. Sin embargo: \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad y = 0\\ & \Longleftrightarrow \quad z = \operatorname{Re}(z) = x. \end{align*}

Por lo que, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para todo $z$ en el eje real y su derivada en dicho conjunto de puntos es: \begin{equation*} f'(z) = f'(x) = \frac{\partial u}{\partial x}(x,0) + i \frac{\partial v}{\partial x}(x,0) = 2x. \end{equation*}

Dado que para todo $z_0=x_0+i0$ en el eje real y para todo $\delta>0$, existe $z_\delta=x_0 + i\frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto sobre el eje real y en general en ningún punto en $\mathbb{C}$.

Ejemplo 18.2.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z)=x^2 – y^3 + i(x-y)$. Mostremos que $f$ no es analítica en $\mathbb{C}$ y determinemos el conjunto de puntos donde es diferenciable y hallemos su derivada en dicho conjunto.

Solución. De acuerdo con la definición de $f$ tenemos que: \begin{equation*} u(x,y) = x^2 – y^3 \quad \quad \text{y} \quad \quad v(x,y) = x-y. \end{equation*}

Tanto $u$ como $v$ son funciones reales diferenciables en todo punto en $\mathbb{R}^2$ y: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -3y^2,\\ \frac{\partial v}{\partial x} = 1, \quad \frac{\partial v}{\partial y} = -1, \end{align*} las cuales existen y son continuas para todo punto en $\mathbb{R}^2$.

Es claro que $u_x \neq v_y$ y $u_y \neq -v_x$. Procedemos a determinar en qué puntos de $\mathbb{C}$ se satisfacen las igualdades: \begin{align*} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad & \Longleftrightarrow \quad 2x = -1\\ & \Longleftrightarrow \quad x = -\frac{1}{2}. \end{align*} \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad -3y^2 = -1\\ & \Longleftrightarrow \quad y = \pm \frac{1}{\sqrt{3}}. \end{align*}

Sea $S = \left\{-\frac{1}{2}+i\frac{\sqrt{3}}{3}, -\frac{1}{2}-i\frac{\sqrt{3}}{3} \right\}$.

Entonces, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para $z_0 \in S$ y su derivada en dicho conjunto de puntos es: \begin{align*} f’\left(z_0\right) & = \frac{\partial u}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right) + i \frac{\partial v}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right)\\ & = -1 + i. \end{align*}

Notemos que para todo $z_0\in S$ y para todo $\delta>0$, existe $z_\delta=z_0 + \frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto en $S$ y en general en ningún punto en $\mathbb{C}$.

Considerando la proposición 18.1 y la observación 18.1, planteamos el siguiente resultado en el cual establecemos cuales son las condiciones necesarias y suficientes que deben satisfacer las funciones reales $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, para garantizar la analicidad de dicha función en un conjunto abierto $U\subset\mathbb{C}$.

Teorema 18.2.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$ si y solo si las funciones reales de dos variables $u$ y $v$ son diferenciables en $U$ y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3.} \end{equation*}

Demostración. Sea $f(z) = u(x,y) + iv(x,y)$ una función compleja definida sobre un conjunto abierto $U\subset \mathbb{C}$ y sea $z = x+iy\in U$.

$\Rightarrow)$
Supongamos que $f$ es analítica en $U$ y sea $z_0 = x_0 +i y_0 \in U$ fijo. De acuerdo con la proposición 18.1, como la función $f$ es analítica en $z_0 \in U$, entonces puede escribirse como en (18.2), es decir de la forma: \begin{equation*} f(z) – f(z_0) = c(z-z_0) + \varepsilon(z)(z-z_0), \end{equation*} donde $c = f'(z_0) \in \mathbb{C}$ es constante y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$.

Sea $c = f'(z_0) = A+iB\in\mathbb{C}$ para algunos $A$ y $B$ números reales. Entonces podemos reescribir esta última igualdad como: \begin{equation*} u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right] = (A+iB)\left[(x-x_0) + i(y-y_0)\right] + \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]. \end{equation*} Separando en la parte real e imaginaria de la igualdad anterior obtenemos: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right),\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right). \end{align*} Tenemos que: \begin{align*} \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) & = \bigg(\operatorname{Re}\bigg[ \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \bigg]\bigg) \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}\\ & = \bigg(\operatorname{Re}\bigg[\frac{\varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \bigg]\bigg) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & =:\varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} y de manera análoga obtenemos que: \begin{equation*} \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) =: \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \end{equation*} Por tanto: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \tag{18.4} \end{align*} Notemos que: \begin{equation*} |\, \varepsilon_1(x,y)\,| \leq |\, \varepsilon(z)\,| \quad \text{y} \quad |\, \varepsilon_2(x,y)\,| \leq |\, \varepsilon(z)\,|. \end{equation*} Dado que $\lim\limits_{z \to z_0} \varepsilon(z) = 0$, entonces tomando límites en estas dos desigualdades concluimos que: \begin{equation*} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_1(x,y) = 0 \quad \text{y} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_2(x,y) = 0. \tag{18.5} \end{equation*} Por lo tanto, considerando (18.4) y (18.5), se sigue de la observación 18.1 que $u$ y $v$ son funciones diferenciables en $(x_0,y_0)\in U$ y se cumple que: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0), \end{align*} es decir que se satisfacen las ecuaciones de C-R en $z_0 = x_0 + iy_0 \in U$. Dado que dicho punto era arbitrario entonces el resultado es válido para todo punto en $U$.

$(\Leftarrow$
Supongamos ahora que las funciones reales de dos variables $u$ y $v$ son diferenciables en un punto $(x_0, y_0) \in U$ y satisfacen las ecuaciones de C-R en dicho punto, entonces: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0) \end{align*} para algunos $A$ y $B$ números reales.

Por la observación 18.1 y considerando las igualdades anteriores tenemos que $u$ y $v$ se pueden escribir de la forma: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} donde $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$.

Considerando a la función $f(z) = u(x,y) + iv(x,y)$, tenemos que: \begin{align*} f(z) – f(z_0) & = u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right]\\ & = u(x,y) – u(x_0,y_0) + i\left[ v(x,y) – v(x_0,y_0)\right]\\ & = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & \quad \quad + i \left[ B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\right]\\ & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \sqrt{(x-x_0)^2 + (y-y_0)^2} \left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right]. \end{align*} Tomando: \begin{equation*} \varepsilon(x+iy) : = \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{(x-x_0) +i (y-y_0)}\left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right], \end{equation*} entonces: \begin{align*} f(z) – f(z_0) & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \varepsilon(x+iy) \left[(x-x_0) +i (y-y_0)\right]\\ & = (A+iB)\left(z – z_0\right) + \varepsilon(z) \left( z- z_0\right). \tag{18.6} \end{align*} Claramente: \begin{equation*} |\, \varepsilon(z)\,| \leq |\, \varepsilon_1(x,y)\,| + |\, \varepsilon_2(x,y)\,|. \end{equation*} Como $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$, entonces tomando límites en esta última desigualdad concluimos que: \begin{equation*} \lim\limits_{z \to z_0} \varepsilon(z) = 0. \tag{18.7} \end{equation*} Por lo tanto, considerando (18.6) y (18.7), se sigue de la proposición 18.1 que $f$ es analítica en $z_0 \in U$.

Más aún, tenemos que: \begin{equation*} f'(z_0) = A+iB = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0) = \frac{\partial v}{ \partial y}(x_0,y_0) – i \frac{\partial u}{ \partial y}(x_0,y_0), \end{equation*} por lo que se cumple (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

Observación 18.3.
Recordemos que hemos construido a $\mathbb{C}$ a través de $\mathbb{R}^2$, por lo que si pensamos a una función compleja $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ podemos preguntarnos acerca de la relación entre la diferenciabilidad compleja y la diferenciabilidad real de $f$.

Definición 18.2. (Diferenciabilidad de una función vectorial de dos variables.)
Sean $U\subset\mathbb{R}^2$ un conjunto abierto, $z_0 =(x_0,y_0) \in U$ y $f: U\to\mathbb{R}^2$ una función. Decimos que $f$ es diferenciable en $z_0$ (en el sentido real) si y solo si existe una transformación lineal $D_{f(z_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ tal que: \begin{equation*}\lim_{z \to z_0}\frac{\|f(z)-f(z_0)-D_{f(z_0)}\left(z-z_0\right)\|}{\left\| z-z_0 \right\|} = 0, \tag{18.8} \end{equation*} donde $\|\cdot\|$ denota la norma usual en $\mathbb{R}^2$.

Por nuestros cursos de Cálculo sabemos que si una función vectorial de dos variables $f:U\to\mathbb{R}^2$, dada por $f(x,y) = (f_1(x,y),f_2(x,y))$, es diferenciable en un punto $z_0\in U\subset\mathbb{R}^2$, es decir existe el límite (18.8), entonces existen todas las derivadas parciales (de primer orden) en el punto $z_0$, de las funciones componentes de $f$ y al considerar la base canónica de $\mathbb{R}^2$, la matriz de $2\times2$ que representa a la transformación lineal $D_{f(z_0)}$ está formada por dichas derivadas parciales y recibe el nombre de la matriz Jacobiana, es decir: \begin{equation*} J_{f}(z_0) = \left(\begin{matrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0)\\ \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{matrix} \right). \tag{18.9} \end{equation*} Más aún, se prueba que $f$ es diferenciable en $U$ si y solo si $f_i: U \to \mathbb{R}$, con $i=1,2$, son funciones diferenciables en $U$.

De acuerdo con lo anterior podemos hacer algunas observaciones importantes. Notemos que la norma usal en $\mathbb{R}^2$ coincide con el módulo complejo en $\mathbb{C}$. Además, para una función compleja $f(z) = u(x,y) + iv(x,y)$, al considerarla como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, se tiene que las funciones componentes de $f$ son: \begin{equation*} f_1(x,y) = u(x,y), \quad f_2(x,y) = v(x,y). \tag{18.10} \end{equation*}

Considerando a un número complejo $\lambda = a+ib$ fijo y $z=x+iy\in\mathbb{C}$, tenemos que su producto es: \begin{equation*} \lambda z = (a+ib)(x+iy) = (ax -by) + i(ay + bx). \end{equation*}

Por lo que, a través del producto de dos números complejos es posible definir una trasnformación lineal de $\mathbb{R}^2$ a $\mathbb{R}^2$, como sigue. Sean $\lambda=(a,b)\in\mathbb{R}^2$ constante y $z=(x,y)\in\mathbb{R}^2$, entonces: \begin{equation*} M_{\lambda} : \mathbb{R}^2 \to \mathbb{R}^2, \quad M_{\lambda}(z) = \begin{pmatrix} ax-by\\ ay+bx \end{pmatrix} = \begin{pmatrix} a & -b\\ b & a \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}, \tag{18.11} \end{equation*} de donde es claro que la matriz $A = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}$ representa, en la base canónica de $\mathbb{R}^2$, a la transformación $M_\lambda$ correspondiente con la multiplicación de dos números complejos.

Procedamos ahora a analizar la definición de diferenciabilidad compleja dada en la entrada 16. De acuerdo con la definición 16.1, sabemos que para $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función, decimos que $f$ es diferenciable en $z_0\in U$ si existe el límite: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0}, \end{equation*} lo cual es equivalente a que exista un número complejo $\lambda = a+ib\in\mathbb{C}$ tal que: \begin{align*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0} = \lambda \quad & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{f(z) – f(z_0) – \lambda(z-z_0)}{z-z_0} = 0\\ & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|} = 0, \tag{18.12} \end{align*} en cuyo caso $\lambda = f'(z_0)$.

De acuerdo con todo lo anterior, tenemos que la existencia de los límites dados en (18.8) y (18.12), así como el cumplimiento de las ecuaciones de C-R, nos deja ver que hay una estrecha relación entre las definiciones de diferenciabilidad real, para una función vectorial de dos variables, y de diferenciabilidad compleja.

Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ y consideremos que $z=x+iy=(x,y)\in U$.

Si $f$ es una función analítica en $z_0\in U$, entonces existe $\lambda=a+ib\in\mathbb{C}$ tal que se cumple (18.12). Notemos que: \begin{align*} \lambda(z-z_0) &= (a+ib)\left[(x-x_0)+i(y-y_0)\right]\\ & = \left[a(x-x_0) – b(y-y_0)\right] + i \left[b(x-x_0) + a(y-y_0)\right], \end{align*} por lo que, considerando la transformación lineal dada por (18.11), tenemos que: \begin{equation*} M_\lambda(z-z_0) = \left(a(x-x_0) – b(y-y_0), b(x-x_0) + a(y-y_0)\right), \end{equation*} entonces: \begin{align*} 0 & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\\ & = \lim_{z \to z_0} \frac{\left\| f(z) – f(z_0) – M_\lambda(z-z_0) \right\|}{\left\| z-z_0 \right\|}, \end{align*} por lo que $f$ es diferenciable, en el sentido real como función de $\mathbb{R}^2$ a $\mathbb{R}^2$. Más aún, la matriz $A$ que representa a la transformación lineal $M_\lambda$, en la base canónica de $\mathbb{R}^2$, debe ser igual a la matriz Jacobiana de $f$ en $z_0$, entonces considerando (18.10) tenemos que: \begin{equation*} \begin{pmatrix} a & -b\\ b & a \end{pmatrix} = \left(\begin{matrix} u_x(z_0) & u_y(z_0)\\ \\ v_x(z_0) & v_y(z_0) \end{matrix} \right), \end{equation*} de donde se siguen las ecuaciones de C-R y se cumple que $\lambda = f'(z_0) = u_x(z_0) + iv_x(z_0) = v_y(z_0) – i u_x(z_0)$.

Si suponemos ahora que $f$, como función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es diferenciable en el sentido real y que se satisfacen las ecuaciones de C-R, entonces tenemos que se cumple (18.8).

Considerando a la matriz Jacobiana que representa a la transformación lineal $D_{f(z_0)}$, dada en (18.8), como se cumplen las ecuaciones de C-R, tenemos que dicha matriz es de la forma: \begin{equation*} \left(\begin{matrix} u_x(z_0) & -u_y(z_0)\\ \\ u_y(z_0) & u_x(z_0) \end{matrix} \right) = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}, \end{equation*} para algunos $a,b\in\mathbb{R}$.

Dado que la transformación lineal $D_{f(z_0)}$ es única y la matriz que la representa es igual a la de la transformación dada en (18.11), entonces debe suceder que $D_{f(z_0)} = M_\lambda$, para $\lambda = a+ib\in\mathbb{C}$, es decir que se trata de la multiplicación por el número complejo $\lambda$, entonces: \begin{align*} 0 & = \lim_{z \to z_0} \frac{\| f(z) – f(z_0) – D_{f(z_0)}(z-z_0)\|}{\left\| z-z_0 \right\|}\\ & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\ \end{align*}

Con lo anterior hemos probado el siguiente resultado.

Teorema 18.3.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función compleja definida en $U$. Las siguientes condiciones son equivalentes:

  1. $f$ es diferenciable en $z_0\in U$, en el sentido complejo.
  2. $f$ es diferenciable en $z_0=(x_0,y_0) \in U$, en el sentido real, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, y se satisfacen las ecuaciones de C-R en $z_0$.

$\blacksquare$

Ejemplo 18.3
Sea $z=x+iy\in\mathbb{C}$y sea $f:\mathbb{C} \to \mathbb{C}$ una función compleja dada por $f(z)=x^2-y^2+i2xy$. Veamos que $f$ es analítica en $\mathbb{C}$.

Solución. Si consideramos a $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ tenemos que $f(x,y) = (x^2 – y^2, 2xy)$, de donde se sigue que sus funciones componentes son: \begin{equation*} f_1(x,y)=u(x,y) = x^2-y^2, \quad f_2(x,y)=v(x,y) = 2xy. \end{equation*}

Dado que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x, \end{align*} existen y son continuas para todo $z=(x,y)\in\mathbb{R}^2$, entonces $f$ es una función diferenciable, en el sentido real, en $\mathbb{R}^2$.

Es claro que $u_x = v_y$ y $u_y = – v_x$ para todo $z=(x,y)\in\mathbb{R}^2$, por lo que de acuerdo con el teorema 18.3, concluimos que $f$ es diferenciable en todo $\mathbb{C}$ y por tanto analítica en todo punto.

Por último, tenemos que la matriz Jacobiana de dicha función compleja es: \begin{equation*} J_f = \begin{pmatrix} u_x & u_y\\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x\\ v_x & u_x \end{pmatrix} = \begin{pmatrix} 2x & -2y\\ 2y & 2x \end{pmatrix}, \end{equation*} para todo $z=x+iy\in\mathbb{C}$.

Entonces, para $z_0=x_0+iy_0\in\mathbb{C}$ se tiene que: \begin{equation*} f'(z_0) = u_x(x_0,y_0) + i v_x(x_0,y_0) = 2x_0 + i2y_0 = 2z_0, \end{equation*} lo cual era de esperarse ya que $f(z) = z^2 = x^2 – y^2 + i2xy$.

Observación 18.4.
Es importante notar que el resultado anterior es solo una reformulación del teorema 18.3, desde que la diferenciabilidad, en el sentido real, de una función $f:U\subset\mathbb{R}^2 \to \mathbb{R}^2$ es equivalente a la diferenciabilidad de sus funciones componentes. Sin embargo, la importancia de este resultado radica en que ahora que conocemos la matriz Jacobiana de una función analítica, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es claro, por el ejercicio 3 de la entrada 12, que dicha matriz corresponde con la derivada compleja de una función analítica en cualquier punto. Además veremos que a través de esta representación matricial de la derivada es posible establecer algunos resultados de las funciones analíticas que veremos en la siguiente entrada.

Por otra parte, estos últimos resultados nos dejan ver que la diferenciabilidad compleja es más fuerte que la diferenciabilidad real, lo cual resulta sorprendente, pues a diferencia de algunos conceptos como el límite y la continuidad para los cuales vimos que podemos caracterizarlos a través de dos funciones reales, correspondientes con la parte real e imaginaria de la función, en el caso de la diferenciabilidad es claro que no bastará la diferenciabilidad en el sentido real de dichas funciones o de la diferenciabilidad en el sentido real de la función vectorial conformada por dichas funciones reales. Esto resulta de suma importancia pues nos permite diferenciar a las funciones complejas de las funciones vectoriales de dos variables, desde que la diferenciabilidad de las primeras implica la diferenciabilidad de las segundas, pero el recíproco no es cierto ya que se deben cumplir también las ecuaciones de C-R, que como probamos antes resultan ser una condición necesaria para la diferenciabilidad compleja y por ende para la analicidad de una función compleja.

Para convencernos de esto último, basta con considerar a la función $f(z)=\overline{z} = x-iy$. Es claro que está función no es diferenciable en el sentido complejo desde que las ecuaciones de C-R no se satisfacen en ningún punto en $\mathbb{C}$ y por tanto tampoco es analítica. Sin embargo, si la consideramos como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ es claro que dicha función sí es diferenciable en el sentido real.

