Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con valores propios repetidos

Por Eduardo Vera Rosales

Introducción

En las dos entradas anteriores estudiamos el plano fase para un sistema de dos ecuaciones homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuyos valores propios son reales distintos no nulos o complejos. Analizamos el comportamiento de las soluciones en el plano fase y también la estabilidad del punto de equilibrio. Clasificamos los puntos de equilibrio en repulsores, atractores, puntos silla, centros, repulsores espirales y atractores espirales, según sea el caso.

Continuamos en esta entrada revisando el plano fase para sistemas de ecuaciones del mismo tipo, pero ahora consideraremos el caso cuando dicho sistema tiene valores propios repetidos. Sabemos que existen dos casos: cuando la matriz asociada al sistema es diagonalizable y cuando no lo es.

Si la matriz asociada es diagonalizable veremos que el plano fase tiene una forma muy sencilla. En efecto, como la solución general es de la forma $$\textbf{X}(t)=c_{1}e^{\lambda_{1} t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}+c_{2}e^{\lambda_{2} t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$ Veremos que todo vector en $\mathbb{R}^{2}$ es un vector propio del sistema, y por tanto las soluciones (no triviales) en el plano fase son rayos que salen del origen.

Si la matriz asociada al sistema no es diagonalizable entonces la solución general tiene la forma $$\textbf{X}(t)=c_{1}e^{\lambda t}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+c_{2}e^{\lambda t}\left(\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}+t\left(\textbf{A}-\lambda\textbf{Id}\right)\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)$$ donde $\lambda$ es el único valor propio del sistema, $(u_{1},u_{2})$ su único vector propio y $(v_{1},v_{2})$ es un vector propio generalizado. En este caso, solo tenemos una solución de línea recta en el plano fase, así que veremos cuál es el comportamiento de las demás soluciones.

Por supuesto, veremos algunos ejemplos para terminar de entender las ideas presentadas.

Plano fase para sistemas con valores propios repetidos

En el primer video estudiamos el plano fase de manera general para sistemas de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuando este tiene un único valor propio. Consideramos los casos cuando la matriz asociada al sistema es diagonalizable y cuando no lo es.

En el segundo video dibujamos el plano fase de algunos sistemas de ecuaciones con un único valor propio.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Sea $\textbf{A}$ una matriz de tamaño $2\times 2$ con entradas reales. Muestra que $\textbf{A}$ es diagonalizable y con único valor propio si y sólo si $\textbf{A}=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$.
  • Encuentra la solución general y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 4 & -4 \\0 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 3 & -4 \\1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} -6 & -5 \\5 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$

Más adelante

Estamos a punto de finalizar el estudio del plano fase para sistemas de dos ecuaciones con coeficientes constantes. Sin embargo, aún nos falta un caso, que es cuando el sistema tiene un valor propio igual a cero. El plano fase para este tipo de sistemas es peculiar ya que el sistema tiene infinitos puntos de equilibrio. En la siguiente entrada estudiaremos este caso particular.

¡No te lo pierdas!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Teoría de los Conjuntos I: El axioma de buena fundación

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del axioma de buena fundación. Este axioma nos permitirá decir cuándo un conjunto esta bien fundado, es decir, bien construido. Además daremos otro argumento para probar que la colección de todos los conjuntos no es un conjunto.

Acerca del axioma

Axioma de buena fundación. Para cualquier conjunto $X$ no vacío, existe $u\in X$ tal que $u\cap X=\emptyset$.

En los siguiente ejemplos no será necesario invocar al axioma de buena fundación pues tendremos a todos sus elementos escritos de manera explícita. Sin embargo, ayudarán a entender qué es lo que el axioma de buena fundación siempre garantiza que existe.

Ejemplos.

  • Sea $A=\set{\emptyset}$, el único elemento que tiene $A$ es $\emptyset$ y en efecto, $A\cap \emptyset=\emptyset$. Esto último ocurre pues no existe ningún conjunto $x$ tal que $x\in \set{\emptyset}$ y $x\in \emptyset$.
  • Consideremos al conjunto $B=\set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}$. Veamos que existe $u\in B$ tal que $u\cap B=\emptyset$. Dado que $B$ es un conjunto pequeño podemos explorar qué ocurre con cada uno de sus elementos:
    – Para $\emptyset\in B$ tenemos que $\emptyset\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\emptyset$.
    – Ahora, para $\set{\emptyset}\in B$ ocurre que $\set{\emptyset}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\emptyset}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    – Si consideramos $\set{\set{\emptyset}}\in B$ ocurre que $\set{\set{\emptyset}}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\set{\emptyset}}$ tampoco funciona.
    Por lo tanto, existe $u=\emptyset\in B$ tal que $u$ y $B$ no tienen elementos en común. Por el análisis de casos, este $u$ es único.
  • Tomemos $C=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$. Haciendo un análisis de los elementos del conjunto $C$ tenemos lo siguiente:
    – Para $\set{\emptyset}\in C$ tenemos que $\set{\emptyset}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}=\emptyset$ pues $\emptyset\in\set{\emptyset}$ pero $\emptyset\notin \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$.
    – Ahora, para $\set{\emptyset,\set{\emptyset}}\in C$ ocurre que $\set{\emptyset,\set{\emptyset}}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}= \set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    Por lo tanto, existe $u=\emptyset\in C$ tal que $u$ y $C$ no tienen elementos en común. Una vez más, este elemento es único.

$\square$

Conjuntos que no existen

El axioma de buena fundación juega un papel importante para decir qué conjuntos no pueden existir. Veamos los siguientes resultados:

Teorema. Para cualquier conjunto $x$, no es cierto que $x\in x$. Es decir, ningún conjunto puede pertenecer a sí mismo.

Demostración.
Supongamos que sí existe un conjunto $x$ tal que $x\in x$. Luego, $\set{x}$ es un conjunto por el axioma de par y es tal que $x\in \set{x}$.
De lo anterior, tenemos que $x\cap \set{x}\not=\emptyset$ pues $x\in x\cap\set{x}$. Esto último contradice al axioma de buena fundación, pues $x$ podría ser el único elemento en $\{x\}$ dado por dicho axioma. Dado que la contradicción vino de suponer que existe $x$ tal que $x\in x$, resulta que no existe un conjunto que haga tal cosa.