Tanto el teorema 18.1 como el teorema 18.2 nos dejan ver que además de las ecuaciones de C-R, es necesario imponer una serie de hipótesis extras sobre las funciones reales $u$ y $v$, que caracterizan a una función compleja $f(z)=u(x,y)+iv(x,y)$, para garantizar la analicidad de dicha función. Cerraremos esta entrada con un notable resultado que nos muestra que la condición de continuidad de las derivadas parciales en el teorema 18.1 resulta superfluo. No daremos una prueba de este, pero puede consultarse en algún texto como \textit{Complex Analysis in One Variable} de Raghavan Narasimhan, Yves Nievergelt.

Teorema 18.4. (Teorema de Looman-Menchoff.)
Sean $U\subset$ un conjunto abierto y $f(z)=u(x,y) = iv(x,y)$ una función definida en $U$. Si las funciones reales $u$ y $v$ son continuas en $U$ (es decir que $f$ es continua en $U$), las cuatro derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ existen en $U$ y se satisfacen las ecuaciones de C-R en $U$, entonces $f$ es analítica en $U$.

Tarea moral

  1. Muestra que las siguientes funciones son diferenciables solo en los conjuntos dados y determina su derivada.
    a) $f(z) = x – iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Im}(z) = -1/2\}$.
    b) $f(z) = x^2 + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z)\}$.
    c) $f(z) = yx + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z) = 0 \}$.
    d) $f(z) = x^3+i(1-y)^3$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = 0 \,\, \text{y} \,\, \operatorname{Im}(z) = 1\}$.
  2. Para cada una de las siguientes funciones complejas determina el conjunto donde $f$ es diferenciable y donde $f$ es analítica. Donde exista, determina su derivada.
    a) $f(z) = (x^3 + 3xy^2 – 3x) + i(y^3 + 3x^2y – 3y)$.
    b) $f(z) = 6\overline{z}^2 – 2\overline{z} – 4i|\,z\,|^2$.
    c) $f(z) = (3x^2 + 2x – 3y^2 -1) + i(6xy + 2y)$.
    d) $f(z) = \dfrac{2z^2 + 6}{z(z^2 + 4)}$.
  3. Determina el mayor conjunto abierto en el cual las siguientes funciones son analíticas.
    a) $f(z) = 4x^2+5x-4y^2+9+i(8xy+5y-1)$.
    b) $f(z) = 5r\operatorname{cos}(\theta) + r^4\operatorname{cos}(4 \theta) + i(5r\operatorname{sen}(\theta) + r^4 \operatorname{sen}(4 \theta))$.
    c) $f(z) = \dfrac{x^3+xy^2+x}{x^2+y^2} + i \dfrac{y^3+x^2y-y}{x^2+y^2}$.
    d) $f(z) = \dfrac{\operatorname{cos}(\theta)}{r} – i \dfrac{\operatorname{sen}(\theta)}{r}$.
    e) $f(z) = \dfrac{x-1}{(x-1)^2+y^2} – i \dfrac{y}{(x-1)^2+y^2}$.
  4. ¿Cuál debe ser el valor de las constantes reales $a,b,c$ y $d$ para que las siguientes funciones sean analíticas?
    a) $f(z) = 3x-y+5+i(ax+by-3)$.
    b) $f(z) = x^2 + axy+by^2+i(cx^2+dxy+y^2)$.
  5. Supón que $f$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que el determinante de su matriz Jacobiana es igual a $|f'(z)|^2$ para todo $z\in U$.
  6. Sean $f(z) = z^3$, $z_1 = 1$ y $z_2 = i$. Prueba que no existe un punto $z_0$ en el segmento de recta que une a $z_1$ y $z_2$, es decir $[z_1,z_2]$, tal que: \begin{equation*} f(z_2) – f(z_1) = f'(z_0) (z_2 – z_1). \end{equation*} Concluye que el teorema del valor medio para funciones reales no se extiende para funciones complejas.
  7. Sea $f$ una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que la función $g(z)=\overline{f(\overline{z})}$ es analítica en el conjunto $U^*=\{\overline{z} : z\in U\}$.

Más adelante…

En esta entrada vimos bajo que condiciones es posible garantizar la analicidad de una función compleja $f(z)=u(x,y) + i v(x,y)$ sobre un conjunto abierto $U\subset\mathbb{C}$. Para ello recurrimos nuevamente a analizar las funciones reales $u$ y $v$, concluyendo que, además de las ecuaciones de C-R, es necesario imponer algunas condiciones extras sobre dichas funciones.

El objetivo de esta entrada fue dar algunos recíprocos parciales para el Teorema 17.1 de la entrada anterior. Es interesante notar que es posible relajar algunas condiciones sobre las funciones $u$ y $v$ para garantizar la analicidad de una función compleja, como es el caso del teorema de Looman-Menchoff.

La siguiente entrada abordaremos algunos resultados interesantes que son consecuencia directa de las ecuaciones de Cauchy-Riemann y que nos permitirán caracterizar aún más a las funciones complejas a través de su parte real e imaginaria, extendiendo algunos resultados obtenidos en nuestros cursos de Cálculo.

Entradas relacionadas

Variable Compleja I: Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja.

Por Pedro Rivera Herrera

Introducción

Hasta ahora hemos visto que toda función compleja $f(z)$ diferenciable es continua, más aún sabemos que toda función compleja continua es de la forma: \begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} donde $u(x,y)$ y $v(x,y)$ son funciones reales continuas de variables $x,y$, por lo que resulta natural preguntarnos acerca de qué condiciones deben cumplir dichas funciones para que una función compleja $f(z)$ sea analítica. La respuesta a esta pregunta esta dada por las ecuaciones de Cauchy-Riemann, a las cuales nos referiremos simplemente como las ecuaciones de C-R. Dichas ecuaciones aparecieron por primera vez en 1821 en los primeros trabajos del matemático fránces Augustin Louis Cauchy sobre integrales de funciones complejas. Su relación con la existencia de la derivada compleja apareció hasta 1851 en la tesis doctoral del matemático alemán Bernhard Riemann.

Como veremos a lo largo de las siguientes entradas, las ecuaciones de C-R resultan ser un pilar en la teoría de las funciones complejas, por lo que nuestro objetivo será deducirlas y obtener una serie de resultados que nos permitan caracterizar a las funciones analíticas mediante dichas ecuaciones.

Recordemos las siguientes definiciones vistas en nuestros cursos de cálculo.

Definición 17.1. (Derivada parcial.)
Supongamos que $u: \mathbb{R}^2 \to \mathbb{R}$ es una función real de variables reales, $x,y$, definida en un conjunto abierto no vacío $U\subset \mathbb{R}^2$. Si consideramos a la variable $y$ como constante, entonces podemos pensar a $u$ como una función únicamente de $x$ y derivar con respecto a $x$. Entonces: \begin{equation*} \frac{\partial u }{\partial x}(x,y) = \lim_{h \to 0} \frac{u(x+h, y) – u(x,y)}{h}. \end{equation*}

En caso de existir dicho límite lo llamaremos la derivada parcial de $u$ con respecto a $x$ y es denotada como $\frac{\partial u }{\partial x}$ o $u_x$. Dicha derivada resulta ser una función evaluada en el punto $(x,y)$, lo cual se suele omitir por simplicidad en la notación.

Análogamente, fijando a $x$ y considerando a $u(x,y)$ como una función de $y$, tenemos al derivar con respecto a $y$ la derivada parcial de $u$ con respecto a $y$, es decir: \begin{equation*} \frac{\partial u }{\partial y}(x,y) = \lim_{h \to 0} \frac{u(x, y+h) – u(x,y)}{h}. \end{equation*}

Definición 17.2. (Funciones clase $C^k$.)
Si $U\subset\mathbb{R}^2$ es un conjunto abierto y $u:U\to\mathbb{R}$ es una función, entonces $u$ es llamada de clase $C^1$ o continuamente diferenciable en $U$ si $\partial u/\partial x$ y $\partial u/\partial y$ existen y son continuas en $U$. Lo anterior se denota de forma abreviada como $u\in C^1(U)$.

De forma general si $k\in\mathbb{N}$, entonces una función real $u$ definida en $U\subset\mathbb{R}^2$, es llamada de clase $C^k$ o $k$-{\bf veces continuamente diferenciable} si todas las derivadas parciales hasta el orden $k$ existen y son continuas en $U$. En dicho caso escribimos $u\in C^k(U)$. En particular, diremos que una función $u$ es clase $C^0$ si simplemente es una función continua.

Entonces, para $U\subset \mathbb{C}$ abierto, una función $f(z) = u(x,y) + i v(x,y)$ definida en $U$, es llamada de clase $C^k$ si $u$ y $v$ son de clase $C^k$.

Observación 17.1.
A partir de ahora usaremos la notación $U$ para denotar conjuntos abiertos en $\mathbb{C}$ y $D$ para denotar dominios o regiones en $\mathbb{C}$, estos conceptos se abordaron en la Unidad 1: Introducción y preliminares.

De acuerdo con la observación 16.2 sabemos que si una función $f:U\to\mathbb{C}$ es diferenciable en un punto $z_0\in U$, entonces el límite: \begin{equation*} f'(z_0) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} = \lim_{h \to 0} \dfrac{f(z_0 + h) – f(z_0)}{h}, \end{equation*} existe y es único sin importar como $h$ se aproxime a $0$ en el plano complejo. Sin embargo es importante notar que al igual que en el caso de funciones reales, podemos considerar a dos direcciones privilegiadas cuando $h \to 0$, figura 63, las cuales son:

  1. a lo largo de un eje paralelo al eje real, es decir cuando $h\in \mathbb{R}$,
  2. a lo largo de un eje paralelo al eje imaginario, es decir cuando $h=ki\in\mathbb{C}$, con $k\in\mathbb{R}$, es un número complejo puro.
Figura 63: Gráfica de las dos direcciones privilegiadas por las que $z$ se aproxima a $z_0$ al calcular $f'(z_0)$.

Veamos entonces qué sucede al calcular el límite que define a $f'(z)$ si consideramos las direcciones privilegiadas descritas previamente. Supongamos que $f(z) = u(x,y) + iv(x,y)$ es una función diferenciable en un punto $z_0=x_0+iy_0\in U$, con $U \subset \mathbb{C}$ abierto.

Si $h$ es real, entonces: \begin{align*} f'(z_0) &= \lim_{h \to 0} \frac{f(z_0+h) – f(z_0)}{h}\\ & = \lim_{h \to 0} \left[ \frac{u(x_0+h,y_0) – u(x_0,y_0)}{h} + i \frac{v(x_0+h,y_0) – v(x_0,y_0)}{h}\right]\\ & = \lim_{h \to 0} \frac{u(x_0+h,y_0) – u(x_0,y_0)}{h} + i \lim_{h \to 0} \frac{v(x_0+h,y_0) – v(x_0,y_0)}{h}\\ & = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0)\\ & =: \frac{\partial f}{\partial x}(x_0,y_0) = f_x(z_0). \tag{17.1} \end{align*}

Si $h$ es un número imaginario puro, es decir $h=ik$, con $k$ real, entonces $h\to 0$ si y solo si $k\to 0$, por lo que: \begin{align*} f'(z_0) &= \lim_{h \to 0} \frac{f(z_0+h) – f(z_0)}{h}\\ & = \lim_{k \to 0} \left[ \frac{u(x_0,y_0+k) – u(x_0,y_0)}{ik} + i \frac{v(x_0,y_0+k) – v(x_0,y_0)}{ik}\right]\\ & = \frac{1}{i}\lim_{k \to 0} \frac{u(x_0,y_0+k) – u(x_0,y_0)}{k} + \lim_{k \to 0} \frac{v(x_0,y_0+k) – v(x_0,y_0)}{k}\\ & = -i \frac{\partial u}{ \partial y}(x_0,y_0) + \frac{\partial v}{ \partial y}(x_0,y_0)\\ & =: -i\frac{\partial f}{\partial y}(x_0,y_0) = -i f_y(z_0). \tag{17.2} \end{align*}

De ambos casos es claro que la existencia de las cuatro derivadas parciales: \begin{equation*} \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y} \end{equation*} en el punto $(x_0,y_0)$, está garantizada por la existencia del límite que define a la derivada compleja en el punto $z_0 = x_0 +iy_0 \in U$.

Observación 17.1.
Hemos introducido en las últimas igualdades de las ecuaciones (17.1) y (17.2) una notación usual en algunos textos para referirnos a la derivada de una función compleja en términos de las derivadas parciales de las funciones $u$ y $v$, es importante no confundirnos con dicha notación la cual se usará de manera indistinta en el curso.

Dado que $f'(z_0)$ existe sin importar la dirección en que $h$ se aproxime a $0$, entonces los dos límites dados en (17.1) y (17.2) deben ser iguales, es decir: \begin{equation*} f'(z_0) = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0) = \frac{\partial v}{ \partial y}(x_0,y_0) -i \frac{\partial u}{ \partial y}(x_0,y_0), \tag{17.3} \end{equation*} o equivalentemente: \begin{equation*} f'(z_0) = f_x(z_0) = -i f_y(z_0). \tag{17.4} \end{equation*}

Igualando las partes reales e imaginarias de estos dos números complejos tenemos que: \begin{equation*} \frac{\partial u}{ \partial x} (x_0, y_0)= \frac{\partial v}{ \partial y}(x_0, y_0), \quad \text{y} \quad \frac{\partial u}{ \partial y}(x_0, y_0) = – \frac{\partial v}{ \partial x}(x_0, y_0). \tag{17.5} \end{equation*}

Al par de ecuaciones diferenciales parciales dado en (17.5) se les conoce como las ecuaciones de Cauchy-Riemann.

Con lo anterior hemos probado el siguiente resultado.

Teorema 17.1. (Ecuaciones de Cauchy-Riemann.)
Sean $U\subset \mathbb{C}$ un conjunto abierto y $f:U\to \mathbb{C}$ una función. Si $f(z) = u(x,y) + iv(x,y)$ es analítica en un punto $z_0=x_0 +iy_0\in U$, entonces existen las derivadas parciales: \begin{equation*} \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y} \end{equation*} en $(x_0,y_0)$ y satisfacen las ecuaciones de Cauchy-Riemann (17.5) en dicho punto. En tal caso se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \end{equation*}

$\blacksquare$

Corolario 17.1.
Si $f(z)=u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$, entonces las ecuaciones de C-R se satisfacen en todo punto de $U$.

$\blacksquare$

De acuerdo con el corolario 16.1 de la entrada anterior, sabemos que todo polinomio complejo es una función entera, es decir, analítica en todo $\mathbb{C}$, por lo que de acuerdo con el corolario 17.1 se deben cumplir las ecuaciones de C-R para todo $z=x+iy\in\mathbb{C}$.

Ejemplo 17.1
Consideremos al polinomio complejo $f(z) = 2z^2 + 3z$, para $z=x+iy\in\mathbb{C}$, veamos que se satisfacen las ecuaciones de C-R en $\mathbb{C}$ y obtengamos la derivada de $f$.

Solución. Tenemos que: \begin{equation*} f(z) = 2(x^2 – y^2) + 3x + i(4xy + 3y), \end{equation*} de donde $u(x,y) = 2(x^2 – y^2) + 3x$ y $v(x,y) = 4xy + 3y$.

Entonces para todo $z=x+iy\in\mathbb{C}$ se satisfacen las ecuaciones de C-R: \begin{align*} \frac{\partial u}{\partial x} = 4x + 3 = \frac{\partial v}{\partial y},\\ \frac{\partial u}{\partial y} = -4y = – \frac{\partial v}{\partial x}. \end{align*}

Por otra parte, de acuerdo con el teorema 1 tenemos que la derivada de $f$ es: \begin{equation*} f'(z) = 4x+3 + i4y = 4(x+iy) + 3 = 4z + 3. \end{equation*}

Observación 17.3.
El teorema 17.1 establece que una condición necesaria para que una función $f(z)=u(x,y)+i v(x,y)$ sea analítica en un punto $z_0\in U \subset\mathbb{C}$ es que las ecuaciones de C-R se satisfagan en dicho punto.

La importancia del teorema 17.1 y del corolario 17.1 radica en que tenemos ahora un criterio para determinar cuando una función no es analítica por medio de las ecuaciones de C-R. Para mostrar esto consideremos los siguientes ejemplos.

Ejemplo 17.2.
De acuerdo con el ejemplo 16.3 de la entrada anterior, sabemos que las funciones $f(z) = \overline{z}$ y $g(z) = \operatorname{Re}(z)$ no son analíticas en ningún punto de $\mathbb{C}$. Utilizando la contrapuesta del corolario 17.1 procedemos a verificar nuestro resultado.

Solución. Es claro que ambas funciones están definidas en todo $\mathbb{C}$. Sea $z=x+iy\in\mathbb{C}$.

a) Para $f(z) = \overline{z} = x – iy$ tenemos que $u(x,y) = x$ y $v(x,y) = -y$, por lo que: \begin{align*} \frac{\partial u}{\partial x} = 1 \quad \text{y} \quad \frac{\partial u}{\partial y} = 0,\\ \frac{\partial v}{\partial x} = 0 \quad \text{y} \quad \frac{\partial v}{\partial y} = -1. \end{align*} Es claro que $\partial u/\partial x \neq \partial v/\partial y$ para todo $z = x+iy \in \mathbb{C}$, por lo que $f$ no es analítica en ningún punto.

b) Por otra parte, para $g(z) = \operatorname{Re}(z) = x$ tenemos que $u(x,y) = x$ y $v(x,y) = 0$, por lo que: \begin{align*} \frac{\partial u}{\partial x} = 1 \quad \text{y} \quad \frac{\partial u}{\partial y} = 0,\\ \frac{\partial v}{\partial x} = 0 \quad \text{y} \quad \frac{\partial v}{\partial y} = 0. \end{align*} Tenemos que $\partial u/\partial x \neq \partial v/\partial y$ y $\partial u/\partial y \neq -\partial v/\partial x$ para todo $z = x+iy \in \mathbb{C}$, por lo que $f$ no es analítica en ningún punto.

Ejemplo 17.3.
Sea $z=x+iy\in\mathbb{C}$. Veamos que la función compleja $f(z) = 2x^2 +y +i(y^2-x)$ no es analítica en ningún punto.

Solución. Notemos que $u(x,y) = 2x^2 + y$ y $v(x,y) = y^2 – x$, entonces: \begin{equation*} \frac{\partial u}{\partial x} = 4x \quad \text{y} \quad \frac{\partial u}{\partial y} = 1, \end{equation*} \begin{equation*} \frac{\partial v}{\partial x} = -1 \quad \text{y} \quad \frac{\partial v}{\partial y} = 2y. \end{equation*}

Es claro que $\partial u/\partial y = -\partial v/\partial x$ para todo $z=x+iy \in \mathbb{C}$, mientras que la igualdad $\partial u/\partial x = \partial v/\partial y$ se satisface solamente en la recta $y=2x$. Sin embargo, para todo punto $z=x+iy$ sobre dicha recta, no existe un disco abierto alrededor de $z$ en el cual $f$ sea diferenciable, por lo que $f$ no es analítica en ningún punto.