$\square$

Teorema. Sean $a$ y $b$ conjuntos no vacíos. No existen ciclos de la forma $a\in b\in a$.

Demostración.
Supongamos que sí existe algún ciclo de la forma $a\in b\in a$. Luego, por el axioma de par podemos considerar al conjunto $\set{a,b}$. Dado que $\set{a,b}$ es un conjunto pequeño podemos analizar qué pasa con cada uno de sus elementos:
– Para $a\in\set{a,b}$ tenemos que $a\cap\set{a,b}\not=\emptyset$ pues $b\in a$ y $b\in \set{a,b}$,
– Si tomamos a $b\in\set{a,b}$ tenemos que $b\cap\set{a,b}\not=\emptyset$ pues $a\in b$ y $a\in \set{a,b}$.

Sin embargo, en todas las posibilidades obtenemos una contradicción al axioma de buena fundación. Así, no existen ciclos de la forma $a\in b\in a$.

$\square$

Diferencias entre la pertencia y contención

Vistos estos teoremas, nos tomaremos el tiempo para establecer las diferencias que hay entre la contención y la pertenencia.

Por un lado, $a\subseteq a$ siempre ocurre para cualquier conjunto $a$, mientras que $a\in a$ ya vimos que es imposible.

Vimos que la contención es transitiva (ver Teoría de los Conjuntos I: Axioma de conjunto potencia), es decir, si $a\subseteq b$ y $b\subseteq c$, entonces $a\subseteq c$. Resulta que si $a\in b$ y $b\in c$, entonces $a\in c$ no siempre ocurre, es decir, la pertenencia no es transitiva.

Ejemplo.

Consideremos $a=\set{\emptyset}$,$b= \set{\set{\emptyset}}$ y $c=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $a\in b$ y $b\in c$, sin embargo, $a\notin c$.

$\square$

La colección de todos los conjuntos

Anteriormente, probamos con ayuda de la paradoja de Rusell que la colección que tiene como elementos a todos los conjuntos no es un conjunto. En esta sección, reforzaremos esta afirmación utilizando el axioma de buena fundación para demostrar una vez más que está colección no es un conjunto.

Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

Demostración.

Supongamos que $\mathcal{P}(x)\subseteq x$, entonces para cualquier $y\in \mathcal{P}(x)$, $y\in x$. Dado que $x\subseteq x$, entonces $x\in \mathcal{P}(x)$. Así, $x\in x$ y lo cual contradice el primer teorema de la sección anterior. Por lo tanto, para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

$\square$

Teorema. La colección de todos los conjuntos no es conjunto.

Demostración.

Supongamos que sí existe. Sea $V$ el conjunto de todos los conjuntos. Por axioma de conjunto potencia tenemos que $\mathcal{P}(V)$ es un conjunto y es tal que $\mathcal{P}(V)\not\subseteq V$. Así, existe $x\in \mathcal{P}(V)$ tal que $x\notin V$ lo que contradice que $V$ tiene a todos los conjuntos.

Por lo tanto, el conjunto de todos los conjuntos no existe.

$\square$

La intersección del conjunto vacío

Así como existen diversas formas de escribir al conjunto vacío, también hay varias formas de escribir a la colección de todos los conjuntos. Resulta que si queremos intersecar al conjunto vacío no obtenemos al vacío, sino que obtenemos a la colección de todos los conjuntos.

Afirmación. $\bigcap \emptyset$ no es un conjunto.

Demostración. Supongamos que $\bigcap\emptyset$ sí es un conjunto. Sea $x\in \bigcap\emptyset$, entonces para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$. Sin embargo, $y\in \emptyset$ es falso para cualquier conjunto $y$ y por lo tanto, para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$ es verdadero. (Ver tabla de verdad del conectivo implicación: Teoría de los Conjuntos I: Repaso sobre lenguaje de la Teoría de los Conjuntos)

Esto significa que cualquier conjunto que demos va a pertenecer a $\bigcap \emptyset$, es decir, este conjunto tiene como elementos a todos los conjuntos. Esto, como vimos arriba, es imposible.

$\square$

Tarea moral

  • Prueba que para $A_0,A_1, A_2,\cdots A_n$ conjuntos, el ciclo $A_0\in A_1\in A_2\in\cdots\in A_n\in A_0$ no existe (Estrictamente hablando, esta demostración requerirá que formalicemos estos «puntos suspensivos». De cualquier forma, intenta dar una demostración inductiva con lo que sabes de este tipo de demostraciones.)
  • Sea $A=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in A$ tal que $u\cap A=\emptyset$.
  • Sea $B=\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in B$ tal que $u\cap B=\emptyset$.
  • Da otro ejemplo de una propiedad que describa a la clase de todos los conjuntos.
  • Prueba que para cualquier conjunto $X$, se tiene que $X\cap \emptyset=\emptyset$.

Más adelante…

En la siguiente entrada hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Así mismo veremos cómo dichos axiomas junto con el esquema de comprensión implican los axiomas que hemos visto hasta ahora. De modo que la siguiente entrada nos servirá para hacer un recordatorio sobre todo lo que hemos visto hasta este momento.

Entradas relacionadas


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I: Sistemas lineales no homogéneos – Método de variación de parámetros

Por Omar González Franco

Las ciencias matemáticas exhiben particularmente orden, simetría
y límites; y esas son las más grandes formas de belleza.
– Aristóteles

Introducción

Ya sabemos resolver sistemas lineales homogéneos con coeficientes constantes, en esta entrada estudiaremos el caso no homogéneo.

Como hemos visto en las dos unidades anteriores, el método de variación de parámetros ha sido fundamental para resolver ecuaciones diferenciales en el caso no homogéneo. Éste mismo método es el que desarrollaremos en esta entrada para resolver sistemas lineales no homogéneos con coeficientes constantes.

Cabe mencionar que en esta entrada utilizaremos bastante el concepto de exponencial de una matriz y el de matriz fundamental de soluciones.

Sistemas lineales homogéneos

El sistema lineal que hemos estudiado es

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} \label{1} \tag{1}$$

Donde $\mathbf{A}$ es una matriz con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Ahora sabemos que la solución general del sistema lineal homogéneo (\ref{1}) es de la forma

$$\mathbf{Y}_{c}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) \label{3} \tag{3}$$

En donde las funciones $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$ son soluciones linealmente independientes del mismo sistema. Usamos el subíndice $c$ debido a que, como antes, al resolver el caso no homogéneo será necesario resolver primero el sistema homogéneo asociado y la solución general de dicho sistema será la solución complementaria del sistema no homogéneo.

Recordemos que la matriz que tiene por columnas a las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ de (\ref{3}) corresponde a la matriz fundamental de soluciones.

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1}(t) & \mathbf{Y}_{2}(t) & \cdots & \mathbf{Y}_{n}(t) \end{pmatrix} = \begin{pmatrix} y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{4} \tag{4}$$

Si definimos el vector de constantes

$$\mathbf{C} = \begin{pmatrix}
c_{1} \\ c_{2} \\ \vdots \\ c_{n}
\end{pmatrix} \label{5} \tag{5}$$

podemos escribir la solución (\ref{3}) como

$$\mathbf{Y}_{c}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} \label{6} \tag{6}$$

Recordemos este resultado para más adelante.

Sistemas lineales no homogéneos

El sistema lineal no homogéneo que intentaremos resolver es de la forma

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G} \label{7} \tag{7}$$

Donde $\mathbf{G} = \mathbf{G}(t)$ es una matriz de $n \times 1$ con componentes dependientes de $t$.

$$\mathbf{G}(t) = \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{8} \tag{8}$$

Dada la forma de la solución general de un sistema lineal homogéneo (\ref{3}), parecería natural pensar que el sistema lineal no homogéneo tiene por solución una función de la forma

$$\mathbf{Y}_{p}(t) = u_{1}(t) \mathbf{Y}_{1}(t) + u_{2}(t) \mathbf{Y}_{2}(t) + \cdots + u_{n}(t) \mathbf{Y}_{n}(t) \label{9} \tag{9}$$

En donde $u_{i}(t)$, $i = 1, 2, \cdots, n$ son funciones escalares de $t$ derivables y las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ forman una matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$. Si definimos el vector

$$\mathbf{U}(t) = \begin{pmatrix}
u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{n}(t)
\end{pmatrix} \label{10} \tag{10}$$

Entonces la solución propuesta (\ref{9}) adquiere la forma

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \mathbf{U}(t) \label{11} \tag{11}$$

El método de variación de parámetros nos permitirá obtener la forma del vector $\mathbf{U}(t)$, una vez obtenida podremos formar la solución general del sistema lineal no homogéneo (\ref{7}) que, como siempre, será la superposición de la solución complementaria del sistema lineal homogéneo asociado $\mathbf{Y}_{c}(t)$ más la solución particular del sistema lineal no homogéneo $\mathbf{Y}_{p}(t)$, esto es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t) \label{12} \tag{12}$$

Variación de parámetros

Comencemos a desarrollar el método de variación de parámetros, como mencionamos antes, el objetivo es encontrar la forma explícita del vector (\ref{10}) para formar la solución particular del sistema lineal no homogéneo.

Consideremos la función propuesta (\ref{11}) y derivémosla.

$$\mathbf{Y}_{p}^{\prime}(t) = \hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) \label{13} \tag{13}$$

Si sustituimos (\ref{11}) y (\ref{13}) en el sistema lineal no homogéneo (\ref{7}), se tiene

$$\hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} [\hat{\mathbf{Y}}(t) \mathbf{U}(t)] + \mathbf{G}(t) \label{14} \tag{14}$$

Como $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones sabemos que satisface el sistema homogéneo, es decir,

$$\hat{\mathbf{Y}}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \label{15} \tag{15}$$

Si sustituimos en (\ref{14}) la ecuación queda como

$$\mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \mathbf{G}(t)$$

O bien,

$$\hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{G}(t) \label{16} \tag{16}$$

La matriz fundamental es no singular, de manera que siempre existe su inversa, esto nos permite establecer que

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) \label{17} \tag{17}$$

Esta ecuación es matricial y sabemos que es posible integrar sobre matrices, así que integremos la ecuación anterior con el objetivo de hallar la forma de $\mathbf{U}$.

$$\mathbf{U}(t) = \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{18} \tag{18}$$

Ahora que conocemos la forma de $\mathbf{U}(t)$, sustituimos en la solución propuesta (\ref{11}), de forma que una solución particular del sistema lineal no homogéneo es

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{19} \tag{19}$$

Por lo tanto, de (\ref{6}) y el resultado (\ref{19}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{20} \tag{20}$$

Si $\hat{\mathbf{Y}}(t)$ es la matriz fundamental de soluciones $e^{\mathbf{A} t}$ y considerando que $\hat{\mathbf{Y}}^{-1}(t) = e^{-\mathbf{A} t}$, el resultado anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{C} + e^{\mathbf{A}t} \int e^{-\mathbf{A} t} \mathbf{G}(t) dt \label{21} \tag{21}$$

Problema con valores iniciales

Consideremos el problema con valores iniciales

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G}; \hspace{1cm} \mathbf{Y}(t_{0}) = \mathbf{Y}_{0} \label{22} \tag{22}$$

De nuestro desarrollo anterior consideremos la relación (\ref{17}).

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t)$$

En esta ocasión integremos de $t_{0}$ a $t$ y usemos el teorema fundamental del cálculo.

$$\mathbf{U}(t) = \mathbf{U}(t_{0}) + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{23} \tag{23}$$

Notemos que si aplicamos la condición inicial $\mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$ sobre la función (\ref{11}), se obtiene

$$\mathbf{Y}_{p}(t_{0}) = \hat{\mathbf{Y}}(t_{0}) \mathbf{U}(t_{0}) = \mathbf{Y}_{0} \label{24} \tag{24}$$

De donde,

$$\mathbf{U}(t_{0}) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} \label{25} \tag{25}$$

Sustituimos este resultado en la ecuación (\ref{23}).

$$\mathbf{U}(t) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{26} \tag{26}$$

Aquí debemos tener cuidado, si sustituimos la función (\ref{26}) en (\ref{11}), se obtiene

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{27} \tag{27}$$

Pero $\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0}$ es una matriz de constantes, digamos

$$\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} = \mathbf{C}$$

Entonces el resultado (\ref{27}) queda como

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{28} \tag{28}$$

Este resultado se parece a la ecuación (\ref{20}), es decir, a pesar de que sustituimos (\ref{26}) en (\ref{11}) esperando obtener la solución particular $\mathbf{Y}_{p}(t)$, en realidad estamos obteniendo la solución general, la solución general del problema de valores iniciales.