Es importante notar que aunque se satisfagan las ecuaciones de C-R en un punto $z_0= x_0+iy_0\in D$, esto no es suficiente para garantizar la existencia de $f'(z_0)$ en $D$, desde que existen muchas otras direcciones por las que $z$ se aproxima a $z_0$ al calcular el límite que define a $f'(z_0)$. Consideremos el siguiente ejemplo para verificar lo anterior.

Ejemplo 17.4.
Sea $z=x+iy$. Veamos que la función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{x^3(1+i) – y^3(1-i)}{x^2+y^2}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0, \end{array} \right. \end{equation*} es continua en $z=0$ y que en dicho punto se satisfacen las ecuaciones de C-R, pero $f'(0)$ no existe.

Solución. Sea $f(z)=u(z)+iv(z)$, entonces para $z\neq 0$ tenemos que: \begin{equation*} u(x,y) = \frac{x^3 – y^3}{x^2+y^2}, \quad v(x,y) = \frac{x^3 + y^3}{x^2+y^2}, \end{equation*} con $x\neq 0$ y $y\neq 0$.

Primeramente verifiquemos que $f(z)$ es continua en todo $\mathbb{C}$. Es claro que si $z\neq 0$, entonces las funciones racionales $u(x,y)$ y $v(x,y)$ están bien definidas y son continuas, por lo que en dicho caso $f(z)$ es continua. Probemos ahora que $f(z)$ es continua en $z=0$. Utilizando coordenadas polares tenemos que: \begin{equation*} u(r,\theta) = r\left(\operatorname{cos}^3(\theta) – \operatorname{sen}^3(\theta)\right), \quad v(r,\theta) = r\left(\operatorname{cos}^3(\theta) + \operatorname{sen}^3(\theta)\right). \end{equation*}

Notemos que si $z\to 0$, entonces $r \to 0$, para cualquier argumento $\theta$, por lo que: \begin{equation*} \lim_{r \to 0} u(r,\theta) = \lim_{r \to 0} v(r,\theta) = 0, \end{equation*} entonces: \begin{equation*} \lim_{z \to 0} f(z) = 0 = f(0), \end{equation*} por lo que $f(z)$ es continua en $z=0$ y por tanto es continua en todo $\mathbb{C}$.

Veamos ahora que en $z=0$ las ecuaciones de C-R se satisfacen. Si $z=0$, entonces: \begin{align*} f(0) = 0 \quad & \Longleftrightarrow \quad u(0,0) + iv(0,0) = 0\\ & \Longleftrightarrow \quad u(0,0) = v(0,0) = 0. \end{align*} Por definición tenemos que: \begin{align*} \frac{\partial u}{\partial x} (0,0) & = \lim_{h\to 0}\frac{u(h,0) – u(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} \begin{align*} \frac{\partial u}{\partial y} (0,0) & = \lim_{h\to 0}\frac{u(0,h) – u(0,0)}{h}\\ & = \lim_{h\to 0}\frac{-h – 0}{h}\\ & = -1. \end{align*} Mientras que: \begin{align*} \frac{\partial v}{\partial x} (0,0) & = \lim_{h\to 0}\frac{v(h,0) – v(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} \begin{align*} \frac{\partial v}{\partial y} (0,0) & = \lim_{h\to 0}\frac{v(0,h) – v(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} Entonces, en el origen tenemos que: \begin{equation*} \frac{\partial u}{ \partial x} = \frac{\partial v}{ \partial y}, \quad \frac{\partial v}{ \partial x} = -\frac{\partial u}{ \partial y}, \end{equation*} por lo que en $z=0$ se satisfacen las ecuaciones de C-R. Sin embargo, $f(z)$ no es diferenciable en dicho punto.

Para $z=x+iy$ tenemos que: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{z \to 0} \frac{f(z) – 0}{z}\\ & = \lim\limits_{\begin{subarray}{l} x \to 0\\ y \to 0 \end{subarray}} \frac{(x^3 – y^3) + i (x^3 + y^3)}{(x^2+y^2)(x+iy)}. \end{align*} Notemos que si $z$ se aproxima $0$ a lo largo de la recta $y=x$, entonces: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{x \to 0} \frac{2ix^3}{2x^3(1+i)}\\ & = \frac{i}{1+i}. \end{align*} Por otra parte, si $z$ se aproxima $0$ a lo largo del eje real $x$, es decir si $y=0$, entonces: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{x \to 0} \frac{x^3(1+i)}{x^3}\\ & = 1+i. \end{align*} Dado que estos límites son distintos, entonces $f'(0)$ no existe y por tanto $f(z)$ no es diferenciable en $z=0$.

De acuerdo con la proposición 16.1 de la entrada anterior, sabemos que una consencuencia de la analicidad de una función $f$ en un punto $z_0 \in U\subset\mathbb{C}$, es la continuidad de la función $f$ en dicho punto. Sin embargo, el ejemplo 17.4 muestra que el recíproco de dicha proposición no es cierto, pues la función $f(z)$ de dicho ejemplo es continua en $z_0 = 0$, pero no es analítica en dicho punto.

Observación 17.4.
De nuestros cursos de geometría sabemos que al trabajar con coordenadas polares es posible establecer una transformación biunívoca entre las coordenadas polares y las coordenadas cartesianas mediante la transformación: \begin{align*} T: (0,\infty) \times (-\pi,\pi] \to \mathbb{R}^2\setminus\{(0,0)\},\\ T(r,\theta)=(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta)). \end{align*} Por ejemplo, para el conjunto de puntos: \begin{equation*} U^* = \{(r,\theta) : 1\leq r \leq 2 \, \, \text{y} \,\, 0\leq \theta \leq \pi/2\}, \end{equation*} se tiene que $T(U^*) = U$, con: \begin{align*} U & = \{(x,y) : 1/2 \leq x \leq 1 \, \, \text{y} \,\, \sqrt{1-x^2} \leq y \leq \sqrt{3} x\}\\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \cup\{(x,y) : 1 \leq x \leq 2 \, \, \text{y} \,\, 0 \leq y \leq \sqrt{4-x^2}\}.\end{align*}

De acuerdo con la observación 12.5, al considerar a $z\in\mathbb{C}$, $z\neq 0$, en su forma polar, es posible expresar a una función compleja $f(z)$ en términos de su parte real e imaginaria, las cuales son funciones reales de las variables $r$ y $\theta$, por lo que considerando la transformación anterior, resulta sencillo verificar el siguiente resultado.

Proposición 17.1. (Forma polar de las ecuaciones de C-R.)
Sean $U\subset\mathbb{C}\setminus{0}$ un conjunto abierto y $f\in\mathcal{F}(U)$ una función. Si la función $f(z)=u(x,y) + iv(x,y)$ es analítica en $U$, entonces considerando la transformación dada por $x=r\operatorname{cos}(\theta)$, $y=r\operatorname{sen}(\theta)$, para $(r,\theta)\in U^*$ y $U^* \subset (0,\infty)\times(-\pi, \pi]$, se tiene que las ecuaciones de Cauchy-Riemann en su forma polar están dadas por: \begin{equation*} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{y} \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}, \tag{17.6} \end{equation*} las cuales existen para cada punto de $U$.

Más aún, en consecuencia con el teorema 1, se tiene que para $z_0 = r_0 \operatorname{cis}(\theta_0) \in U$, un punto donde $f$ es analítica, se cumple que: \begin{align*} f'(z_0) & = \operatorname{cis}(-\theta) \left[ \frac{\partial u}{\partial r} (r_0, \theta_0)+ i \frac{\partial v}{\partial r}(r_0, \theta_0)\right]\\ & = \left[\operatorname{cos}(\theta) – i \operatorname{sen}(\theta) \right]\left[ u_r(r_0, \theta_0)+ i v_r(r_0, \theta_0)\right]. \end{align*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 17.5.
Consideremos a la función $f(z) = \dfrac{1}{z^2}$. De acuerdo con el corolario 16.1 sabemos que dicha función es analítica en $\mathbb{C}\setminus\{0\}$, por lo que considerando a $z\neq 0$ en coordenadas polares podemos verificar que se cumplen las ecuaciones de C-R en su forma polar para todo $(r,\theta) \in (0,\infty) \times (-\pi,\pi]$ o equivalentemente, por la observación 17.4, para todo $z \in \mathbb{C}\setminus\{0\}$.

Solución.
Sea $z=r\operatorname{cis}(\theta) \neq 0$, con $r = |\,z\,|$ y $\theta = \operatorname{Arg} z$. Por la fórmula de De Moivre tenemos que: \begin{align*} f(z) = \frac{1}{z^2} & = \frac{1}{\left[r\operatorname{cis}(\theta)\right]^2}\\ & = \frac{1}{r^2\left[\operatorname{cos}(2\theta) + \operatorname{sen}(2\theta)\right]}\\ & = \frac{\operatorname{cos}(2\theta) – i \operatorname{sen}(2\theta)}{r^2}\\ & = \frac{\operatorname{cos}(2\theta)}{r^2} – i \frac{\operatorname{sen}(2\theta)}{r^2}. \end{align*} Entonces: \begin{align*} u(r,\theta) = \frac{\operatorname{cos}(2\theta)}{r^2},\\ v(r,\theta) = – \frac{\operatorname{sen}(2\theta)}{r^2}. \end{align*} Tenemos que para todo $(r,\theta)\in(0,\infty)\times (-\pi,\pi]$ se cumple que: \begin{align*} \frac{\partial u}{\partial r} = – \frac{2\operatorname{cos}(\theta)}{r^3} = \frac{1}{r} \frac{\partial v}{\partial \theta},\\ \frac{\partial v}{\partial r} = \frac{2\operatorname{sen}(\theta)}{r^3} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \end{align*} Por lo tanto, para todo $z=r\operatorname{cis}(\theta) \in \mathbb{C}\setminus\{0\}$ se satisfacen las ecuaciones de C-R.

Es claro que utilizando las reglas de derivación vistas en la entrada anterior es posible obtener la derivada de $f$ para todo $z\neq 0$, sin embargo utilizando la proposición 17.1 tenemos que: \begin{align*} f'(z) & = \operatorname{cis}(-\theta) \left[ \frac{\partial u}{\partial r}+ i \frac{\partial v}{\partial r}\right]\\ & = \left[\operatorname{cos}(\theta) – i \operatorname{sen}(\theta) \right]\left[ – \frac{2\operatorname{cos}(\theta)}{r^3} + i \frac{2\operatorname{sen}(\theta)}{r^3}\right]\\ & = – \frac{2}{r^3} \left[ \left( \operatorname{cos}^3(\theta) -3\operatorname{sen}^2(\theta) \operatorname{cos}(\theta)\right) – i \left( 3\operatorname{cos}^2(\theta) \operatorname{sen}(\theta) – \operatorname{sen}^3(\theta) \right)\right]\\ & = – \frac{2}{r^3} \left[ \operatorname{cos}(-3\theta) + i \operatorname{sen}(-3\theta)\right]\\ & = – \frac{2}{r^3 \operatorname{cis}(3\theta)}\\ & = – \frac{2}{\left( r \operatorname{cis}(\theta)\right)^3} = – \frac{2}{z^3}. \end{align*}

Tarea moral

  1. Demuestra la proposición 17.1.
    Hint: Observa que $u(x,y) = u(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta))$ y $v(x,y) = v(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta))$. Dado que la función $f$ es analítica en el abierto $U$, por el corolario 1 se satisfacen las ecuaciones de C-R en $U$, por lo que utilizando la regla de la cadena para funciones reales de dos variables se tiene que: \begin{align*} \frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}, \quad \frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta},\\ \frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r}, \quad \frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}. \tag{17.7} \end{align*}
  2. De las ecuaciones dadas en (17.7), resuelve para $u_x$, $u_y$, $v_x$ y $v_y$ y concluye que: \begin{align*} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \operatorname{cos}(\theta) – \frac{\partial u}{\partial \theta} \frac{\operatorname{sen(\theta)}}{r}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \operatorname{sen}(\theta) + \frac{\partial u}{\partial \theta}\frac{\operatorname{cos(\theta)}}{r},\\ \frac{\partial v}{\partial x} = \frac{\partial v}{\partial r} \operatorname{cos}(\theta) – \frac{\partial v}{\partial \theta} \frac{\operatorname{sen(\theta)}}{r}, \quad \frac{\partial v}{\partial y} = \frac{\partial v}{\partial r} \operatorname{sen}(\theta) + \frac{\partial v}{\partial \theta}\frac{\operatorname{cos(\theta)}}{r}. \end{align*} Suponiendo que el teorema 1 se cumple para la forma polar de las ecuaciones de C-R, utiliza las ecuaciones anteriores para verificar que las ecuaciones de C-R se verifican ahora para las funciones reales $u(x,y)$ y $v(x,y)$. Con esto se verifica que las ecuaciones dadas en (17.6) en efecto son la forma polar de las ecuaciones de C-R.
  3. Prueba que las siguientes funciónes no son analíticas en su dominio.
    a) $f(z) = |\,z\,|^2$, para $z\neq 0$.
    b) $f(z) = y + ix$, para $z=x+iy\in\mathbb{C}$.
    c) $f(z) = \overline{z}^2$ para $z=x+iy\in\mathbb{C}$.
    d) $f(z) = 4z – 6 \overline{z} + 3$ para $z=x+iy\in\mathbb{C}$.
  4. Supón que $f(z) = u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Sean $h(z) = \overline{f(z)}$ y $g(z) = v(x,y) + iu(x,y)$ dos funciones complejas definidas en el mismo conjunto $U$, entonces ¿son $h$ y $g$ funciones analíticas en $U$?
  5. Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función analítica en un $U$. Prueba que:
    a) $f'(z) = u_x(z) – i u_y(z) = v_y(z) + i v_x(z)$.
    b) $|\,f'(z)\,|^2 = u_x^2 + u_y^2 = v_x^2 + v_y^2$, para todo $z=x+iy\in U$.

Más adelante…

En esta entrada hemos deducido las ecuaciones de Cauchy-Riemann y probamos que para una función compleja $f(z) = u(x,y) + iv(x,y)$ dichas ecuaciones resultan ser un conjunto de condiciones necesarias que deben satisfacer la parte real y la parte imaginaria, $u$ y $v$ respectivamente, en un punto donde $f(z)$ es analítica. Sin embargo, vimos mediante algunos ejemplos que dichas ecuaciones no son una condición suficiente para garantizar la analicidad de una función en un conjunto abierto $U\subset\mathbb{C}$.

Lo anterior nos motiva a preguntarnos bajo qué condiciones, además de las ecuaciones de C-R, las funciones reales $u$ y $v$ nos permiten garantizar que una función compleja $f(z)$ sea analítica en $U$, lo cual responderemos en la siguiente entrada.

Entradas relacionadas

Variable Compleja I: Continuidad en $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos de manera formal el concepto de continuidad en el sentido complejo. El concepto de continuidad en el ámbito matemático se remonta hace cientos de años atrás, aunque fue hasta mediados del siglo XIX cuando matemáticos como Augustin Louis Cauchy comienzan a dar una formulación precisa de dicho concepto. Desde entonces el concepto de continuidad ha sido refinado, abstraído y generalizado para muchas de las ramas de las matemáticas, en particular en el Cálculo y el Análisis.

En el caso real, solíamos asociar la idea intuitiva de que una función real continua era aquella cuya gráfica no tenía «huecos» o «saltos». Sin embargo, como hemos mencionado antes, en el caso complejo nos será imposible visualizar la gráfica de una función compleja, por lo que resulta interesante cuestionarnos sobre cómo podríamos pensar de forma intuitiva dicho concepto en el caso complejo.

Aunque tendremos definiciones similares a las del caso real, no debemos dar por hecho que el comportamiento de las funciones complejas será necesariamente el mismo que el de las funciones reales, de hecho veremos que las funciones complejas extienden ciertas propiedades de las funciones reales de dos variables continuas, pero veremos que en general las funciones complejas se comportan distinto a las funciones vectoriales de $\mathbb{R}^2$ a $\mathbb{R}^2$, pues resultan ser más restrictivas en ciertas propiedades.

Continuidad de funciones complejas

Definición 15.1. (Continuidad de una función compleja.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es continua en un punto $z_0\in S$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $|\,z-z_0\,|<\delta$, entonces $|\,f(z)-f(z_0)\,|<\varepsilon$. Si $f$ es continua en todo punto $z_0 \in S$, entonces diremos que $f$ es continua en $S$. Si $f$ no es continua en $z_0\in S$, entonces diremos que es discontinua en $z_0$.

Ejemplo 15.1
a) Veamos que las funciones $f(z) = \operatorname{Re}(z)$ y $g(z) = \operatorname{Im}(z)$ son continuas para todo $z_0\in\mathbb{C}$.
Solución. Sea $z_0 \in \mathbb{C}$. De acuerdo con la observación 3.1 tenemos que: \begin{equation*} |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| \leq |\,z – z_0\,|,\end{equation*} \begin{equation*}|\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| \leq |\,z – z_0\,|. \end{equation*} Por lo que para todo $\varepsilon>0$ existe $\delta = \varepsilon >0$ tal que si $z\in\mathbb{C}$ y $|\,z – z_0\,| < \delta$, entonces:
\begin{equation*}|\,f(z) – f(z_0)\,| = |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| < \varepsilon, \end{equation*} \begin{equation*}|\,g(z) – g(z_0)\,| = |\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| < \varepsilon. \end{equation*} De donde se sigue el resultado.

b) Veamos que la función $h(z)=|\,z\,|$ es continua para todo $z_0 \in\mathbb{C}$.
Solución. Sean $z, z_0\in\mathbb{C}$, con $z_0$ fijo. Por la proposición 3.3 sabemos que: \begin{equation*}|\,|\,z\,| – |\,z_0\,| \,| \leq |\,z – z_0\,|. \end{equation*} Entonces, para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que si $z\in\mathbb{C}$ y $|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,h(z) – h(z_0)\,| = |\,|\,z\,| – |\,z_0\,| \,| < \varepsilon. \end{equation*} Por lo que $f$ es continua para todo $z_0\in\mathbb{C}$.

Observación 15.1.
Al igual que con el límite, podemos ver que la continuidad de una función compleja $f(z) = u(x,y) + i v(x,y)$, se puede garantizar a través de la continuidad de las funciones reales $u(x,y)$ y $v(x,y)$, correspondientes con la parte real y la parte imaginaria de $f$. Para ello recordemos la definición de continuidad para una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 15.2. (Continuidad de una función real de dos variables.)
Sean $U\subset\mathbb{R}^2$ y $u:U\to\mathbb{R}$ una función real de dos variables, digamos $x$ e $y$. Para $(x_0, y_0)\in U$ diremos que $u$ es contninua en $(x_0, y_0)$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $(x,y)\in U$ y $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, entonces: \begin{equation*} |u(x,y) – u(x_0,y_0)| < \varepsilon. \end{equation*}

Proposición 15.1.
Toda función compleja es continua si y solo si su parte real y su parte imaginaria son continuas.

Demostración. Sean $S \subset \mathbb{C}$ y $f: S \to \mathbb{C}$ una función compleja arbitraria y sea $z = x+iy \in S$.

De acuerdo con la proposición 12.1 sabemos que toda función compleja $f$ puede escribirse de la forma:\begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} donde las funciones reales $u(x,y)$ y $v(x,y)$ son su parte real y su parte imaginaria, respectivamente.

Para $z_0 = x_0 + iy_0\in S$ fijo tenemos por la observación 3.1 que: \begin{equation*} |\,u(x,y) – u(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} \begin{equation*} |\,v(x,y) – v(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} por lo que considerando las definiciones 15.1, 15.2 y las desigualdades anteriores se sigue el resultado.

$\blacksquare$

Observación 15.2.
Notemos que en la definición 15.1 se tiene implícita la condición de que:

  1. existe $f(z_0)$.

De acuerdo con la proposición 9.4 de la entrada 9, sabemos que para $z_0 \in S\subset\mathbb{C}$ pueden suceder dos casos:

  • $z_0$ es un punto aislado de $S$, es decir que $z_0 \in S \setminus S’$,
  • $z_0$ es un punto de acumulación de $S$, es decir que $z_0 \in S \cap S’$.

Debe ser claro que si $z_0$ es un punto aislado, entonces existe alguna $\delta$-vecindad de $z_0$, digamos $B(z_0,\delta)$, tal que no contiene otros puntos de $S$ aparte de $z_0$, es decir para todo $z\in S$: \begin{equation*} |\,z-z_0\,|<\delta \quad \Longrightarrow \quad z=z_0, \end{equation*} por lo que $|\,f(z) – f(z_0)\,|=0<\varepsilon$. Entonces, de acuerdo con la definición 15.1, una función compleja $f$ es siempre continua en un punto aislado.

Mientras que si $z_0 \in S\cap S’$ también debe cumplirse que:

  1. existe $\lim\limits_{z \to z_0} f(z)$,
  2. y $\lim\limits_{z \to z_0} f(z) = f(z_0)$.

Por lo que basta con que no se cumpla alguna de estas tres condiciones para que una función $f\in\mathcal{F}(S)$ sea discontinua en $z_0\in S\subset\mathbb{C}$.

Ejemplo 15.2.
Sea $c\in\mathbb{C}$ una constante y $n\in\mathbb{N}^+$. Consideremos a la función $f(z) = c z^n$. Veamos que $f$ es continua en $\mathbb{C}$.

Solución. De acuerdo con la observación 14.5 de la entrada anterior, para toda $n\in\mathbb{N}^+$ tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = c z_0^n. \end{equation*} Por otra parte, tenemos que $f(z_0) = cz_0^n$ para todo $n\in\mathbb{N}^+$, por lo que $f$ es una función continua en $\mathbb{C}$.

Ejemplo 15.3.
a) Verificar si la función $f(z) = z^2 – iz + 2$ es continua en $z_0 = 1 – i \in \mathbb{C}$.
Solución. De acuerdo con la observación 15.2 para ver si la función $f$ es continua en el punto $z_0 \in \mathbb{C}$ basta con ver que se cumplan las tres condiciones establecidas en dicha observación.

  1. Es claro que $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = (1-i)^2 – i(1-i) + 2 = 1 – 3i. \end{equation*}
  2. Considerando la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to z_0} z\right)^2 – i \left( \lim_{z \to z_0} z\right) + 2\\ & = \left(1-i\right)^2 – i \left(1-i\right) + 2\\ & = 1-3i. \end{align*}
  3. Tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = f(z_0). \end{equation*}

Por lo tanto $f$ es continua en $z_0 = 1-i \in \mathbb{C}$.

b) Consideremos a la siguiente función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} z^2 & \text{si} & z \neq i, \\ 0 & si & z = i. \end{array} \right. \end{equation*} Probar que $f$ no es continua en $z_0 = i$.
Solución. Notemos que:

  1. $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = 0. \end{equation*}
  2. De acuerdo con la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to i} z\right)^2\ & = (i)^2 = -1. \end{align*}
  3. Es claro que: \begin{equation*} \lim_{z \to z_0} f(z) = -1 \neq 0 = f(z_0). \end{equation*}

Por lo tanto, tenemos que $f$ no es continua en $z_0 = i$.

Observación 15.3.
Dado que $\mathbb{C}$ dotado con el módulo es un espacio métrico, entonces son válidas las propiedades de continuidad para espacios métricos probadas en la entrada 9, en particular establecemos la siguiente caracterización.

Proposición 15.2.
Sean $S\subset \mathbb{C}$, $z_0 \in S$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $z_0$ de acuerdo con la definición 15.1,
  2. para todo $\varepsilon>0$ existe $\delta>0$ tal que: \begin{equation*} B(z_0,\delta) \cap S \subset f^{-1}\left[ B(f(z_0),\varepsilon)\right]. \end{equation*}
  3. $\lim\limits_{n\to\infty} f(z_n) = f(z_0)$, para toda sucesión $\{z_n\}_{n\geq 1} \subset S$ que converge a $z_0$.

$\blacksquare$

Proposición 15.3.
Sean $S\subset \mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $S$ de acuerdo con la definición 15.1,
  2. si $U\subset \mathbb{C}$ es abierto en $\mathbb{C}$, entonces $f^{-1}(U)$ es también abierto en $S$,
  3. si $F\subset \mathbb{C}$ es cerrado en $\mathbb{C}$, entonces $f^{-1}(F)$ es también cerrado en $S$.

$\blacksquare$

Proposición 15.4.
Sea $H\subset \mathbb{C}$, $g\in\mathcal{F}(H)$ una función tal que $g(H) \subset S \subset\mathbb{C}$ y sea $f\in\mathcal{F}(S)$. Supongamos que $z_0$ es un punto de acumulación de $H$, que $\lim\limits_{z \to z_0} g(z) = w_0 \in S$ y que $f$ es continua en $w_0$. Entonces $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$, es decir: \begin{equation*} \lim_{z \to z_0} f(g(z)) = f\left(\lim_{z \to z_0} g(z) \right). \end{equation*}

Demostración. Dadas las hipótesis, tenemos que dado $\varepsilon>0$ existe $\eta>0$ tal que si $w\in S$ y $|\,w – w_0\,| < \eta $ entonces: \begin{equation*} |\,f(w) – f(w_0)\,| < \varepsilon. \end{equation*} Más aún, tenemos que para dicha $\eta>0$ existe un $\delta>0$ tal que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,g(z) – w_0\,| < \eta. \end{equation*} Por lo que considerando estas dos implicaciones se sigue que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,f(g(z)) – f(w_0)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$.

$\blacksquare$

Proposición 15.5.
Sean $S\subset \mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones continuas en $S$, entonces:

  1. $f \pm g$ es continua en $S$.
  2. $fg$ es continua en $S$. Si $g$ es constante, es decir si $g(z) = c\in\mathbb{C}$ para todo $z\in S$, entonces $cf$ es continua en $S$.
  3. Si $g(z) \neq 0$ para todo $z\in S$, entonces $\dfrac{f}{g}$ es continua en $S$.
  4. Si $z_0 \in S$ y $h$ es una función definida en un conjunto $U \subset f(S)$ tal que $h$ es continua en $f(z_0)$, entonces la composición $h\circ f$ es continua en $z_0$.

Demostración. Utilizando la definición 15.1 y la proposición 14.3 de la entrada anterior es fácil probar el resultado, por lo que se deja como ejercicio al lector.

$\blacksquare$

Corolario 15.1.
Los polinomios son continuos en $\mathbb{C}$. Las funciones racionales son continuas en su dominio de definición.

Demostración. Sea $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, con $z\in\mathbb{C}$, un polinomio de coeficientes complejos, es decir $c_i \in\mathbb{C}$ para toda $i\in{0,1,\ldots, n}$, con $c_n\neq 0$.

Procedemos a realizar la prueba por inducción sobre $n$. Notemos que para $n=0$ se tiene que $p(z) = c_0\neq 0$ es una función constante, entonces considerando el ejemplo 14.1(c) de la entrada anterior, tenemos que: \begin{equation*} \lim_{z\to z_0} p(z) = \lim_{z\to z_0} c_0= c_0 = p(z_0), \end{equation*} por lo que en dicho caso $p(z)$ es continuo para todo $z_0\in\mathbb{C}$.

Para $n=1$, tenemos que $p(z) = c_0 + c_1 z$, por lo que considerando la proposición 15.5(1), al ser $c_0$ y $c_1 z$ funciones continuas en $\mathbb{C}$, entonces $p(z) = c_0 + c_1 z$ es continuo para todo $z\in\mathbb{C}$. Supongamos que el polinomio $q(z) = c_0 + \sum_{i = 1}^{k}c_i z^i$, para algún $k\in\mathbb{N}$ fijo, es continuo para todo $z\in\mathbb{C}$.

Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{i = 1}^{k+1}c_i z^i\\ & = c_0 + \sum_{i = 1}^{k}c_i z^i + c_{k+1} z^{k+1}\\ & = q(z) + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción tenemos que $q(z)$ es un polinomio continuo y al ser $c_{k+1} z^{k+1}$ una función continua, entonces por la proposición 15.5(1), es claro que para $n=k+1$ el polinomio $p(z)$ es continuo para todo $z\in\mathbb{C}$, por lo que el resultado es válido para todo $n\in\mathbb{N}$.

Por otra parte, consideremos a $f(z) = \dfrac{p(z)}{q(z)}$, la cual es una función racional definida como el cociente de dos polinomios. De acuerdo con la proposición 15.5(3), considerando que todo polinomio es continuo en $\mathbb{C}$ se sigue que $f$ es continua en todo su dominio de definición, es decir en $S =\{z\in\mathbb{C} \, : \, q(z)\neq 0\}$.

$\blacksquare$

Ejemplo 15.4.
Considera la siguiente función y determina dónde es continua. \begin{equation*} f(z) = \frac{z-i}{z^2 + 1}. \end{equation*}

Solución. Tenemos que $z^2 + 1 = 0$ si y solo si $z=i$ o $z=-i$, por lo que el dominio natural de $f$ es el conjunto $S = \mathbb{C}\setminus\{i, -i\}$. De acuerdo con el corolario 15.1, dado que $f$ es una función racional entonces $f$ es continua en $S$.

Una pregunta que podemos hacernos es ¿se puede asignar un valor a la función $f$ de tal modo que sea continua en $z=i$?

Notemos que: \begin{equation*} f(z) = \frac{z-i}{z^2 + 1} = \frac{z-i}{(z-i)(z+i)}. \end{equation*} Para $z\neq i$ tenemos que: \begin{align*} \lim_{z \to i} f(z) & = \lim_{z \to i} \frac{z-i}{z^2 + 1}\\ & = \lim_{z \to i} \frac{z-i}{(z-i)(z+i)}\\ & = \lim_{z \to i} \frac{1}{z+i}\\ & = \frac{1}{2i} = -\frac{i}{2}. \end{align*} Por lo que podemos definir a la función:
\begin{equation*} g(z)= \left\{ \begin{array}{lcc} \dfrac{z-i}{z^2 + 1} & \text{si} & z \neq -i, \\ -\dfrac{i}{2} & si & z = i, \end{array} \right. \end{equation*} la cual claramente es una función continua en $z=i$, por lo que la discontinuidad de la función $f(z)$ en el punto $z=i$ pudo removerse.

Definición. 15.3. (Discontinuidad removible.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función discontinua en un punto $z_0\in S$. Se dice que $f(z)$ tiene una {\bf discontinuidad removible} en $z_0$ si existe el límite de $f(z)$ en dicho punto y la función no está definida en $z_0$ o tiene asignado un valor distinto al del límite, en tal caso la función $f(z)$ puede hacerse continua definiendo el valor de la función en $z_0$ como el valor del límite.

Si un punto $z_0 \in S$ no es una discontinuidad removible, diremos que es una discontinuidad irremovible.

Ejemplo 15.5.
Veamos que la función $f(z) = \dfrac{\operatorname{Re}(z)}{z}$ tiene una discontinuidad irremovible en $z=0$.

Solución. De acuerdo con el corolario 15.1, es claro que la función $f(z)$ no es continua en $z=0$. Veamos que el límite de la función $f(z)$ cuando $z$ tiende a $0$ no existe.

Sea $z=x+iy \neq 0$. Si nos aproximamos a $0$ a lo largo del eje real, es decir si $y=0$ y $z=x$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{x}{x}\\ & = \lim_{x\to 0 } 1\\ & = 1. \end{align*} Por otra parte, si nos aproximamos a $0$ a lo largo del eje imaginario, es decir si $x=0$ y $z=iy$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{0}{iy}\\ & = \lim_{x\to 0 } 0\\ & = 0. \end{align*} Por lo que el $\lim\limits_{z \to 0} f(z)$ no existe. Entonces la función tiene una discontinuidad irremovible en $z=0$.

Ejemplo 15.6.
Veamos que la función $f(z) =\operatorname{Arg}(z)$ tiene una discontinuidad irremovible en $z=0$. Más aún, veamos que todo $z$ en el eje real negativo es una discontinuidad irremovible.

Solución. Sabemos que para $z=0$ la función argumento principal no está definida, por lo que en $z=0$ dicha función no es continua. Veamos que dicho valor es una discontinuidad irremovible mostrando que el límite en dicho punto no existe.

Sabemos que:

  1. si $z=x>0$, entonces $\operatorname{Arg}(z) = 0$,
  2. si $z=x<0$, entonces $\operatorname{Arg}(z) = \pi$.

Por lo que:

  1. para $x>0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^+} \operatorname{Arg}(z) = 0$,
  2. mientras que para $x<0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^-} \operatorname{Arg}(z) = \pi$.

Por la unicidad del límite concluimos que no existe $\lim\limits_{z \to 0} \operatorname{Arg}(z)$, por lo que $z=0$ es una discontinuidad irremovible.

Sea $z_0\in \mathbb{C}$ tal que $z_0 = x_0 < 0$, entonces $\operatorname{Arg}(z) = \pi$. De acuerdo con la definición de la función $\operatorname{Arg}(z)$ dada en la entrada 12, es claro que para $z=x+iy\in\mathbb{C}$, se tiene que:

  1. si $x<0$ y $y\geq0$, entonces $\operatorname{Arg}(z) = \operatorname{arc\,tan}\left( \frac{y}{x} \right) + \pi$,
  2. si $x<0$ y $y <0$, entonces $\operatorname{Arg}(z) = \operatorname{arc \,tan}\left( \frac{y}{x} \right) – \pi$.

Por lo que, si nos aproximamos a $z_0$ mediante $z = z_0 + iy$ tenemos:
\begin{align*} \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^+} \operatorname{Arg}(z) = \pi,\\ \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^-} \operatorname{Arg}(z) = -\pi. \end{align*}

Entonces la función $\operatorname{Arg}(z)$ es discontinua en $z_0 = x_0<0$ y desde que no existe $ \lim\limits_{z \to z_0} \operatorname{Arg}(z)$ tenemos que $z_0$ es una discontinuidad irremovible. Por lo tanto la función $\operatorname{Arg}(z)$ es continua en $\mathbb{C} \setminus (-\infty, 0]$.

Observación 15.4.
Considerando la definición 14.2 y la proposición 14.4 de la entrada anterior, notemos que podemos extender el concepto de continuidad para funciones definidas sobre el plano complejo extendido, es decir, diremos que una función $f: \mathbb{C}_\infty \to \mathbb{C}_\infty$ es continua en $\infty$ si \begin{equation*} f(\infty) = \lim_{z\to \infty} f(z) \end{equation*} y si $f(a) = \infty$, entonces $f$ es continua en $a$ si \begin{equation*} f(a) = \infty =\lim_{z\to a} f(z). \end{equation*}

Ejemplo 15.7.
Consideremos a la siguiente función:
\begin{equation*} f(z) = \frac{z+i}{z-i}. \end{equation*} Es claro que dicha función no está definida en $z=i$. Sin embargo, dado que: \begin{equation*} f(i) = \infty = \lim_{z\to i} f(z) \end{equation*} y \begin{equation*} f(\infty) = 1 = \lim_{z\to \infty} f(z), \end{equation*} entonces definiendo: \begin{equation*} g(z)= \left\{ \begin{array}{lcc}
\dfrac{z+i}{z-i} & \text{si} & z \neq i, \\ 1 & \text{si} & z = \infty, \\ \infty & \text{si} & z = i, \end{array} \right. \end{equation*} es claro que $g$ es una función continua de $\mathbb{C}_\infty$ en $\mathbb{C}_\infty$.

De acuerdo con los resultados de la entrada 10 para funciones continuas entre espacios métricos, tenemos que son válidas las siguientes afirmaciones para funciones complejas continuas.

Proposición 15.6. (Funciones continuas sobre conjuntos conexos y compactos.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función continua en $S$.

  1. Si $S$ es un conjunto conexo, entonces $f(S)$ es también conexo.
  2. Si $S$ es un conjunto compacto, entonces $f(S)$ es también compacto.

$\blacksquare$

Cerraremos esta entrada con el siguiente concepto.

Definición 15.4. (Continuidad uniforme.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es uniformemente continua en $S$, si para todo $\varepsilon>0$ existe $\delta>0$ (que depende solo de $\varepsilon$) tal que si $z, w \in S$ y $|\,z-w\,|<\delta$ entonces $|\,f(z) – f(w)\,|<\varepsilon$.

Ejemplo 15.8.
Sea $f(z) = \overline{z}$ definida en $\mathbb{C}$. Veamos que $f$ es uniformemente continua en $\mathbb{C}$.

Solución. Para $z,w\in\mathbb{C}$ tenemos que: \begin{equation*} |\,f(z) – f(w)\,| = |\,\overline{z} – \overline{w}\,| = |\,\overline{\overline{z} – \overline{w}}\,| = |\,z-w\,| < \varepsilon, \end{equation*} por lo que tomando $\delta=\varepsilon>0$ se cumple la definición.

Observación 15.5.
De acuerdo con la definición 15.4, notamos que el concepto de continuidad uniforme es más restrictivo que el de continuidad de una función, por lo que la continuidad uniforme estará sujeta al conjunto $S$ en el que la función esté definida, para ver esto consideremos el siguiente:

Ejemplo 15.9.
a) Sea $f(z) = z^2$ definida en $S = B(0,1)$. Veamos que $f$ es uniformemente continua en $S$.

Solución. Notemos que para $z,w\in S$ se tiene que $|\,z\,|<1$ y $|\,w\,|<1$. Entonces: \begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = |\,z – w\,| |\,z + w\,|\\ & < \left( |\,z\,| + |\,w\,|\right) \delta\\ & < 2\delta <\varepsilon, \end{align*} por lo que basta con tomar $\delta = \frac{\varepsilon}{2}>0$ para que se cumpla la definición.

b) Sea $f(z) = z^2$ definida en $\mathbb{C}$. Veamos que $f$ no es uniformemente continua en $\mathbb{C}$.