Si consideramos nuevamente que $\hat{\mathbf{Y}}(t) = e^{\mathbf{A} t}$, el resultado (\ref{27}) se reduce significativamente.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} e^{-\mathbf{A} t_{0}} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{29} \tag{29}$$

O bien,

$$\mathbf{Y}(t) = e^{\mathbf{A}(t -t_{0})} \mathbf{Y}_{0} + \int_{t_{0}}^{t}e^{\mathbf{A} (t -s)} \mathbf{G}(s) ds \label{30} \tag{30}$$

Por otro lado, si $t_{0} = 0$, de (\ref{27}) se obtiene que

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(0) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds$$

Pero recordemos que

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0) \label{31} \tag{31}$$

Entonces la solución anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{32} \tag{32}$$

Si nuestro propósito es determinar la solución general de un sistema lineal no homogéneo (\ref{7}), primero resolvemos el sistema lineal homogéneo asociado para obtener la solución complementaria en la forma (\ref{3}). Con las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ obtenidas formamos una matriz fundamental $\hat{\mathbf{Y}}(t)$, se calcula su inversa y se sustituyen las matrices correspondientes en la solución particular (\ref{19}). Una vez obtenidas ambas soluciones, la solución general del sistema lineal no homogéneo será

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

Sin embargo, si lo que tenemos es un problema de valores iniciales, debemos nuevamente obtener la solución del sistema lineal homogéneo asociado ya que eso es lo que nos permite formar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$, una vez obtenida esta función calculamos su inversa y se sustituyen las matrices correspondientes en la ecuación (\ref{27}), esto nos dará la solución completa del problema de valores iniciales, es decir, no es necesario aplicar las condiciones iniciales en la solución complementaria para obtener los valores de las constantes $c_{1}, c_{2}, \cdots, c_{n}$.

Para concluir con esta entrada realicemos dos ejemplos, en el primero de ellos obtendremos la solución general de un sistema lineal no homogéneo y en el segundo ejemplo resolveremos un problema con valores iniciales. Con estos ejemplos se espera que el método quede claro.

Ejemplo: Obtener la solución general del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
1 \\ -1
\end{pmatrix} e^{t}$$

Solución: Resolvamos primero el sistema homogéneo asociado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y}$$

En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz.

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
-\lambda & 2 \\ -1 & 3 -\lambda
\end{vmatrix} = 0$$

La ecuación característica es

$$\lambda^{2} -3 \lambda + 2 = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios son

$$\lambda_{1} = 1\hspace{1cm} y \hspace{1cm} \lambda_{2} = 2$$

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \begin{pmatrix}
-1 & 2 \\ -1 & 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + 2 k_{2} = 0$$

Es decir, $2 k_{2} = k_{1}$. Elegimos $k_{2} = 1$, entonces $k_{1} = 2$. Por lo tanto el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 2$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
-2 & 2 \\ -1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + k_{2} = 0$$

Es decir, $k_{1} = k_{2}$. Elegimos $k_{1} = k_{2} = 1$. Por lo tanto, el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Con estos resultados concluimos que la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Para determinar la solución particular $\mathbf{Y}_{p}(t)$, formemos, con el resultado anterior, la matriz fundamental de soluciones (\ref{4}).

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix}$$

Como también requerimos de la matriz inversa, verifica que

$$\hat{\mathbf{Y}}^{-1}(t) = \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix}$$

La matriz $\mathbf{G}$ en este caso es

$$ \mathbf{G}(t) = \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix}$$

Sustituyamos estas matrices en la solución particular (\ref{19}).

\begin{align*}
\mathbf{Y}_{p}(t) &= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix} \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix} dt \\
&= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt
\end{align*}

Resolviendo la integral (sin considerar constantes de integración), se obtiene

$$\int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt = \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix}$$

Entonces,

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix} = \begin{pmatrix}
4t e^{t} + 3e^{t} \\ 2te^{t} + 3e^{t}
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}_{p}(t) =\begin{pmatrix}
4 \\ 2
\end{pmatrix} te^{t} + \begin{pmatrix}
3 \\ 3
\end{pmatrix} e^{t}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix} + \begin{pmatrix}
3 \\ 3
\end{pmatrix}e^{t} + \begin{pmatrix}
4 \\ 2
\end{pmatrix} t e^{t}$$

$\square$

Realicemos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix}$$

Solución: Primero debemos obtener la solución del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y}$$

Ello nos permitirá obtener la matriz fundamental de soluciones. En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz. La ecuación característica se obtendrá de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
1-\lambda & 0 & 0 \\ 2 & 1 -\lambda & -2 \\ 3 & 2 & 1 -\lambda
\end{vmatrix} = 0$$

Desarrollando el determinante obtendremos que

$$(1 -\lambda )(\lambda ^{2} -2 \lambda + 5) = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios de $\mathbf{A}$ son

$$\lambda_{1} = 1 \hspace{1cm} y \hspace{1cm} \lambda_{2} = 1 + 2i, \hspace{1cm} \lambda_{3} = 1 -2i$$

De acuerdo a los valores propios obtenidos, la manera de resolver el sistema homogéneo será aplicando la teoría vista en la entrada sobre valores propios complejos.

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \left[ \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \right] \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 2 & 0 & -2 \\ 3 & 2 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema que se obtiene es

\begin{align*}
2 k_{1} -2 k_{3} &= 0 \\
3 k_{1} + 2 k_{2} &= 0
\end{align*}

De este sistema se observa que

\begin{align*}
k_{1} &= k_{3} \\
k_{2} &= -\dfrac{3k_{1}}{2}
\end{align*}

Elegimos $k_{1} = 2 = k_{3}$, de tal manera que $k_{2} = -3$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + 2i$.