Solución. Sea $\varepsilon=1$, entonces dado $\delta>0$, por la propiedad arquimediana existe $n\in\mathbb{N}^+$ tal que $n\delta >1$. Sean $z = n$ y $w=n+\frac{\delta}{2}$, entonces se tiene que $|\,z-w\,|=\frac{\delta}{2} < \delta$, pero:
\begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = n^2 + n\delta +\frac{\delta^2}{4} – n^2\\ & = n\delta +\frac{\delta^2}{4} > n\delta > 1 = \varepsilon, \end{align*} por lo que $f$ no es uniformemente continua en $\mathbb{C}$.

Proposición 15.7.
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes afirmaciones son equivalentes.

  1. $f$ es uniformemente continua en $S$,
  2. $\operatorname{Re} f$ e $\operatorname{Im} f$ son uniformemente continuas en $S$,
  3. para cualesquiera sucesiones $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, se cumple que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Dadas las hipótesis, tenemos que:
$1. \Leftrightarrow 2.$ Su prueba es análoga a la de la proposición 15.1, por lo que se deja como ejercicio al lector.

$1. \Rightarrow 3. $
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$ y supongamos que $f$ es uniformemente continua en $S$.

Sea $\varepsilon>0$, entonces existe $\delta>0$ tal que si $z,w\in S$ y $|\,z-w\,|<\delta$, entonces $|\,f(z) – f(w)\,|<\varepsilon$. Como $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces para el $\delta>0$ se tiene que existe $N\in\mathbb{N}^+$ tal que: \begin{equation*} |\,|\,z_n – w_n\,| – 0 \,| = |\,z_n – w_n\,| < \delta, \quad \forall n\geq N, \end{equation*} por lo que para toda $n\geq N$ se cumple que: \begin{equation*} |\,|\,f(z_n) – f(w_n)\,| – 0 \,| = |\,f(z_n) – f(w_n)\,| < \varepsilon, \end{equation*} es decir que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

$3. \Rightarrow 1.$
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que si $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Por reducción al absurdo, supongamos que $f$ no es uniformemente continua en $S$, entonces existe $\varepsilon>0$ tal que para todo $\delta>0$ existen $z,w\in S$ tales que $|\,z-w\,|<\delta$ y $|\,f(z) – f(w)\,|\geq \varepsilon$.

Tenemos que para todo $n\in\mathbb{N}^+$ se tiene que $z_n, w_n \in S$ y $\frac{1}{n}>0$, por lo que: \begin{equation*} |\,z_n – w_n\,|<\frac{1}{n} \quad \text{y} \quad |\,f(z_n) – f(w_n)\,|\geq \varepsilon, \end{equation*} lo cual contradice nuestra hipótesis, por lo que $f$ es uniformemente convergente.

Tarea moral

  1. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que $f$ es continua en $z_0 \in S$ si y solo si $\overline{f}$ es continua en $z_0 \in S$.
  2. Sea $S = [a,b] = \{ x\in\mathbb{R} \, : \, a\leq x \leq b\}$. Considera a $S\subset \mathbb{C}$ y sea $f: S \to \mathbb{C}$ una función compleja de variable real. Tomando $z=x+i0$ podemos escribir $f(z) = u(x) + i v(x)$. Prueba que $f$ es continua si y solo si $u$ y $v$ son continuas.
  3. Analiza la continuidad de la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z^3 – 1}{z-1} & \text{si} & |\,z\,| \neq 1, \\ 3 & \text{si} & |\,z\,| = 1, \end{array} \right. \end{equation*} en los puntos $z_0 = 1$, $z_1 = -1$, $z_2 = i$ y $z_3 = -i$.
  4. Analiza la continuidad de las siguientes funciones y determina el valor de $f(z)$ en el punto $z_0$ de tal forma que la función sea continua en dicho punto.
    a) $f(z) = \dfrac{z^3 – z_0}{z – z_0}$.
    b) $f(z) = \left(\dfrac{1}{z – z_0}\right)\left( \dfrac{1}{z} – \dfrac{1}{z_0}\right)$.
    c) $f(z) = \dfrac{\operatorname{Re}(z) \operatorname{Im}(z)}{|\,z\,|^2}$.
    d) $f(z) = \dfrac{\left(\operatorname{Re}(z)\right)^2 – \left(\operatorname{Im}(z)\right)^2}{|\,z\,|^2}$.
  5. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es continua en $z_0 \in S$, entonces $|\,f\,|$ es continua en $z_0 \in S$. ¿Es cierto el recíproco?
  6. Considera la siguiente función definida en $\mathbb{C}_\infty$: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z+1}{4z+3} & \text{si} & z \neq \frac{-3}{4}, \\ \infty & \text{si} & z = \frac{-3}{4}. \end{array} \right. \end{equation*} Analiza la continuidad de $f$ en $z = \frac{-3}{4}$.
  7. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es uniformemente continua en $S$, entonces $f$ es continua en $S$. ¿Es cierto el recíproco?
  8. Sea $f(z)=\dfrac{1}{z^2}$, prueba que:
    a) $f$ es uniformemente continua en $S = \left\{z\in\mathbb{C} : \frac{1}{2} \leq |\,z\,| \leq 1\right\}$,
    b) $f$ no es uniformemente continua en $S = \{z\in\mathbb{C} : |\,z\,| \leq 1\}$.

Más adelante…

En esta entrada hemos abordado de manera formal el concepto de continuidad y continuidad uniforme para funciones complejas. Caracterizamos la continuidad (y la continuidad uniforme) de las funciones complejas a través de la continuidad (y la continuidad uniforme) de su parte real e imaginaria, en particular vimos que toda función compleja continua es de la forma $f(z) = u(x,y) + i v(x,y)$.

Aunque las definiciones que hemos dado en esta entrada son muy similares a las de las funciones reales, veremos en la siguiente entrada que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones, el cual es el caso de la diferenciabilidad compleja.

La siguiente entrada abordaremos la diferenciabilidad en el sentido complejo y veremos que la diferenciabilidad para $\mathbb{R}^2$, que hemos estudiado en nuestros cursos de Cálculo, no bastará para garantizar la diferenciabilidad en el sentido complejo.

Entradas relacionadas

Variable Compleja I: Límites en $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

A lo largo de nuestros cursos de Cálculo hemos trabajado el concepto de límite a detalle, pues como sabemos conceptos esenciales en la teoría de las funciones reales como el de continuidad y derivada, además de muchos otros, tienen sustento y se definen precisamente a través del límite. Intuitivamente sabemos que el límite de una función real, cuando existe, digamos $\lim\limits_{x\to x_0} f(x) = L$, nos dice que los valores de la función $f$ estarán tan cercanos al número real $L$ siempre que $x$ esté próximo a $x_0$, pero sin llegar a ser igual a dicho valor.

En esta entrada veremos que al igual que en el caso real, el concepto de límite para funciones complejas nos permitirá hablar de la continuidad y la diferenciabilidad de una función compleja. Aunque el concepto de límite para funciones complejas será idéntico a nuestra idea de proximidad en el caso real, veremos que el caso complejo es mucho más rico ya que aquí consideraremos más de dos posibles direcciones en que un número complejo se aproxime a otro.

Límite complejo

Recordemos que para $S\subset\mathbb{C}$, el conjunto $S’$ denota al conjunto de los puntos de acumulación de $S$.

Definición 14.1. (Límite de una función compleja.)
Sea $S \subset \mathbb{C}$ y sea $z_0 \in S’$. Dada $f\in\mathcal{F}(S)$, diremos que el número complejo $L\in\mathbb{C}$ es el límite de $f(z)$ cuando z tiende a $z_0$, lo cual denotamos como $\lim\limits_{z\to z_0} f(z) = L$, si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z – z_0\,|<\delta$ entonces $|\,f(z) – L\,|<\varepsilon$.

Observación 14.1.
En caso de existir el límite, este es único. Supongamos que $\lim\limits_{z \to z_0} f(z) = L_1$ y $\lim\limits_{z \to z_0} f(z) = L_2$. Por la definición 14.1 tenemos que dado $\varepsilon>0$ existen $\delta_1>0$ y $\delta_2>0$ tales que si $z\in S$ y $0<|\,z – z_0\,|<\delta_1$, $0<|\,z – z_0\,|<\delta_2$, entonces $|\,f(z) – L_1\,|<\frac{\varepsilon}{2}$ y $|\,f(z) – L_2\,|<\frac{\varepsilon}{2}$. Como $z_0 \in S’$, entonces para $\delta = \text{mín}\{\delta_1, \delta_2\} > 0$ existe $z^* \in S$ tal que $0<|\,z^* – z_0\,| < \delta$, por lo que: \begin{equation*} |\,L_1 – L_2\,| \leq |\,f(z^*) – L_1\,| + |\,f(z^*) – L_2\,| < \varepsilon. \end{equation*} Como se cumple para todo $\varepsilon>0$, entonces $L_1 = L_2$.

Observación 14.2.
Primeramente, notemos que la existencia del límite $L$ no depende de que la función $f$ esté definida en el punto $z_0$. Por otra parte, de acuerdo con la observación 14.1 tenemos que para garantizar la existencia de $\lim\limits_{z \to z_0} f(z)$, debe suceder que la función $f$ evaluada en $z$ se aproxime siempre al mismo número complejo $L$, esto sin importar la forma en que $z$ se aproxime a $z_0$, figura 60. Es decir, si $f$ se aproxima a dos números complejos distintos, digamos $L_1$ y $L_2$, cuando $z$ se aproxima a $z_0$ siguiendo dos trayectorias distintas, entonces $\lim\limits_{z \to z_0} f(z)$ no existe.

Figura 60: Gráfica de los planos $z$ y $w$ donde se representan dos posibles formas en que $f(z)$ se aproxima a $L$ conforme $z$ se aproxima a $z_0$. La existencia del límite no depende de la forma en que $z$ se aproxime a $z_0$.

Ejemplo 14.1.
a) Consideremos la siguiente función: \begin{equation*} f(z)= \dfrac{z^2 + 4}{z-2i}. \end{equation*} Es claro que el dominio natural de $f$ es $S = \mathbb{C} \setminus\{2i\}$. Sin embargo, veamos que $\lim\limits_{z \to 2i} f(z) = 4i$.

Solución. Sea $z \in S$. Notemos que: \begin{equation*} \dfrac{z^2 + 4}{z-2i} \,-\, 4i = \dfrac{(z+2i)(z-2i)}{z-2i} \,- \, 4i = z – 2i, \end{equation*} por lo que:

\begin{equation*}|\,f(z) – 4i\,| = |\,z – 2i\,|. \end{equation*} Entonces para $\varepsilon>0$ definimos $\delta = \varepsilon$, entonces $|\,f(z) – 4i\,|<\varepsilon$ si $0<|\,z – 2i\,|<\delta$, es decir $\lim\limits_{z \to 2i} f(z) = 4i$.

b) Consideremos a la función $f(z) = \overline{z}^2 – 2$. Es claro que la función $f$ está definida en todo $\mathbb{C}$. Veamos que $\lim\limits_{z\to 1-i} f(z) = -2 + 2i$.

Solución. Sean $z\in\mathbb{C}$ y $\varepsilon>0$. Notemos que: \begin{align*}|\,\overline{z}^2 – 2 -(-2+2i)\,| & = |\,\overline{z}^2 – 2i\,| = |\,\overline{\overline{z}^2 – 2i}\,| = |\,z^2 + 2i\,|\\ & = |\,z-(1-i)\,| \, |\,z+(1-i)\,|\\
&\leq |\,z-(1-i)\,| \, \bigg( |\,z-(1-i)\,| + 2|\,1-i\,| \bigg). \end{align*} Haciendo $0<|\,z-(1-i)\,|<1$ tenemos que: \begin{align*} |\,\overline{z}^2 – 2 -(-2+2i)\,| &\leq |\,z-(1-i)\,| \, \bigg( 1 + 2\sqrt{2} \bigg) \end{align*} Por lo que tomando $\delta= \text{mín}\left\{1, \dfrac{\varepsilon}{1+2\sqrt{2}}\right\}>0$, se sigue que si $0<|\,z-(1-i)\,|<\delta$ entonces: \begin{equation*} |\,f(z) – (-2+i)\,| = |\,\overline{z}^2 – 2 -(-2+2i)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim\limits_{z\to 1-i} f(z) = -2 + 2i$.

c) Sea $c\in\mathbb{C}$ una constante. Consideremos a las funciones $f(z) = c$, $g(z)=z$ y $h(z)=\overline{z}$. Es claro que dichas funciones complejas están definidas en todo $\mathbb{C}$. Entonces para todo $z_0\in\mathbb{C}$ se cumple que para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que: \begin{align*} \lim_{z \to z_0} f(z) = c,\\ \lim_{z \to z_0} g(z) = z_0,\\ \lim_{z \to z_0} h(z) = \overline{z_0}. \end{align*}

Ejemplo 14.2.
Consideremos a la función: \begin{equation*} f(z) = \dfrac{z}{\overline{z}}, \end{equation*} cuyo dominio es $S =\mathbb{C}\setminus\{0\}$. Veamos que $\lim\limits_{z\to 0} f(z)$ no existe.

Solución. De acuerdo con la observación 14.2, basta encontrar dos trayectorias por las que $z$ se aproxime a $0$ que nos den valores distintos para dicho límite.

Notemos que si nos acercamos a $0$ a través del eje real, es decir tomando $z=x+i0$, con $x\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{x \to 0} \dfrac{x+i0}{x-i0} = \lim_{x \to 0} \dfrac{x}{x} = 1. \end{equation*}

Mientras que si nos acercamos a $0$ a través del eje imaginario, es decir tomando $z=0+iy$, con $y\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{y \to 0} \dfrac{0+iy}{0-iy} = \lim_{y \to 0} \dfrac{iy}{-iy} = -1. \end{equation*}

Por lo que $\lim\limits_{z\to 0} f(z)$ no existe.

Observación 14.3.
De acuerdo con la proposición 8.6 de la entrada 8, tenemos que para $z_0\in\mathbb{C}$ y $S\subset\mathbb{C}$ se cumple que $z_0$ es un punto de acumulación de $S$ si y solo si existe una sucesión $\{z_n\}_{n \geq 1}$ en $S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Este resultado es útil para caracterizar la existencia del límite de una función compleja a través de sucesiones complejas, para ello planteamos la siguiente:

Proposición 14.1.
Sean $S \subset \mathbb{C}$, $z_0\in S’$, $L\in\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Entonces se cumple que $\lim\limits_{z \to z_0} f(z) = L$ si y solo si $\lim\limits_{n \to \infty} f(z_n) = L$, para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Demostración. Dadas las hipótesis tenemos:

$\Rightarrow)$
Supongamos que $\lim\limits_{z \to z_0} f(z) = L$. Veamos que $\lim\limits_{n \to \infty} f(z_n) = L$, para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Dado $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|z-z_0|<\delta$, entonces $0<|f(z)-L|<\varepsilon$.

Sea $\{z_n\}_{n\geq 1}\subset S$ una sucesión tal que $z_n \neq z_0$ para todo $n\in\mathbb{N}^+$ y $\lim\limits_{n \to \infty} z_n = z_0$. Para $\delta>0$ se cumple para toda $n\geq N$ que $0<|\,z_n – z_0\,|<\delta$. Por lo tanto: \begin{equation*} |\,f(z_n) – L\,| < \varepsilon, \quad \forall n\geq N, \end{equation*} es decir que $\lim\limits_{n \to \infty} f(z_n) = L$.

$(\Leftarrow$
Supongamos que para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$, se cumple que $\lim\limits_{n \to \infty} f(z_n) = L$. Veamos que $\lim\limits_{z \to z_0} f(z) = L$.

Por reducción al absurdo supongamos que $\lim\limits_{z \to z_0} f(z) \neq L$. Entonces existe $\varepsilon>0$ tal que para todo $\delta>0$ existe $z_\delta \in S$ tal que $0<|\,z_\delta – z_0\,| < \delta$ y $0<|\,f(z_\delta) – L\,| \geq \varepsilon$.

Dado que para toda $n\in \mathbb{N}^+$ se cumple que $\frac{1}{n}$ es positivo, entonces existe $z_n \in S$ tal que: \begin{equation*} 0<|\,z_n – z_0\,|<\frac{1}{n} \quad \text{y} \quad |\,f(z_n) – L\,| \geq \varepsilon, \end{equation*} es decir que la sucesión $\{z_n\}_{n\geq 1}$, con $z_n \neq z_0$ para todo $n\in\mathbb{N}^+$, converge a $z_0$, pero la sucesión $\{f(z_n)\}_{n\geq 1}$ no converge a $L$, lo cual contradice nuestra hipótesis, por lo que $\lim\limits_{z \to z_0} f(z) = L$.

$\blacksquare$

Observación 14.4.
De acuerdo con la proposición 12.1 de la entrada 12, sabemos que toda función compleja $f$ puede escribirse de la forma: \begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} con $u(x,y)$ y $v(x,y)$ funciones reales que corresponden con su parte real e imaginaria, respectivamente. Veamos que podemos garantizar la existencia del límite de una función compleja a través de estas funciones, para ello recordemos primeramente la definición de límite para una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 14.2. (Límite de una función real de dos variables.)
Sean $U\subset\mathbb{R}^2$ un conjunto abierto y $u: U\to \mathbb{R}$ una función real de dos variables, digamos $x$ e $y$. Para $(x_0, y_0) \in U’$ y $a\in \mathbb{R}$ diremos que: \begin{equation*} \lim_{(x,y) \to (x_0, y_0)} u(x,y) = a, \end{equation*} si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $(x,y)\in U$ y $0<\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, entonces: \begin{equation*} |u(x,y) – a| < \varepsilon. \end{equation*}

Proposición 14.2.
Sean $S\subset\mathbb{C}$, $z_0=x_0+iy_0\in S’$ y $L=a+ib\in\mathbb{C}$. Entonces para toda función compleja $f(z) = u(z)+iv(z)$ definida en $S$ se cumple que: \begin{equation*} \lim_{z \to z_0} f(z) = L \quad \text{si y solo si} \quad \lim_{z \to z_0} u(z) = a \,\,\, \text{y} \,\, \lim_{z \to z_0} v(z) = b. \end{equation*}

Demostración. Dadas las hipótesis, de acuerdo con la observación 3.1 tenemos que para todo $z=x+iy\in S$ se cumple que: \begin{equation*} |\,u(z) – a\,| \leq |\,f(z) – L\,| \leq |\,u(z) – a\,| + |\,v(z) – b\,|, \end{equation*} \begin{equation*} |\,v(z) – b\,| \leq |\,f(z) – L\,| \leq |\,u(z) – a\,| + |\,v(z) – b\,|. \end{equation*} Considerando las definiciones 14.1, 14.2 y las desigualdades anteriores se sigue el resultado.

$\blacksquare$

De acuerdo con la proposición 14.2, tenemos que la existencia de un límite en $\mathbb{C}$ está garantizada por la existencia de los límites de dos funciones reales, por lo que podemos utilizar los resultados que conocemos para límites de funciones reales de dos variables para verificar si dicho límite existe en $\mathbb{C}$.

Ejemplo 14.3.
Consideremos a la función $f(z) = z^2$, la cual está definida en todo $\mathbb{C}$. Veamos que para todo $z_0\in\mathbb{C}$ se cumple: \begin{equation*} \lim_{z \to z_0} f(z) = z_0^2. \end{equation*}

Solución. Procediendo por la definición 14.1 es fácil probar la existencia de dicho límite. Sin embargo, podemos hacer uso de la proposición 14.2 para probar el resultado.

Sean $z=x+iy, z_0 = x_0+iy_0 \in \mathbb{C}$ con $z_0$ fijo. Entonces tenemos que: \begin{equation*} f(x+iy) = u(x,y) + iv(x,y), \end{equation*} donde $\operatorname{Re}(f(z)) = u(x,y) = x^2 -y^2$ e $\operatorname{Im}(f(z))=v(x,y) = 2xy$. Tenemos que: \begin{align*} \lim_{z \to z_0} \operatorname{Re}(f(z)) = \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x,y) = x_0^2 – y_0^2,\\ \lim_{z \to z_0} \operatorname{Im}(f(z)) = \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x,y) = 2x_0 y_0. \end{align*} Por lo tanto $\lim\limits_{z \to z_0} f(z) = x_0^2 – y_0^2 + i2x_0y_0 = z_0^2$.

Observación 14.5.
Notemos que para la función $f(z)=z^n$, con $n\in\mathbb{N}^+$ y $z\in\mathbb{C}$, se puede probar por inducción que para todo $z_0\in\mathbb{C}$: \begin{equation*} \lim_{z \to z_0} f(z) = \lim_{z \to z_0} z^n = z_0^n. \end{equation*}

Proposición 14.3. (Álgebra de límites.)
Sean $f,g\in\mathcal{F}(S)$, sea $z_0 \in S’$ y sean $c, L_1, L_2 \in \mathbb{C}$. Supongamos que $\lim\limits_{z \to z_0} f(z) = L_1$, $\lim\limits_{z \to z_0} g(z) = L_2$. Entonces:

  1. $\lim\limits_{z \to z_0} \left[f(z) \pm c g(z)\right] = L_1 \pm c \, L_2$.
  2. $\lim\limits_{z \to z_0} \left[f(z)g(z)\right] = L_1L_2$.
  3. Si $L_2 \neq 0$, entonces $\lim\limits_{z \to z_0} \left[\dfrac{f(z)}{g(z)}\right] = \dfrac{L_1}{ L_2}$.

Demostración. Dadas las hipótesis, tenemos que:

  1. Si $c = 0$ entonces se sigue el resultado. Supongamos que $c\neq 0$ y sea $\varepsilon>0$, entonces existen $\delta_1>0$, $\delta_2>0$ tales que si $z\in S$ y $0<|\,z-z_0\,|<\delta_1$, $0<|\,z-z_0\,|<\delta_2$, entonces: \begin{align*} |\,f(z) – L_1\,| < \frac{\varepsilon}{2},\\ |\,g(z) – L_2\,| < \frac{\varepsilon}{2|c|}. \end{align*} Por lo que tomando $\delta = \text{mín}\{\delta_1, \delta_2\}>0$, tenemos que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z) \pm cg(z) – (L_1 \pm c \, L_2) \,| \leq |\,f(z) – L_1\,| + |\,c\,| \, |\,g(z) – L_2\,| < \varepsilon. \end{equation*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

Observación 14.6.
De acuerdo con la proposición 14.3 y el inciso (c) del ejemplo 14.1, podemos calcular de forma inmediata el límite de un polinomio en cualquier punto, o el límite de una función racional en un punto donde dicha función esté definida, simplemente evaluando el polinomio o la función racional en el punto dado.

Ejemplo 14.4.
Hallar cada uno de los siguientes límites:
a) $\lim\limits_{z \to 3i} \dfrac{z^2 + 9}{z – 3i}$.
b) $\lim\limits_{z \to 2+3i} (z – 5i)^2$.
c) $\lim\limits_{z \to i} 3z^2 + 2z -1$.

Solución. Considerando la observación 14.6 y las propiedades de los límites tenemos:
a) \begin{align*} \lim_{z \to 3i} \dfrac{z^2 + 9}{z – 3i} & = \lim_{z \to 3i} \dfrac{(z + 3i)(z – 3i)}{z – 3i}\\ & = \lim_{z \to 3i} z + 3i\\ & = \lim_{z \to 3i} z + \lim_{z \to 3i} 3i\\ & = 3i + 3i\\ & = 6i. \end{align*}

b) \begin{align*} \lim_{z \to 2+3i} (z – 5i)^2 & = \lim_{z \to 2+3i} (z – 5i)(z – 5i)\\ & = \left(\lim_{z \to 2+3i} z – 5i\right)^2\\ & = \left(\lim_{z \to 2+3i} z – \lim_{z \to 2 + 3i} 5i \right)^2\\ & = \left(2 + 3i – 5i \right)^2\\ & = \left( 2 – 2i\right)^2\\ & = -8i. \end{align*}

c) \begin{align*} \lim_{z \to i} 3z^2 + 2z – 1 & = 3 \lim_{z \to i} z^2 + 2\lim_{z \to i} z – \lim_{z \to i} 1\\ & = 3\left( \lim_{z \to i} z\right)^2 + 2i – 1\\ & = 3i^2 + 2i – 1 \\ & = -4 + 2i. \end{align*}

De acuerdo con la proposición 14.3, tenemos que las propiedades de los límites para funciones reales se extienden para el caso complejo. Veamos que otras propiedades de los límites para funciones reales pueden ser modificadas para el caso de funciones complejas.

Proposición 14.4. (Teorema de comparación.)
Sean $S\subset\mathbb{C}$, $f,g\in\mathcal{F}(S)$ dos funciones y $z_0\in S’$.

  1. Si $\lim\limits_{z\to z_0} f(z)=0$ y para algún $r>0$ se cumple que $|\,g(z)\,| \leq |\,f(z)\,|$ para toda $z\in B(z_0,r)\setminus\{z_0\}$, entonces $\lim\limits_{z\to z_0} g(z)=0$.
  2. Si $\lim\limits_{z\to z_0} f(z)=0$ y para algún $r>0$ se cumple que existe $M>0$ tal que $|\,g(z)\,| \leq M$ para toda $z\in B(z_0,r)\setminus\{z_0\}$, entonces $\lim\limits_{z\to z_0} f(z) g(z) =0$.

Demostración. Dadas la hipótesis, tenemos que:

  1. Para $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces $|\,f(z)\,|<\varepsilon$. Sea $z\in B(z_0,\delta)\setminus\{z_0\}$, entonces $|\,g(z)\,| \leq |\,f(z)\,|$, por lo que $|\,g(z) – 0\,| < \varepsilon$ siempre que $0<|\,z-z_0\,|<\delta$, es decir $\lim\limits_{z\to z_0} g(z)=0$.
  2. Para $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces $|\,f(z)\,|<\varepsilon$. Dado que para $z\in B(z_0,\delta)\setminus\{z_0\}$ se cumple que existe $M>0$ tal que $|\,g(z)\,| \leq M$, entonces para $0<|\,z-z_0\,|<\delta$ tenemos que: \begin{equation*} 0 \leq |\,f(z) g(z)\,| \leq M |\,f(z)\,|. \end{equation*} De acuerdo con el ejercicio 3 de esta entrada y la proposición 14.3(2) tenemos que $\lim\limits_{z\to z_0} M |f(z)| =0$, entonces considerando el inciso anterior se cumple que $\lim\limits_{z\to z_0} f(z) g(z) =0$.

$\blacksquare$

Consideremos ahora a la función $f(z) = 1/z$, dada en el ejemplo 12.1(d). Al pensarla como una función compleja definida en $\mathbb{C}$, es claro que el dominio $S$ de dicha función es $S = \mathbb{C}\setminus\{0\}$. Sin embargo, considerando al plano complejo extendido tomemos $f:S\subset\mathbb{C}_\infty \to \mathbb{C}_\infty$, por lo que podemos definir a la imagen de $z=0$ bajo dicha función como el punto al infinito, es decir $w = f(z) = \infty$. Es claro que al trabajar con $\mathbb{C}_\infty$ la función f es biyectiva, por lo que podemos pensar en la inversa de $f$, es decir en $z = f^{-1}(w) = 1/w$. Entonces ¿qué pasa con $\lim\limits_{w\to 0} f(f^{-1}(w))$? ¿y con $\lim\limits_{z \to \infty} f(z)$? ¿Qué relación hay entre dichos límites?

Por otra parte, como vimos en la entrada 11, cuando pensamos en que un número complejo tiende a infinito, lo cual denotamos como $z \to \infty$, estamos considerando que su módulo crece de manera arbitraria, es decir $|\,z\,| \to \infty$. Del mismo modo al hablar de una función $f$ que tiende a infinito, lo cual denotamos como $f(z) \to \infty$, estamos considerando que el módulo de dicha función crece de forma arbitraria, es decir $|\,f(z)\,| \to \infty$.

Para formalizar todo lo anterior consideremos las siguientes definiciones.

Definición 14.3. ($\rho$-vecindad de $\infty$.)
Sea $\rho>0$ suficientemente pequeño. En el plano complejo extendido $\mathbb{C}_\infty$, una $\rho$-vecindad de $\infty$ o simplemente una vecindad de $\infty$, es el conjunto: \begin{equation*} B(\infty, \rho) = \left\{z\in\mathbb{C} \,: \, \frac{1}{\rho} < |\,z\,| \right\}. \end{equation*} Un conjunto $U\subset\mathbb{C}\infty$ abierto que contenga a una $\rho$-vecindad de $\infty$, para algún $\rho>0$, es también una $\rho$-vecindad de $\infty$.

Definición 14.4. (Límites al infinito e infinitos.)
Sea $f:S\subset\mathbb{C} \to \mathbb{C}$ una función.

  1. Diremos que $\lim\limits_{z\to \infty} f(z) = w_0$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z) – w_0\,| < \varepsilon. \end{equation*}
  2. Diremos que $\lim\limits_{z\to z_0} f(z) = \infty$ si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}
  3. Diremos que $\lim\limits_{z\to \infty} f(z) = \infty$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}

Ejemplo 14.5.
a) Sea $f(z) = \dfrac{1}{z^2}$, con $z\neq 0$, entonces: \begin{equation*} \lim_{z\to \infty} f(z) = 0. \end{equation*} Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\sqrt{\varepsilon}>0$, si $z\neq 0$ y $|\,z\,| > \dfrac{1}{\delta}$, entonces: \begin{equation*} \left|\,f(z) – 0\,\right| = \left|\,\frac{1}{z^2} – 0\,\right| = \frac{1}{|\,z^2\,|} = \frac{1}{|\,z\,|^2} < \varepsilon. \end{equation*} Por lo que $\lim\limits_{z\to \infty} f(z) = 0$.
b) Sea $f(z) = \dfrac{1}{z-3}$, con $z\neq 3$, entonces: \begin{equation*} \lim_{z\to 3} f(z) = \infty. \end{equation*} Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\varepsilon>0$, si $z\neq 3$ y $0<|\,z-3\,|<\delta$, entonces: \begin{equation*} \left|\,f(z)\,\right| = \left|\,\frac{1}{z-3}\,\right| = \frac{1}{|\,z-3\,|} > \frac{1}{\varepsilon}. \end{equation*} Por lo que $\lim\limits_{z\to 3} f(z) = \infty$.

De lo anterior tenemos que los valores $z_0$ y $L$ en la definición 14.1 pueden ser sustituidos de forma indistinta por el punto al infinito, es decir en: \begin{equation*} \lim_{z \to z_0} f(z) = L, \end{equation*} podemos remplazar a $z_0$ y/o $L$ por $\infty$, para ello solo habría que remplazar apropiadamente sus vecindades por vecindades de $\infty$. Para tener más claro esto y poder trabajar de manera más sencilla con estos límites tenemos el siguiente resultado.

Proposición 14.5.
Sea $f:S \subset \mathbb{C} \to \mathbb{C}$ una función y sean $z_0$ en el plano $z$, que corresponde al del dominio de $f$, y $w_0$ en el plano $w$, que corresponde al plano de la imagen de $f$, observación 12.1, entonces:

  1. \begin{equation*} \lim_{z \to z_0} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0. \end{equation*}
  2. \begin{equation*} \lim_{z \to \infty} f(z) = w_0 \quad \text{si y solo si} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0. \end{equation*}
  3. \begin{equation*} \lim_{z \to \infty} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0. \end{equation*}

Demostración. Dadas las hipótesis, tenemos que:

  1. Sea $z\in S$. Si $\lim\limits_{z \to z_0} f(z) = \infty$ existe, entonces de la definición 14.4(2) tenemos que para todo $\varepsilon>0$, existe $\delta>0$ tal que: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon} \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Notemos que para el punto $w=f(z)$ se tiene que $|\,w\,| > 1/\varepsilon$, es decir $w$ pertenece a un $\varepsilon$-vecindario de $\infty$, siempre que $0<|\,z-z_0\,|<\delta$. De lo anterior tenemos que: \begin{equation*} \left|\,\frac{1}{f(z)} – 0 \,\right| = \left|\,\frac{1}{f(z)}\,\right| = \frac{1}{|f(z)|} < \varepsilon \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Por lo que $\lim\limits_{z \to z_0} \dfrac{1}{f(z)} = 0$.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

La proposición 14.5 es de gran utilidad al trabajar con el punto al infinito. La idea de dicha proposición es representar al punto al infinito y su entorno mediante sus imágenes en la función $w = f(z) = 1/z$. Esto es, el punto $z=\infty$ corresponde con el punto $w=0$ y un $\varepsilon$-vecindario de $\infty$ corresponde con un $\varepsilon$-vecindario de $0$. Por lo que la existencia de un límite de una función $f(z)$ que considere al punto $z=\infty$ dependerá de la existencia de un límite que considere al punto $w=0$.

Ejemplo 14.6.
a) Consideremos a la función $f(z) = \dfrac{2z^3-1}{z^2+1}$ definida en $S=\mathbb{C}\setminus\{i,-i\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} f(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} f(1/z) = \frac{(2/z^3)-1}{(1/z^2)+1}, \quad \quad \frac{1}{f(1/z)} = \frac{(1/z^2)+1}{(2/z^3)-1}. \end{equation*} De acuerdo con la proposición 14.5 como: \begin{equation*} \lim_{z \to 0} \frac{1}{f(1/z)} = \lim_{z \to 0} \frac{(1/z^2)+1}{(2/z^3)-1} = \lim_{z \to 0} \frac{z^3\left[(1/z^2)+1\right]}{z^3\left[(2/z^3)-1\right]} = \lim_{z \to 0} \frac{z^3 + z}{2 – z^3} = 0. \end{equation*} Entonces $\lim\limits_{z \to \infty} f(z) = \infty$.
b) Consideremos a la función $g(z) = \dfrac{iz+3}{z+1}$ con dominio $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to -1} g(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} \lim_{z \to -1} \frac{1}{g(z)} = \lim_{z \to -1} \frac{z+1}{iz+3} = 0. \end{equation*} Por lo que se sigue de la proposición 14.5 que $\lim\limits_{z \to \infty} g(z) = \infty$.
c) Sea $h(z) = \dfrac{2z+i}{z+1}$ una función definida en $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} h(z) = 2. \end{equation*} Solución. De acuerdo con la proposición 14.5 como: \begin{equation*} \lim_{z \to 0} h(1/z) = \lim_{z \to 0} \frac{(2/z)+i}{(1/z)+1} = \lim_{z \to 0} \frac{2+iz}{1 + z} = 2. \end{equation*} Entonces $\lim\limits_{z \to \infty} h(z) = 2$.

Tarea moral

  1. Completa la demostración de las proposiciones 14.3 y 14.5.
  2. Considera a la función $f(z) = \dfrac{zi}{2}$ definida en el disco abierto $B(0,1)$. Prueba usando la definición que: \begin{equation*} \lim_{z \to 1} f(z) = \frac{i}{2}. \end{equation*}
  3. Usando la definición de límite prueba que si: \begin{equation*} \lim_{z\to z_0} f(z) = w_0, \end{equation*} entonces: \begin{equation*} \lim_{z\to z_0} |\,f(z)\,| = |w_0|. \end{equation*} ¿Es cierto el recíproco?
  4. Considera la función $T:S\subset\mathbb{C}\to \mathbb{C}$ dada por: \begin{equation*} T(z) = \frac{az+b}{cz+b}, \quad \text{con} \,\, ad – bc \neq 0. \end{equation*} Usando la definición, prueba que:
    a) Si $c=0$, entonces: \begin{equation*} \lim_{z \to \infty} T(z) = \infty. \end{equation*} b) Si $c\neq 0$, entonces: \begin{align*} \lim_{z \to \infty} T(z) = \frac{a}{c},\\ \lim_{z \to -\frac{d}{c}} T(z) = \infty. \end{align*}
  5. Sean $a\in\mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones. Considerando la definición 14.4 prueba las siguientes reglas para límites que consideran al punto al infinito.
    a) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a$, entonces $\lim\limits_{z\to z_0}\left[ f(z) + g(z) \right]=\infty$.
    b) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a\neq 0$, entonces $\lim\limits_{z\to z_0}\left[ f(z) \cdot g(z) \right]=\infty$.
    c) Si $\lim\limits_{z\to z_0} f(z)=\infty = \lim\limits_{z\to z_0} g(z)$, entonces $\lim\limits_{z\to z_0}\left[ f(z) \cdot g(z) \right]=\infty$.
    d) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a$, entonces $\lim\limits_{z\to z_0}\dfrac{g(z)}{f(z)}=0$.
    e) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a\neq 0$, entonces $\lim\limits_{z\to z_0}\dfrac{g(z)}{f(z)}=\infty$.

Más adelante…

En esta entrada hemos abordado de manera formal la definición de límite desde el enfoque de la variable compleja. Mediante una serie de resultados hemos caracterizado el límite complejo a través del estudio de la parte real e imaginaria de una función compleja, ya que dichas funciones reales las hemos estudiado a detalle en nuestros cursos de Cálculo, por lo que los resultados que conocemos para dichas funciones pueden emplearse al trabajar con funciones complejas.

Aunque las definiciones que hemos dado en esta entrada son idénticas a las de las funciones reales de variable real, veremos en las siguientes entradas que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones.

La siguiente entrada abordaremos un concepto fundamental en el estudio de las funciones complejas, el de continuidad, el cual estará ligado al concepto de límite, por lo que los resultados de esta entrada nos serán de utilidad.