Buscamos un vector $\mathbf{K}$, diferente de cero, tal que

$$[\mathbf{A} -(1 + 2i) \mathbf{I}] \mathbf{K} = \begin{pmatrix}
-2i & 0 & 0 \\ 2 & -2i & -2 \\ 3 & 2 & -2i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-2i k_{1} &= 0 \\
2k_{1} -2i k_{2} -2k_{3} &= 0 \\
3k_{1} + 2k_{2} -2i k_{3} &= 0
\end{align*}

De este sistema se observa que $k_{1} = 0$ y $k_{3} = -ik_{2}$. Elegimos $k_{2} = 1$, de manera que el segundo vector propio sea

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Caso 3: $\lambda_{2} = 1 -2i$.

Sabemos que este caso es el conjugado del caso anterior, por lo que directamente establecemos que el tercer vector propio es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

La solución general del sistema lineal homogéneo asociado, en su forma compleja, es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} + c_{3} e^{(1 -2i) t} \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

Sin embargo esta solución no nos sirve de mucho, pues desearíamos construir la matriz fundamental de soluciones con valores reales. Recordando lo visto en la entrada sobre valores propios complejos, podemos encontrar dos funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$, tal que la solución general sea de la forma

$$\mathbf{Y}_{c}(t) = c_{1} e^{\lambda_{1} t} + c_{2} \mathbf{W}_{1}(t) + c_{3} \mathbf{W}_{2}(t) \label{33} \tag{33}$$

Recordemos que las funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ están dadas por

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] \label{34} \tag{34}$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{35} \tag{35}$$

Consideremos el caso 2 en el que $\lambda_{2} = 1 + 2i$ y

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} $$

De estos resultados obtenemos que $\alpha = 1$, $\beta = 2$ y

$$\mathbf{U} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix}$$

Sustituyamos en la funciones (\ref{34}) y (\ref{35}). Por un lado,

\begin{align*}
\mathbf{W}_{1}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \cos(2t) -\begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \sin(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} -\begin{pmatrix}
0 \\ 0 \\ -\sin(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix}$$

Por otro lado,

\begin{align*}
\mathbf{W}_{2}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \sin(2t) + \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \cos(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

Recordemos que estas funciones también se pueden obtener considerando la identidad de Euler. Del caso 2 la solución que se obtiene es

$$\mathbf{Y}_{2c}(t) = e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Así,

$$\mathbf{W}_{1}(t) = Re \{ \mathbf{Y}_{2c}(t) \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = Im \{ \mathbf{Y}_{2c}(t) \}$$

Usando la identidad de Euler sobre esta solución obtenemos lo siguiente.

\begin{align*}
e^{(1 + 2i)t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} &= e^{t}[\cos(2t) + i \sin(2t)] \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -i \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] + i e^{t} \left[ \sin(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -\cos(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \sin(2t)
\end{pmatrix} \right] + ie^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

De donde,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

De esta forma, la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix} \label{36} \tag{36}$$

Esta solución es de la forma (\ref{3}) por lo que la matriz fundamental de soluciones, formada por estos vectores linealmente independientes, es

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t} & e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix}$$

Para obtener la solución del problema con valores iniciales usaremos el resultado (\ref{29}) para $t_{0} = 0$.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{0}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{37} \tag{37}$$

Es decir, consideraremos a la matriz $e^{\mathbf{A} t}$ como la matriz fundamental de soluciones. También es posible usar la relación (\ref{32}) usando la matriz $\hat{\mathbf{Y}}(t)$ antes establecida. ¿Por qué son equivalentes ambas formas?.

Determinemos la matriz $e^{\mathbf{A} t}$ usando la relación (\ref{31}). Si evaluamos $t = 0$ en la matriz $\hat{\mathbf{Y}}(t)$ se obtiene la matriz

$$\hat{\mathbf{Y}}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}$$

Comprueba que la matriz inversa es

$$\hat{\mathbf{Y}}^{ -1}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}^{ -1} = \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix}$$

Sustituyamos en (\ref{31}).

\begin{align*}
e^{\mathbf{A}t} &= \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t}& e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix} \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}
\end{align*}

Por lo tanto, la matriz que consideraremos como matriz fundamental de soluciones es

$$e^{\mathbf{A}t} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}$$

Como también requerimos de la inversa de esta matriz, verifica que

$$e^{-\mathbf{A}t} = e^{-t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) -\sin(2t) & \cos(2t) & \sin(2t) \\ 1 -\dfrac{3}{2} \sin(2t) -\cos(2t) & -\sin(2t) & \cos(2t)
\end{pmatrix}$$

En este caso la matriz $\mathbf{G}(t)$ es

$$\mathbf{G}(t) = \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}$$

Sustituyamos todos estos resultados en la solución (\ref{37}).

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{s} \cos(2s)
\end{pmatrix}ds$$

Por un lado,

$$e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix}$$

De tarea moral, determina las constantes $c_{1}$, $c_{2}$ y $c_{3}$ aplicando los valores iniciales sobre la solución complementaria (\ref{36}). ¿Qué relación tiene tu resultado con la operación anterior?.

Por otro lado,

$$e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} e^{s} \begin{pmatrix}
0 \\ 0 \\ \cos(2s)
\end{pmatrix} = \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix}$$

Sustituimos estas matrices en $\mathbf{Y}(t)$.

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds$$

Resolvamos la integral.

\begin{align*}
\int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds &= \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{t} – \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{0} \\
&= \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4t) \\ \dfrac{t}{2} + \dfrac{\sin(4t)}{8}
\end{pmatrix} -\begin{pmatrix}
0 \\ -\dfrac{1}{8} \\ 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}
\end{align*}

Entonces,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}$$

Ahora realicemos el producto del segundo sumando.

\begin{align*}
e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} &= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ \cos(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) -\sin(2t) \left( \dfrac{4t + \sin(4t)}{8} \right) \\ \sin(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) + \cos(2t) \left( \dfrac{4t + \sin(4t)}{8} \right)
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}
\end{align*}

Así,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}$$

Haciendo las operaciones correspondientes se obtiene finalmente que la solución al problema con valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\left( 1+ \dfrac{1}{2}t \right) \sin(2t) \\ \left( 1 + \dfrac{1}{2}t \right) \cos(2t) + \dfrac{5}{4} \sin(2t)
\end{pmatrix}$$

$\square$

Vemos que este método puede ser bastante largo y complicado, de hecho se puede volver una tarea imposible de hacer a mano si se tienen sistemas con matriz $\mathbf{A}$ de $3 \times 3$ o más. Se recomienda, en la medida de lo posible, usar algún programa computacional para llevar a cabo algunas de las operaciones, lo importante es entender como llevar a cabo el método.

Con esto concluimos lo que corresponde al estudio de los distintos métodos para resolver sistemas lineales. Prácticamente hemos concluido con la unidad 3 del curso.

En las siguientes dos entradas de esta unidad trataremos de justificar los teoremas de existencia y unicidad en el caso de los sistemas lineales, esto con el propósito de justificar toda la teoría desarrollada a lo largo de la unidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de los siguientes sistemas lineales no homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \cos(t) \\ \sin(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 \\ -\dfrac{1}{2} & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \csc(t) \\ \sec(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    e^{t} \\ e^{2t} \\ te^{3t}
    \end{pmatrix}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 1
    \end{pmatrix} e^{2t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 & -2 \\ 1 & 1 & 1 \\ 2 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 0
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 0 \\ 0
    \end{pmatrix}$

Más adelante…

En la siguiente entrada demostraremos los teoremas de existencia y unicidad para el caso de los sistemas lineales de primer orden con coeficientes constantes homogéneos y no homogéneos y posteriormente, en la última entrada de esta unidad, justificaremos el teorema de existencia y unicidad en el caso general, es decir, para sistemas lineales y no lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Simediana

Por Rubén Alexander Ocampo Arellano

Introducción

La simediana es un tipo especial de ceviana relacionada con la mediana de un triángulo, veremos algunas caracterizaciones y propiedades.

Simediana, primera caracterización

Definición 1. Una simediana de un triángulo es la reflexión de una mediana respecto de la bisectriz interna que pasa por el mismo vértice. Un triángulo tiene tres simedianas.

Notación. Denotaremos a la intersección de una simediana con el lado opuesto como $S$.

Teorema 1. Una ceviana de un triángulo divide internamente al lado opuesto en la razón de los cuadrados de los lados adyacentes si y solo si es simediana.

Demostración. Sean $AA’$ la mediana y $AS$ la simediana en un triángulo $\triangle ABC$.

Sea $H$ el pie de la altura por $A$, calculamos las áreas de los triángulos $\triangle BAS$, $\triangle BAA’$, $\triangle SAC$ y $\triangle A’AC$.

Figura 1

$\begin{equation} (\triangle BAS) = \dfrac{BS \times AH}{2} = \dfrac{BA \times AS \sin \angle BAS}{2}, \end{equation}$
$\begin{equation} (\triangle BAA’) = \dfrac{BA’ \times AH}{2} = \dfrac{BA \times AA’ \sin \angle BAA’}{2}, \end{equation}$
$ \begin{equation} (\triangle SAC) = \dfrac{SC \times AH}{2} = \dfrac{SA \times AC \sin \angle SAC}{2}, \end{equation}$
$\begin{equation} (\triangle A’AC) = \dfrac{A’C \times AH}{2} = \dfrac{AA’ \times AC \sin \angle A’AC}{2}. \end{equation}$

Sea $L$ la intersección de la bisectriz de $A$ con $BC$, entonces
$\begin{equation} \angle BAS = \angle BAL – \angle SAL = \angle LAC – \angle LAA’ = \angle A’AC, \end{equation}$
$\angle BAA’ = \angle BAL + \angle LAA’ = \angle LAC + \angle SAL = \angle SAC.$

Haciendo el cociente de $(1)$ con $(4)$ y de $(2)$ con $(3)$ obtenemos
$\dfrac{BS}{A’C} = \dfrac{BA \times AS}{AA’ \times AC}$,
$\dfrac{BA’}{SC} = \dfrac{BA \times AA’}{SA \times AC}$.

Multiplicando estas dos ecuaciones obtenemos el resultado esperado
$\dfrac{BS}{SC} = \dfrac{BA^2}{AC^2}$.

El reciproco también es cierto, pues el punto $S$ que divide a $BC$ en la razón $\dfrac{BA^2}{AC^2}$, es único.

$\blacksquare$

Exsimediana

Definición 2. Las tangentes al circuncírculo de un triángulo por sus vértices se conocen como simedianas externas o exsimedianas.

Corolario. La simediana y la exsimediana que pasan por el mismo vértice de un triángulo son conjugadas armónicas respecto de los lados del triángulo que forman dicho vértice.

Demostración. En la entrada teorema de Menelao mostramos que la exsimediana de un triángulo divide externamente al lado opuesto en la razón de los cuadrados de los lados que pasan por el mismo vértice.

El resultado se sigue del hecho de que el conjugado armónico es único y el teorema 1.

$\blacksquare$

Teorema 2. Una simediana y las exsimedianas que pasan por vértices distintos son concurrentes, al punto de concurrencia se le conoce como punto exsimediano.

Demostración. En $\triangle ABC$, $AP$ y $CP$ son tangentes al circuncírculo $\Gamma$ de $\triangle ABC$ en $A$ y en $C$ respectivamente y se cortan en $P$ (figura 2).

Figura 2

Sea $D = BP \cap \Gamma$, $D \neq B$, por la proposición 5 de la entrada anterior, $\square ABCD$ es un cuadrilátero armónico.

Entonces, por el teorema 2 de la entrada anterior, el Haz $B(BCDA)$ es armónico, es decir, la tangente a $\Gamma$ en $B$, y $BD$ son conjugadas armónicas respecto de $BA$ y $BC$.

Como el conjugado armónico es único, $BP$ es simediana de $\triangle ABC$, por el corolario anterior.

$\blacksquare$

Antiparalelas (1)

Teorema 3. La $B$-simediana de un triángulo $\triangle ABC$ es el lugar geométrico de los puntos que bisecan a las antiparalelas de $AC$ respecto a $AB$ y $BC$.

Demostración. Sean $D \in AB$ y $E \in BC$ tales que $AC$ y $DE$ son antiparalelas respecto a $AB$ y $BC$, entonces $\square ADEC$ es cíclico.