Entradas relacionadas

Variable Compleja I: Diferenciabilidad en el sentido complejo

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos el concepto de diferenciabilidad desde un enfoque complejo, es decir, definiremos lo que entenderemos por la derivada de una función compleja, lo cual nos será de gran utilidad para caracterizar a $\mathbb{C}$ y a las funciones complejas que posean derivadas en el sentido complejo, con lo cual quedará claro que la diferenciabilidad compleja es más estricta que la diferenciabilidad estudiada sobre $\mathbb{R}^2$.

Al hablar de funciones complejas y sus derivadas, algunos textos usan los términos «holomorfa» y «analítica» de forma indistinta, al referirse a la diferenciabilidad de dichas funciones, mientras que otros utilizan «diferenciable» o «complejo diferenciable» y «holomorfa» de forma indistinta. El uso del término «analítica» se debe al hecho de que una función «holomorfa» tiene una expansión en series de potencias locales en cada punto de su dominio. De hecho, esta propiedad de la expansión en series de potencias es una caracterización completa de las funciones holomorfas, la cual se discutirá a detalle más adelante. Por otra parte, el uso del término «complejo diferenciable» surge por las propiedades relacionadas con la derivada compleja. En otros textos más antiguos se suelen utilizar los términos «regular» y «monogénica».

Las funciones holomorfas son una generalización de los polinomios complejos, pero resultan ser objetos matemáticos mucho más flexibles que los polinomios. El conjunto de los polinomios complejos es cerrado bajo la suma y la multiplicación, mientras que el conjunto de las funciones holomorfas es cerrado no solo bajo la suma y la multiplicación, sino también bajo recíprocos, inversas, exponenciación, logarítmos, raíces cuadradas y muchas otras operaciones.

Otro término que suele usarse al hablar de funciones holomorfas es el de «conforme» o «trasformación conforme», el cual se debe a una propiedad geométrica muy importante de dichas funciones que estudiaremos a detalle en las siguientes entradas. La conformidad es una propiedad que permite modelar el flujo de los fluidos incompresibles y otros fenómenos físicos mediante las funciones holomorfas.

Definición 16.1. (Diferenciabilidad compleja.)
Sea $U\subset\mathbb{C}$ un conjunto abierto, sea $z_0 \in U$ y sea $f:U\to\mathbb{C}$ una función. Diremos que $f$ es complejo diferenciable o $\mathbb{C}$-diferenciable en $z_0$ si existe el límite: \begin{equation*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}, \tag{16.1} \end{equation*} y en caso de existir, a dicho límite se le llama la derivada compleja, o simplemente la derivada, de $f$ en $z_0$, la cual se denota como $f'(z_0)$, $\frac{df}{dz}(z_0)$ o $\frac{d}{dz}f(z_0)$. Si $f$ posee derivada en todo punto de $U$, entonces diremos que $f$ es holomorfa en $U$ y denotamos al conjunto de funciones holomorfas en $U$ como: \begin{equation*} \mathcal{H}(U) = \{ f:U\to\mathbb{C} \,:\, f \,\, \text{es holomorfa en}\,\,U\}. \end{equation*}

Observación 16.1.
Para definir el concepto de derivada compleja no es necesario pedir que $U$ sea un conjunto abierto, sino que basta con considerar a $z_0 \in U \cap U’$ para que la definición anterior sea válida. Sin embargo esta generalización carece de importancia para la teoría, por lo que en general siempre que se hable de funciones diferenciables en el sentido complejo se considerarán conjuntos abiertos en $\mathbb{C}$.

Observación 16.2.
Tomando $z=z_0 + h$, podemos reescribir el límite (16.1) como: \begin{equation*} \lim_{h \to 0} \dfrac{f(z_0 + h) – f(z_0)}{h}, \tag{16.2} \end{equation*} notemos que tanto en (16.1) como en (16.2) se observa una definición similar a la de la derivada de una función real, sin embargo debe ser claro que en el caso real utilizando (16.1) tenemos que $x$ solo puede aproximarse a $x_0$ en dos direcciones, por la izquierda o por la derecha, análogamente si consideramos (16.2) tenemos que $h$ solo puede aproximarse a $0$ en dichas direcciones, mientras que en el caso complejo esto no se cumple, ya que sin importar cual de los dos límites utilicemos, es claro que $z$ puede aproximarse a $z_0$ y/o $h$ puede aproximarse a $0$ en más de dos direcciones, por lo que la existencia de la derivada de una función compleja no dependerá de la dirección en que $z$ se aproxime a $z_0$ y/o $h$ se aproxime a $0$, figura 61.

Figura 61: Gráfica de tres posibles direcciones por las que $z$ se aproxima a $z_0$ y $h$ se aproxima a $0$.

Definición 16.2. (Analicidad.)
Sean $S\subset \mathbb{C}$ y $f:S \to \mathbb{C}$ una función.

  1. Si $z_0$ es un punto interior de $S$, entonces diremos que $f$ es analítica en $z_0 \in S$, si $f$ es holomorfa en $B(z_0, \rho)\subset S$ para algún $\rho>0$, es decir si en $S$ existe algún $\rho$-vecindario de $z_0$, donde $f$ es holomorfa. Diremos que $f$ es analítica en $S$ si existe algún conjunto abierto totalmente contenido en $S$ donde $f$ es analítica.
  2. Si $S = \mathbb{C}$, entonces diremos que $f$ es entera si $f$ es analítica en $\mathbb{C}$.

Observación 16.3.
A partir de las definiciones 16.1 y 16.2 es claro que para $U\subset\mathbb{C}$ un conjunto abierto, una función $f:U\to\mathbb{C}$ será analítica en $U$ si es analítica en cada punto $z\in U$, por lo que durante el curso utilizaremos de manera indistinta los términos analítica y holomorfa para referirnos a funciones $\mathbb{C}$-diferenciables en conjuntos abiertos en $\mathbb{C}$. Sin embargo, más adelante veremos que la definición 16.2 será de gran utilidad al trabajar con funciones dadas por series de potencias.

Observación 16.4.
Notemos que si una función $f(z)$ es holomorfa en $U\subset\mathbb{C}$, entonces $f'(z)$ define una función $f’ : U \to \mathbb{C}$. Si $f'(z)$ es continua, entonces se dice que $f'(z)$ es continuamente diferenciable. Si $f'(z)$ es holomorfa en $U$, entonces se dice que $f(z)$ es dos veces diferenciable en $U$. Continuando de esta manera, tenemos que una función $f(z)$ tal que cada una de sus derivadas sucesivas es nuevamente diferenciable es llamada infinitamente diferenciable. Este concepto es de suma importancia pues de manera equivalente se puede definir a una función $f:U \to \mathbb{C}$ como analítica en $U$ si $f(z)$ es infinitamente diferenciable en $U$. De hecho, más adelante veremos que a diferencia de las funciones reales, en el caso complejo la existencia de $f'(z)$ garantiza la existencia de todas las derivadas de $f(z)$, lo cual no sucede en el caso real, por ejemplo para la función $f(x) = |x|\, x$ es claro que $f'(x) = 2|x|$ existe para todo $x\in\mathbb{R}$, pero $f^{»}(x)$ no existe para $x=0$.

Ejemplo 16.1.
a) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=c$, con $c\in\mathbb{C}$ constante, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin{align*} f'(z_0) & = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{c – c}{z-z_0}\\ & = 0. \end{align*}

b) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=(3-i)z$, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin {align*} f'(z_0) &= \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{(3-i)z – (3-i)z_0}{z-z_0}\\ & = 3-i. \end{align*}

c) Sea $f:\mathbb{C} \to \mathbb{C}$ tal que $f(z)=z^3$, entonces $f$ es entera en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$, entonces: \begin{align*} f'(z_0) &= \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ &= \lim_{z \to z_0} \dfrac{z^3 – z_0^3}{z-z_0}\\ & = \lim_{z \to z_0} \dfrac{(z-z_0)(z^2 + zz_0 + z_0^2)}{z-z_0}\\ &= 3z_0^2. \end{align*}

Del inciso a) tenemos que para $f(z) = c$, con $c\in\mathbb{C}$ constante, se tiene que $f'(z) = 0$, para todo $z\in\mathbb{C}$.

Por otra parte, del inciso b) tenemos que en general para $c\in\mathbb{C}$ constante, se cumple que si $f(z) = cz$, entonces $f'(z) = c$, para todo $z\in\mathbb{C}$.

Veamos ahora que el concepto de diferenciabilidad y analicidad no son intercambiables, es decir puede pasar que una función sea diferenciable en $z_0$, pero que no sea analítica en dicho punto.

Ejemplo 16.2.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = \overline{z}^2$. Veamos que dicha función es diferenciable en $z_0=0$ y que no es diferenciable en ningún $z_0\neq 0$, en particular veamos que $f$ no es analítica en $z_0=0$.

Solución. Si $z_0 = 0$, entonces: \begin{align*} f'(z_0) & = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0}\\ & = \lim_{z \to 0} \dfrac{\overline{z}^2 – 0}{z-0}\\ & = \lim_{z \to 0} \dfrac{\overline{z}^2}{z}\\ & = 0. \end{align*} Veamos que si $z_0\neq 0$, entonces el límite que define a la derivada no existe. Primeramente, si nos aproximamos a $z_0$ a través de la recta que pasa por $0$ y que tiene dirección $z_0$, figura 62, es decir: \begin{equation*} z = tz_0, \quad t\in\mathbb{R}, \end{equation*} entonces: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\overline{tz_0}^2 – \overline{z_0}^2}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\left(\overline{z_0}\right)^2\left(t^2 – 1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\overline{z_0}^2}{z_0} \lim_{t \to 1} (t+1)\\ & = 2 \dfrac{\overline{z_0}^2}{z_0}. \end{align*} Por otra parte tenemos que si nos aproximamos a $z_0$ a través de la recta paralela al eje real que pasa por $z_0$, figura 62, es decir: \begin{equation*} z = z_0 + t, \quad t\in\mathbb{R}, \end{equation*} entonces:
\begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\overline{(z_0+t)}^2 – \overline{z_0}^2}{t}\\ & =\lim_{t \to 0} \dfrac{(\overline{z_0}+t)^2 – \overline{z_0}^2}{t}\\ & =\lim_{t \to 0} \dfrac{2t\,\overline{z_0} +t^2}{t}\\ & = \lim_{t \to 0} \left(2\,\overline{z_0} + t\right)\\ & = 2\, \overline{z_0}. \end{align*} Desde que estos dos límites son distintos y $z_0\neq 0$ es arbitrario, concluimos que para $z_0 \neq 0$ la función no es diferenciable, por lo que en $z_0 = 0$ la función no es analítica ya que no existe vecindad de $z_0 = 0$ donde $f'(z_0)$ exista.

Figura 62: Gráfica de las dos direcciones por las que $z$ se aproxima a $z_0$ en el ejemplo 14.2.

Ejemplo 16.3.
Veamos que las siguientes funciones no son analíticas en ningún punto de $\mathbb{C}$.
a) $f(z) = \overline{z}$.
b) $f(z) = \operatorname{Re}(z)$.

Solución. Sea $z_0\in\mathbb{C}$. Para verificar la afirmación basta con mostrar que el límite que define a la derivada no existe para todo $z_0\in\mathbb{C}$, para ello nos aproximaremos a $z_0$ a lo largo de las rectas utilizadas en el ejemplo 16.2, figura 62.

a) Si nos aproximamos a $z_0$ a través de la recta $z = tz_0$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\overline{tz_0} – \overline{z_0}}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\overline{z_0}\left(t – 1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\overline{z_0}}{z_0}. \end{align*} Mientras que si nos aproximamos a $z_0$ a través de la recta $z = z_0 + t$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\overline{(z_0+t)} – \overline{z_0}}{t}\\ & =\lim_{t \to 0} \dfrac{\overline{z_0}+t – \overline{z_0}}{t}\\ & =1. \end{align*} Como estos límites son distintos y $z_0\in\mathbb{C}$ es arbitrario, entonces concluimos que no existe $f’$ para ningún punto de $\mathbb{C}$, por lo que $f(z) = \overline{z}$ no es analítica en $\mathbb{C}$.

b) Si nos aproximamos a $z_0$ a través de la recta $z = tz_0$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 1} \dfrac{\operatorname{Re}(tz_0) – \operatorname{Re}(z_0)}{tz_0-z_0}\\ & = \lim_{t \to 1} \dfrac{\operatorname{Re}(z_0)\left( t -1\right)}{z_0\left(t-1\right)}\\ & = \dfrac{\operatorname{Re}(z_0)}{z_0}. \end{align*} Mientras que si nos aproximamos a $z_0$ a través de la recta $z = z_0 + t$, con $t\in\mathbb{R}$, tenemos que: \begin{align*} \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} & = \lim_{t \to 0} \dfrac{\operatorname{Re}(z_0 + t) – \operatorname{Re}(z_0)}{t}\\ & =\lim_{t \to 0} \dfrac{\operatorname{Re}(z_0) + t – \operatorname{Re}(z_0)}{t}\\ & =1. \end{align*} Dado que estos límites son distintos y $z_0\in\mathbb{C}$ es arbitrario, entonces concluimos que no existe $f’$ para ningún punto de $\mathbb{C}$, por lo que $f(z) =\operatorname{Re}(z)$ no es analítica en $\mathbb{C}$.

Proposición 16.1.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función analítica, entonces $f$ es continua en $U$.

Demostración. Dado que $f$ es analítica en $U$, sabemos que $f'(z)$ existe para todo $z\in U$, entonces de acuerdo con la proposición 14.3(2) se cumple que el límite de un producto es el producto de los límites, por lo que: \begin{align*} \lim_{z\to z_0} \left(f(z) – f(z_0)\right) & = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} \left(z-z_0 \right)\\ & = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} \lim_{z\to z_0} \left(z-z_0 \right)\\ & = f'(z_0) \cdot 0\\ & = 0, \end{align*} de donde se tiene que $f$ es continua en $z_0$.

$\blacksquare$

Proposición 16.2. (Reglas de diferenciación.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $g,f:U \to \mathbb{C}$ dos funciones analíticas y $c_1, c_2\in \mathbb{C}$ dos constantes, entonces:

  1. La función $c_1f + c_2g$ es analítica en $U$ y para todo $z\in U$ se tiene que: \begin{equation*} (c_1f(z) \pm c_2g(z))’= c_1f'(z) \pm c_2g'(z). \end{equation*}
  2. La función $fg$ es analítica en $U$ y para todo $z\in U$ se tiene que: \begin{equation*} (f(z)g(z))’ = f'(z)g(z) + f(z)g'(z). \end{equation*}
  3. La función $\dfrac{f}{g}$ es analítica en $W = U \setminus \left\{ z\in U : g(z)=0\right\}$ y para todo $z\in W$ se tiene que: \begin{equation*} \left(\frac{f(z)}{g(z)}\right)’ = \frac{f'(z)g(z) – f(z)g'(z)}{(g(z))^2}. \end{equation*}

Demostración.

  1. Se deja como ejercicio al lector.
  2. Dadas las hipótesis, para $z_0\in U$ tenemos, por la proposición 14.3(2) y la proposición 16.1, que: \begin{align*} (f(z_0)g(z_0))’ & = \lim_{z \to z_0} \frac{f(z)g(z) – f(z_0)g(z_0)}{z-z_0}\\ & = \lim_{z\to z_0} \frac{f(z)g(z) – f(z_0)g(z) + f(z_0)g(z) – f(z_0)g(z_0)}{z-z_0}\\ & = \lim_{z\to z_0} \frac{g(z)\left[f(z) – f(z_0) \right] + f(z_0) \left[g(z) – g(z_0)\right]}{z-z_0}\\ & = \lim_{z \to z_0} g(z) \frac{f(z) – f(z_0)}{z-z_0} + \lim_{z\to z_0} f(z_0) \frac{g(z) – g(z_0)}{z-z_0}\\ & = g(z_0) f'(z_0) + f(z_0) g'(z_0). \end{align*}
  3. Dadas las hipótesis, procedemos a realizar la prueba considerando $f(z)=1$ para todo $z\in U$, el caso general {\bf se deja como ejercicio al lector.} Sea $z_0\in W$, entonces $g(z_0)\neq 0$. Por la proposición 16.1 sabemos que $g$ es continua en $W$, por lo que, para $\varepsilon =|\,g(z_0)\,|/2>0$ existe $\delta>0$ tal que si $|\,z – z_0\,|<\delta$, entonces: \begin{equation*} |g(z) – g(z_0)|<\frac{|\,g(z_0)\,|}{2}, \end{equation*} de donde: \begin{equation*} 0<\frac{|\,g(z_0)\,|}{2} < |g(z)|, \end{equation*} por lo que $g(z)\neq 0$.

    Entonces, para todo $z\in B(z_0, \delta)$, por la proposición 14.3(2) y la proposición 16.1, tenemos que: \begin{align*} \left(\frac{1}{g(z_0)}\right)’ & = \lim_{z \to z_0} \frac{\frac{1}{g(z)} – \frac{1}{g(z_0)}}{z-z_0}\\ & = \lim_{z \to z_0} \frac{-1}{g(z)g(z_0)} \frac{g(z)-g(z_0)}{z-z_0}\\ & = -\frac{g'(z_0)}{g(z_0)^2}. \end{align*}

$\blacksquare$

Ejemplo 16.4.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = z^n$, con $n\in\mathbb{N}^+$, veamos que $f$ es una función entera y que: \begin{equation*} \frac{d}{dz} z^n = n z^{n-1}. \tag{16.3} \end{equation*}

Demostración. Realizamos la prueba por inducción sobre $n$. Sea $n=1$, entonces $f(z)=z$, por lo que para $z_0\in\mathbb{C}$ tenemos que: \begin{align*} f'(z_0) & = \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0}\\ & = \lim_{z\to z_0} \frac{z – z_0}{z – z_0} \\ & = 1, \end{align*} de donde (16.3) se cumple para $n=1$.

Supongamos que (16.3) se cumple para $n=k$ con $k\in\mathbb{N}$ fijo. Veamos que (16.3) se cumple para $n=k+1$. Notemos que para $n=k+1$ se tiene que $f(z) = z^{k+1} = z^k z$, entonces para todo $z\in\mathbb{C}$, por la proposición 16.2(2), tenemos que: \begin{align*} f'(z) & = \frac{d}{dz}\left( z^{k+1} \right)\\ & = z \frac{d}{dz} (z^k) + z^k \frac{d}{dz} z\\ & = kz^{k-1}z + z^k\\ & = (k+1) z^k. \end{align*} Por lo que para todo $n\in\mathbb{N}^+$ se tiene que $f(z) = z^n$ es entera y su derivada está dada por (16.3).

$\blacksquare$

De hecho se puede mostrar que si $f:\mathbb{C}\setminus\{0\} \to \mathbb{C}$ está dada por $f(z)=z^n$ y $n\in\mathbb{Z}$, entonces $f$ es analítica y su derivada está dada por (16.3), lo cual se deja como ejercicio al lector.