Figura 3

Por lo tanto, $\angle ACE$ y $\angle EDA$ son suplementarios, en consecuencia, $\angle ACB = \angle ACE = \angle BDE$.

Sea $TB$ tangente al circuncírculo de $\triangle ABC$ en $B$, entonces $\angle ABT = \angle ACB$ pues abarcan el mismo arco, por lo tanto, la $B$-exsimediana y $DE$ son paralelas.

Sea $BS$ una ceviana de $\triangle ABC$, entonces por la proposición 2 de la entrada anterior $BS$ biseca a $DE$ si y solo si el haz $B(TCSA)$ es armónico.

En consecuencia, como el conjugado armónico de $BT$ respecto de $BC$ y $BA$ es la $B$-simediana, $BS$ biseca a $DE$ si y solo si $BS$ es simediana de $\triangle ABC$.

$\blacksquare$

Antiparalelas (2)

Proposición. 1 Si dos antiparalelas a dos de los lados de un triángulo tienen la misma longitud, entonces estas se intersecan en la simediana relativa al tercer lado, el reciproco también es cierto.

Demostración. Sean $\triangle ABC$, $E$, $G \in BC$, $F \in AB$ y $H \in CA$, tales que $EF$, $AC$ son antiparalelas respecto a $AB$ y $BC$; $AB$, $GH$ son antiparalelas respecto a $BC$ y $CA$, y $EF = GH$.

Figura 4

Como $\square AFEC$ y $\square ABGH$ son cíclicos, entonces, $\angle FEB = \angle BAC = \angle CGH$, por lo tanto $PG = PE$.

Sea $P = EF \cap GH$, dado que $FE = GH$ entonces $FP = HP$.

Si $S = AP \cap BC$, considera $I \in AB$, $J \in CA$, tales que $IS \parallel FE$ y $JS \parallel GH$, entonces $\triangle ASI \sim \triangle APF$ y $\triangle ASJ \sim \triangle APH$.

Por lo tanto, $\dfrac{SI}{PF} = \dfrac{AS}{AP} = \dfrac{SJ}{PH}$, como $PF = PH$ entonces $SI = SJ$.

Por otro lado $\triangle SBI \sim \triangle ABC \sim \triangle SJC$, esto es
$\dfrac{SB}{SI} = \dfrac{AB}{AC}$ y $\dfrac{SJ}{SC} = \dfrac{AB}{AC}$.

Como resultado de multiplicar estas dos ecuaciones obtenemos
$\dfrac{BS}{SC} = \dfrac{AB^2}{AC^2}$.

Por el teorema 1, esto implica que $AS$ es la $A$-simediana de $\triangle ABC$.

Notemos que el reciproco también es cierto, esto es, si dos antiparalelas a dos de los lados de un triángulo se intersecan en la simediana relativa al tercer lado, entonces estas tienen la misma longitud.

Esto lo podemos ver tomando la prueba anterior en sentido contrario.

$\blacksquare$

Otra caracterización importante

Teorema 4. Una simediana es el lugar geométrico de los puntos (dentro de los ángulos internos del triángulo o sus ángulos opuestos por el vértice) tales que la razón de sus distancias a los lados adyacentes a la simediana, es igual a la razón entre esos lados.

Demostración. Sean $\triangle ABC$, $A’$ el punto medio de $BC$ y $P \in AA’$, considera las proyecciones $P_c$, $P_b$ de $P$ en $AB$ y $AC$ respectivamente y $A’_c$, $A’_b$, las correspondientes de $A’$.

Figura 5

Como $\triangle APP_c \sim \triangle AA’A’_c$ y $\triangle APP_b \sim \triangle AA’A’_b$ entonces
$\dfrac{PP_c}{A’A’_c} = \dfrac{AP}{AA’} = \dfrac{PP_b}{A’A’_b}$.

Tomando en cuenta que los triángulos $\triangle ABA’$ y $\triangle AA’C$ tienen la misma altura desde $A$, tenemos lo siguiente:
$\dfrac{AC}{AB} = \dfrac{PP_c}{PP_b} = \dfrac{A’A’_c}{A’A’_b}$
$\Leftrightarrow AC \times A’A’_b = AB \times A’A’_c$
$\Leftrightarrow (\triangle AA’C) = (\triangle AA’B)$
$ \Leftrightarrow A’C = BA’$.

Por lo tanto, la mediana de un triángulo es el lugar geométrico de los puntos tales que la razón de sus distancias a los lados adyacentes a la mediana es el inverso de la razón entre dichos lados.

Denotamos la distancia de un punto $P$ a una recta $l$ como $d(P, l)$.

Para $P \in AA’$ considera $P’ \in AS$ su reflexión respecto de la bisectriz de $\angle BAC$, entonces

$\dfrac{d(P’, AB)}{d(P’, AC)} = \dfrac{d(P, AC)}{d(P’, AB)} = \dfrac{AB}{AC}$.

$\blacksquare$

Proposición 2. La recta que une las proyecciones de un punto en la simediana (mediana) de un triángulo, sobre los lados adyacentes, es perpendicular a la mediana (simediana) que pasa por el mismo vértice.

Demostración. En un triángulo $\triangle ABC$ sean $AA’$ la mediana y $AS$ la simediana, considera $P \in AS$ y $D$, $E$, las proyecciones de $P$ en $CA$ y $AB$ respectivamente.

Figura 6

Como $\angle PEA + \angle ADP = \pi$ entonces $\square AEPD$ es cíclico, así que $\angle EAP = \angle EDP$, por la ecuación $(5)$, $\angle EAP = \angle A’AD$.

Sean $F = PD \cap AA’$ y $G = DE \cap AA’$, en los triángulos $\triangle ADF$ y $\triangle DGF$, $\angle FAD = \angle GDF$ y $\angle DFG$ es un ángulo común, por lo tanto son semejantes.

Como $PD \perp AC$ entonces $DE \perp AA’$.

El caso para la mediana es análogo.

$\blacksquare$

Más adelante…

Así como las medianas de un triángulo son concurrentes, las simedianas también son concurrentes, pero dicho punto tiene propiedades importantes por si mismo, y de eso hablaremos en la próxima entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que las segundas intersecciones de una mediana y su correspondiente simediana con el circuncírculo del triángulo, determinan una recta paralela al lado del triángulo relativo a la mediana considerada.
  2.  Sea $\triangle ABC$ un triángulo acutángulo, $D$ y $A’$ las proyecciones de $A$ y $O$, el circuncírculo de $\triangle ABC$, en $BC$ respectivamente, sean $E = BO \cap AD$, $F = CO \cap AD$ y considera $P$ el segundo punto en común entre los circuncírculos de $\triangle ABE$ y $\triangle AFC$, demuestra que $AP$ es la $A$-simediana de $\triangle ABC$.
  3. Sea $P$ un punto dentro de un triángulo isósceles $\triangle ABC$ con $AB = AC$, tal que $\angle PBC = \angle ACP$, si $A’$ es el punto medio de $BC$, muestra que $\angle BPA’$ y $\angle CPA$ son suplementarios.
  4. Sean $\triangle ABC$, $D \in AB$ y $E \in CA$ tal que $DE \parallel BC$, considera $P = BE \cap CD$, los circuncírculos de $\triangle BDP$ y $\triangle CEP$ se intersecan en $P$ y $Q$, muestra que $\angle BAQ = \angle PAC$.
  5. La $A$-simediana $AS$ y la $A$-meidnana $AA’$ de un triángulo $\triangle ABC$ intersecan otra vez a su circuncírculo en $S’$ y $L$ respectivamente, prueba que la rectas de Simson de $S’$ y $L$ son perpendiculares a $AA’$ y a $AS$ respectivamente.
  6. Muestra que las exsimedianas de un triángulo tienen la misma propiedad que se señala en el teorema 4 respecto a las simedianas, pero esta vez para los puntos dentro de los ángulos externos del triángulo.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 247-252.
  • Lozanovski, S., A Beautiful Journey Through Olympiad Geometry. Version 1.4. 2020, pp 86-92.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 129-145.
  • Shively, L., Introducción a la Geómetra Moderna. México: Ed. Continental, 1961, pp 66-70.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con valores propios complejos

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos a estudiar el plano fase para sistemas de dos ecuaciones homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$ En particular, revisamos el caso cuando los valores propios del sistema son reales distintos y no son cero. Vimos que el comportamiento de las curvas y la estabilidad del punto de equilibrio dependen del signo de los valores propios. Así, cuando los signos difieren tenemos un punto silla (inestable), cuando los dos valores propios son negativos tenemos un atractor (punto de equilibrio asintóticamente estable) y finalmente, cuando ambos valores propios son positivos el punto de equilibrio es un repulsor (inestable).

Es turno ahora de analizar el plano fase para sistemas cuyos valores propios son complejos. Sabemos que si $\lambda_{1}=\alpha + \beta i$ es un valor propio del sistema, entonces su conjugado $\lambda_{2}=\alpha – \beta i$ también es un valor propio. Además la solución general a dichos sistemas tiene la forma $$\textbf{X}(t)=c_{1}e^{\alpha t}\left(\cos{\beta t}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}-\sin{\beta t}\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)+c_{2}e^{\alpha t}\left(\sin{\beta t} \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+\cos{\beta t} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)$$ donde los vectores $(u_{1},u_{2})$ y $(v_{1},v_{2})$ son vectores tales que $$\textbf{w}=(u_{1},u_{2})+i(v_{1},v_{2})$$ es un vector propio para $\lambda_{1}$.

Estudiaremos las soluciones cuando $t \rightarrow \infty$. La forma del plano fase va a depender de la parte real $\alpha$ de los valores propios (nota que los dos valores propios tienen la misma parte real), por lo que distinguiremos tres casos, según $\alpha$ sea positivo, negativo o cero. Finalmente clasificaremos a los puntos de equilibrio según su estabilidad.

Plano fase para sistemas con valores propios complejos

En el primer video estudiamos de manera general el plano fase para sistemas de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuyos valores propios son complejos. Analizamos tres casos: cuando la parte real de los valores propios es positiva, negativa o cero.

En el segundo video resolvemos y dibujamos el plano fase para distintos sistemas con valores propios complejos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Prueba que la función $$\textbf{X}(t)=\begin{pmatrix} (c_{1}u_{1}+c_{2}v_{1})\cos{\beta t}+(c_{2}u_{1}-c_{1}v_{1})\sin{\beta t} \\ (c_{1}u_{2}+c_{2}v_{2})\cos{\beta t}+(c_{2}u_{2}-c_{1}v_{2})\sin{\beta t} \end{pmatrix}$$ es periódica, con período $\frac{2\pi}{\beta}$, donde $c_{1},c_{2},u_{1},u_{2},v_{1},v_{2}$ son valores constantes.
  • De acuerdo al ejercicio anterior, concluye que si un sistema homogéneo con coeficientes constantes tiene un valor propio complejo $\lambda_{1}=\beta i$ con vector propio asociado $\textbf{w}=(u_{1},u_{2})+i(v_{1},v_{2})$, entonces las curvas en el plano fase son cerradas.
  • Considera ahora la función $$\textbf{X}(t)=e^{\alpha t}\begin{pmatrix} (c_{1}u_{1}+c_{2}v_{1})\cos{\beta t}+(c_{2}u_{1}-c_{1}v_{1})\sin{\beta t} \\ (c_{1}u_{2}+c_{2}v_{2})\cos{\beta t}+(c_{2}u_{2}-c_{1}v_{2})\sin{\beta t} \end{pmatrix}$$ con $\alpha \neq 0$. Prueba que los puntos en el plano que son imagen de valores periódicos bajo la función del primer ejercicio se quedan contenidos en una recta. Concluye el comportamiento espiral de las soluciones a sistemas de ecuaciones con valores complejos cuya parte real es distinta de cero.
  • Prueba que el punto de equilibrio del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ es un centro.
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Encuentra la solución general y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

(Recuerda que puedes apoyarte del campo vectorial asociado para dibujar el plano fase).

Más adelante

Seguimos avanzando en el estudio del plano fase para sistemas homogéneos con coeficientes constantes. Ya sabemos la forma de las soluciones para sistemas cuyos valores propios son reales distintos y no nulos, o complejos. En la próxima entrada continuaremos revisando el plano fase, pero ahora para sistemas que tienen valores propios repetidos.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»