Corolario 16.1.
Sea $n\in\mathbb{N}$ y sean $c_i \in\mathbb{C}$, con $i\in{0,1,\ldots,n}$, constantes con $c_n\neq 0$. Entonces:

  1. Todo polinomio de grado $n$, digamos $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, es una función entera y su derivada es: \begin{equation*} p'(z) = c_1 + 2c_2 z + \cdots + (n-1)c_{n-1} z^{n-2} + nc_n z^{n-1}. \tag{16.4} \end{equation*}
  2. Toda función racional $f(z) = \dfrac{p(z)}{g(z)}$, donde $p(z)$ y $g(z)$ son polinomios, es una función analítica para todos los puntos $z$ tales que $g(z)\neq 0$ y su derivada es: \begin{equation*} f'(z) = \frac{p'(z)g(z) + p(z)g'(z)}{g(z)^2}. \tag{16.5} \end{equation*}

Demostración.

  1. Dadas las hipótesis, procedemos a realizar la prueba por inducción sobre $n$. Si $n=0$ entonces $p(z)=c_0$ es una función constante y por tanto es una función entera tal que $p'(z) = 0$. Si $n = 1$, entonces tenemos que $p(z) = c_0 + c_1 z$. De acuerdo con el ejemplo 16.4 y la proposición 16.2, tenemos que $p(z)$ es una función entera y su derivada es: \begin{equation*} p'(z) = 0 + c_1(1)z^{1-1} = c_1, \end{equation*} por lo que para $n=1$ se cumple (16.4). Supongamos que el resultado es válido para $n=k$, con $k\in\mathbb{N}$ fijo. Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{n=1}^{k+1} c_n z^n\\ & = c_0 + \sum_{n=1}^k c_n z^n + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción sabemos que $c_0 + \sum_{n=1}^k c_n z^n$ es una función entera cuya derivada está dada por (16.4) y por el ejemplo 16.4 y la proposición 16.2 tenemos que $c_{k+1} z^{k+1}$ es también una función entera cuya derivada es $(k+1)c_{k+1}z^k$, entonces: \begin{equation*} p'(z) = c_1 + 2c_2 z + \cdots + (k-1)c_{k-1} z^{k-2} + kc_k z^{k-1} + (k+1)c_{k+1}z^k, \end{equation*} por lo que el resultado es válido para todo $n\in\mathbb{N}$.
  2. De acuerdo con la proposición 16.2(3) y considerando el inciso anterior, es claro que una función racional $f(z) = \dfrac{p(z)}{g(z)}$, con $p(z)$ y $g(z)$ polinomios, es una función analítica en su dominio de definición, es decir en $S = \{ z\in\mathbb{C} : g(z) \neq 0\}$, cuya derivada está dada por (16.5).

$\blacksquare$

Ejemplo 16.5.
Determina la derivada de las siguientes funciones y en caso de ser necesario especifica en dónde es analítica la función.

a) $f(z) = 3z^4 – 5z^3 + 2z$.

Solución. De acuerdo con el corolario 16.1 tenemos que $f$ es una función entera y su derivada es: \begin{equation*} f'(z) = 2(1) -5(3z^2) + 3(4z^3) = 12z^3 -15z^2 + 2. \end{equation*} b) $f(z) = \dfrac{(z+1)(z+i)^2}{z+1-3i}$.

Solución. De acuerdo con la proposición 16.2 tenemos que: \begin{align*} f'(z) & = \frac{((z+i)^2 + 2(z+1)(z+i))(z+1-3i) – (z+1)(z+i)^2}{(z+1-3i)^2}\\ & = \frac{2z^3 + (4-7i)z^2 + (14-2i)z + 5i + 6}{(z+1-3i)^2}. \end{align*} Por el corolario 16.1 tenemos que esta función es analítica en $S = \mathbb{C}\setminus\{-1+3i\}$, ya que en $z=-1+3i$ el denomidador de $f$ se anula.

c) $f(z) = \dfrac{z^2}{4z+1}$.

Solución. Por la proposición 16.2 tenemos que: \begin{align*} f'(z) & = \frac{(4z+1)(2z – z^2(4))}{(4z+1)^2}\\ & = \frac{4z^2 + 2z}{(4z+1)^2}. \end{align*} De acuerdo con el corolario 16.1 tenemos que esta función es analítica en $S = \mathbb{C}\setminus\{-\frac{1}{4}\}$, ya que en $z=-\frac{1}{4}$ el denomidador de $f$ se anula.

Proposición 16.3. (Carathéodory.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $z_0\in U$ y $f:U\to\mathbb{C}$ una función. Entonces, $f$ es analítica en $z_0$ si y solo si existe una función $\varphi:U \to \mathbb{C}$ continua en $z_0$ tal que para todo $z\in U$: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} En este caso $\varphi(z_0) = f'(z_0)$.

Demostración. Dadas las hipótesis, tenemos que:

$\Rightarrow)$
Si $f$ es analítica en $z_0$, entonces existe: \begin{equation*} f'(z_0) = \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z-z_0}. \end{equation*} Sea $\varphi:U\to\mathbb{C}$ dada por: \begin{equation*} \varphi(z)= \left\{ \begin{array}{lcc} \dfrac{f(z) – f(z_0)}{z – z_0} & \text{si} & z \neq z_0, \\ f'(z_0) & \text{si} & z = z_0. \end{array} \right. \end{equation*} Es claro que para todo $z\in U$, incluso para $z=z_0$, se tiene que: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} Por otra parte notemos que:
\begin{equation*} \lim_{z \to z_0} \varphi(z) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z – z_0} = f'(z_0) = \varphi(z_0), \end{equation*} por lo que $\varphi$ es continua en $z_0$ y $f'(z_0) = \varphi(z_0)$.

$(\Leftarrow$
Sea $\varphi:U \to \mathbb{C}$ una función continua en $z_0$ tal que para todo $z\in U$: \begin{equation*} f(z) = f(z_0) + \varphi(z) (z-z_0). \end{equation*} Por la continuidad de $\varphi$ tenemos que: \begin{equation*} \varphi(z_0) = \lim_{z \to z_0} \varphi(z) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z – z_0}, \end{equation*} por lo que el límite que define a $f'(z_0)$ existe y $f'(z_0) = \varphi(z_0)$, entonces $f$ es analítica en $z_0$.

$\blacksquare$

De nuestros cursos de Cálculo, sabemos que otra de las reglas de diferenciación importantes es la regla de la cadena, por lo que podemos preguntarnos si dicho resultado es válido para funciones complejas dado que hemos visto que la composición de funciones es una operación posible para las funciones complejas, por lo que nos disponemos a responder a esta pregunta mediante el siguiente resultado.

Proposición 16.4. (Regla de la cadena.)
Sean $U_1, U_2 \subset \mathbb{C}$ dos conjuntos abiertos, $g:U_1 \to \mathbb{C}$ una función analítica en $U_1$ y $f:U_2 \to \mathbb{C}$ una función analítica en $U_2$, tales que $g(U_1) \subset U_2$. Entonces $f \circ g$ es una función analítica en $U_1$ y para $z_0 \in U_1$ se tiene que: \begin{equation*} (f\circ g)'(z_0) = f'(g(z_0)) g'(z_0). \tag{16.6} \end{equation*}

Demostración. Dadas las hipótesis, por la proposición 16.3 tenemos que si $g$ es analítica en $z_0\in U_1$ y $f$ es analítica en $w_0 = g(z_0)\in U_2$, entonces existen funciones $\varphi_1:U_1 \to \mathbb{C}$ y $\varphi_2:U_2 \to \mathbb{C}$ continuas en $z_0$ y $w_0$, respectivamente, tales que: \begin{align*} g(z) = g(z_0) + \varphi_1(z)(z-z_0),\quad \forall z\in U_1,\\ f(w) = f(w_0) + \varphi_2(w) (w-w_0),\quad \forall w\in U_2, \end{align*} con $\varphi_1(z_0) = g'(z_0)$ y $\varphi_2(w_0) = f'(w_0)$.

Notemos que para todo $z\in U_1$, $w=g(z)\in U_2$, se tiene que: \begin{align*} (f \circ g)(z) & = f(g(z))\\ & = f(g(z_0)) + \varphi_2(g(z))(g(z)-g(z_0))\\ & = (f\circ g)(z_0) + \varphi_2(g(z))\varphi_1(z)(z-z_0), \quad \forall z\in U_1, \end{align*} entonces, por la continuidad de $\varphi_1(z)$ y $\varphi_2(g(z))$ en $z_0$, tenemos que: \begin{align*} \lim_{z \to z_0} \frac{(f\circ g)(z) – (f\circ g)(z_0)}{z-z_0} & = \lim_{z \to z_0} \frac{\varphi_2(g(z))\varphi_1(z)(z-z_0)}{z-z_0} \\ & = \lim_{z \to z_0} \varphi_2(g(z))\varphi_1(z)\\ & = \varphi_2(g(z_0))\varphi_1(z_0)\\ & = f'(g(z_0)) g'(z_0). \end{align*} Como $z_0 \in U_1$ era arbitrario, entonces es claro que $f\circ g$ es analítica en $U_1$ y su derivada está dada por (16.6).

$\blacksquare$

Ejemplo 16.6.
Determina la derivada de las siguientes funciones y en caso de ser necesario especifica en dónde es analítica la función.

a) $f(z) = (iz^2+3z)^5$.

Solución. De acuerdo con la regla de la cadena tenemos que: \begin{equation*} f'(z) = 5(iz^2+3z)^4(2iz + 3). \end{equation*} b) $f(z) = \dfrac{(z^2+1)^4}{z^4}$.

Solución. Considerando la proposición 16.2(3) y la regla de la cadena tenemos que: \begin{align*} f'(z) & = \frac{4(z^2+1)^3(2z)(z^4) – (z^2+1)^4(4z^3)}{(z^4)^2}\\ & = \frac{4(z^2+1)^3(z^2 -1)}{z^5}. \end{align*} c) $f(z) = (z^3+1)^{10}$.

Solución. Por la regla de la cadena tenemos que: \begin{equation*} f'(z) = 10(z^3+1)^9(3z) = 30z(z^3+1)^9. \end{equation*}

Otro resultado importante, con el que estamos familiarizados por nuestros cursos de Cálculo, es el de la regla de L’Hôpital. Como consecuencia de la analicidad de funciones complejas, tenemos una versión de esta regla para calcular límites de cocientes que consideren indeterminaciones de la forma $0/0$.

Proposición 16.5. (Regla de L’Hôpital.)
Sean $U\subset\mathbb{C}$ un conjunto abierto y $z_0\in U$. Si $f$ y $g$ son dos funciones analíticas en $z_0$ tales que $f(z_0) = 0 = g(z_0)$ y $g'(z_0)\neq 0$, entonces: \begin{equation*} \lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}. \end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 16.7.
Considera las siguientes funciones y determina los siguientes límites:

a) $\lim_{z\to 2+i}\dfrac{f(z)}{g(z)}$, donde $f(z) = z^2 – 4z + 5$ y $g(z) = z^3-z-10i$.

Solución. Es fácil verificar que $f(2+i) = g(2+i) = 0$, por lo que evaluar el límite dado nos lleva a una indeterminación de la forma $0/0$. Dado que $f$ y $g$ son funciones polinómicas, es claro que son funciones enteras, cuyas derivadas son: \begin{align*} f'(z) = 2z-4,\\ g'(z) = 3z^{2}-1 \end{align*} y $g'(i) \neq 0$, por lo que de acuerdo con la regla de L’Hôpital tenemos que: \begin{align*} \lim_{z \to 2+i} \frac{f(z)}{g(z)} & = \lim_{z \to 2+i} \frac{z^{2}-4z+5}{z^3 -z -10i}\\ & = \frac{2(2+i) – 4}{3(2+i)^2-1}\\ & = \frac{2i}{12i + 8}\\ & = \frac{3}{26} + \frac{1}{26} i. \end{align*} b) $\lim_{z\to i}\dfrac{f(z)}{g(z)}$, donde $f(z) = z^{14} + 1$ y $g(z) = z^7 + i$.

Solución. Claramente $f(i) = g(i) = 0$, por lo que evaluar el límite dado nos lleva a una indeterminación de la forma $0/0$. Dado que $f$ y $g$ son funciones polinómicas, es claro que son funciones enteras con derivadas: \begin{align*} f'(z) = 14z^{13},\\ g'(z) = 7z^{6} \end{align*} y $g'(i) \neq 0$, por lo que de acuerdo con la proposición 14.5 tenemos que: \begin{align*} \lim_{z \to i} \frac{f(z)}{g(z)} & = \lim_{z \to i} \frac{z^{14}+1}{z^7 + i}\\ & = \frac{14i^{13}}{7i^6}\\ & = 2i^7\\ & = -2i. \end{align*}

Proposición 16.6. (Teorema de la función inversa.)
Sean $U,G\subset\mathbb{C}$ dos conjuntos abiertos, $f:U \to G$ una función biyectiva, $g:G \to U$ la inversa de $f$ y $z_0\in G$. Si $f$ es analítica en $g(z_0)$ con $f'(g(z_0))\neq 0$ y $g$ es continua en $z_0$, entonces $g$ es analítica en $z_0$ y su derivada es: \begin{equation*} g'(z_0) = \frac{1}{f'(g(z_0))}. \end{equation*}

Demostración. Dadas las hipótesis, como $f(g(z)) = z$ para todo $z\in G$, entonces tenemos que: \begin{align*} g'(z_0) & = \lim_{z\to z_0}\frac{g(z) – g(z_0)}{z – z_0}\\ & = \lim_{z\to z_0}\frac{g(z) – g(z_0)}{f(g(z)) – f(g(z_0))}\\ & = \lim_{z\to z_0}\dfrac{1}{\dfrac{f(g(z)) – f(g(z_0))}{g(z) – g(z_0)}}. \end{align*}

Sea $w = g(z)$, definimos: \begin{equation*} \varphi(w)= \left\{ \begin{array}{lcc} \dfrac{f(w) – f(w_0)}{w – w_0} & \text{si} & w \neq w_0, \\ f'(w_0) & \text{si} & w = w_0. \end{array} \right. \end{equation*}

Dado que $f$ es analítica en $w_0 = g(z_0)$, entonces: \begin{align*} \varphi(w_0) = f'(w_0) & = \lim_{w \to w_0} \frac{f(w) – f(w_0)}{w-w_0}\\ & = \lim_{w \to w_0} \varphi(w), \end{align*} por lo que $\varphi$ es una función continua en $w_0$. Por otra parte, como $g$ es continua en $z_0$, entonces $\lim_{z\to z_0} g(z) = g(z_0) = w_0 \in U$. Así, por la proposición 15.4 de la entrada anterior, tenemos que: \begin{align*} g'(z_0) & = \lim_{z\to z_0}\frac{1}{\varphi(g(z))}\\ & = \frac{1}{\varphi\left(\lim_{z\to z_0}g(z)\right)}\\ & = \frac{1}{f'(w_0)}\\ & = \frac{1}{f'(g(z_0))}. \end{align*}

$\blacksquare$

Tarea moral

  1. Mediante la definición 16.1 obtén la derivada de las siguientes funciones.
    a) $f(z) = z – \dfrac{1}{z}$.
    b) $f(z) = -z^{-2}$.
    c) $f(z) = \dfrac{1}{i2z}$.
  2. Sean $a,b\in\mathbb{C}$ constantes y $n\in\mathbb{N}^+$. Determina dónde existen las derivadas de las siguientes funciones y utiliza las reglas de diferenciación para obtener sus derivadas.
    a) $f(z) = \dfrac{1}{(z-a)^n}$.
    b) $f(z) = \dfrac{iz^2-2z}{3z -i +1}$.
    c) $f(z) = \left(\dfrac{z-a}{z-b}\right)^n$.
    d) $f(z) = z + \dfrac{1}{z(z^2-b)}$.
  3. Considera a la función $f:\mathbb{C}\setminus{0}\to\mathbb{C}$ dada por $f(z)=z^n$. Prueba que $f$ es analítica en $\mathbb{C}\setminus\{0\}$, para toda $n\in\mathbb{Z}$, y que su derivada está dada por (16.3).
  4. Demuestra la proposición 16.5. Hint: Considera que: \begin{equation*} \frac{f(z)}{g(z)} = \frac{f(z) – f(z_0)}{z-z_0} \frac{1}{\frac{g(z) – g(z_0)}{z-z_0}}. \end{equation*}
  5. Considera a la función $f(z) = |\,z\,|^2$, la cual es continua en el punto $z=0$.
    a) Prueba que $f(z)$ es diferenciable en el origen.
    b) Prueba que $f(z)$ no es diferenciable en nigún punto $z\neq 0$.
  6. Calcula los siguientes límites.
    a) $\lim_{z \to \sqrt{2} i} \dfrac{z^3 + 5z^2 + 2z + 10}{z^5 + 2z^3}$.
    b) $\lim_{z \to 1 + i} \dfrac{z^5 + 4z}{z^2 -2z + 2}$.
    c) $\lim_{z \to \sqrt{2}(1+i)} \dfrac{z^4 + 16}{z^2 -2\sqrt{2} z + 4}$.
    Hint: Utiliza la regla de L’Hôpital.
  7. Prueba que la función $f(z) = |\,z\,|$ no es diferenciable en ningún punto.

Más adelante…

Como hemos visto con los ejemplos anteriores, las reglas de diferenciación, en el sentido complejo, para la suma, el producto y el cociente de funciones, al igual que para las potencias enteras, parecen ser simplemente una extensión de las reglas de diferenciación para funciones reales, sin embargo como hemos mencionado antes, la derivada en el caso complejo es más restrictiva. A pesar de que parezca que simplemente estamos trabajando con la variable $z$, no debemos olvidar que dicha variable depende a su vez de dos variables, su parte real y su parte imaginaria, por lo que las reglas de diferenciación obtenidas hasta ahora puede que no nos permitan obtener la derivada de algunas funciones complejas, incluso aunque estas funciones sí posean derivadas, por ejemplo si consideramos a las funciones $f(z) = 4x^2 – iy$ y $g(z) = xy + i(x+y)$, es claro que no podemos utilizar la proposición 16.2 para intentar obtener sus derivadas, en caso de existir.

Es importante remarcar que a diferencia del caso real en el que dabamos distintas interpretaciones a la derivada de una función, en el caso complejo no nos centraremos en darle una interpretación a la derivada, sino que nos enfocaremos en saber si una función compleja tiene o no derivada, ya que la existencia de la misma nos dice mucho sobre la función compleja. Por ello en la siguiente entrada caracterizaremos la diferenciabilidad compleja mediante las ecuaciones de Cauchy-Riemann, las cuales resultan ser una condición necesaria para asegurar la diferenciabilidad de una función compleja y veremos que bajo ciertas condiciones podemos garantizar que también son una condición suficiente.

Entradas relacionadas