Archivo de la etiqueta: Sistemas lineales de primer orden

Ecuaciones Diferenciales I: Introducción a la teoría cualitativa de las ecuaciones diferenciales

Por Omar González Franco

No hay rama de la matemática, por lo abstracta que sea, que no
pueda aplicarse algún día a los fenómenos del mundo real.
– Lobachevski

Introducción

¡Bienvenidos a la cuarta y última unidad del curso de Ecuaciones Diferenciales I!.

En esta unidad estudiaremos a las ecuaciones diferenciales ordinarias desde una perspectiva cualitativa y geométrica. En particular, estudiaremos las propiedades cualitativas de los sistemas de ecuaciones diferenciales de primer orden que vimos en la unidad anterior y, como sabemos, las ecuaciones de orden superior se pueden reducir a sistemas de ecuaciones de primer orden, lo que significa que en nuestro estudio también estaremos revisando las propiedades cualitativas de algunas de las ecuaciones vistas en la unidad 2.

La teoría cualitativa ya no es nueva para nosotros, pues en la primera unidad estudiamos desde esta perspectiva a las ecuaciones de primer orden. Recordemos que una ecuación diferencial de primer orden se puede ver, en su forma normal, como

$$\dfrac{dy}{dx} = f(x, y(x)) = f(x, y) \label{1} \tag{1}$$

Y una ecuación diferencial autónoma como

$$\dfrac{dy}{dx} = f(y(x)) = f(y) \label{2} \tag{2}$$

En esta última ecuación la variable independiente no aparece explícitamente.

Sobre la ecuación (\ref{1}) definimos los conceptos de elementos lineales, campo de pendientes, curvas integrales e isóclinas y sobre la ecuación (\ref{2}) definimos conceptos como puntos de equilibrio o puntos críticos, esquema de fases, líneas de fase, así como atractores, repulsores y nodos. Muchos de estos conceptos los generalizaremos a los sistemas lineales, además de algunos otros conceptos nuevos que definiremos.

En esta entrada daremos una introducción intuitiva al análisis cualitativo y geométrico de los sistemas lineales y a partir de la siguiente entrada comenzaremos a formalizar la teoría.

Sistemas lineales

Recordemos que un sistema de ecuaciones diferenciales de primer orden es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= F_{1}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
y_{2}^{\prime}(t) &= F_{2}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
&\vdots \\
y_{n}^{\prime}(t) &= F_{n}(t, y_{1}, y_{2}, \cdots, y_{n}) \label{3} \tag{3}
\end{align*}

En forma vectorial se puede escribir como

$$\mathbf{Y}^{\prime}(t) = \mathbf{F}(t, \mathbf{Y}(t)) \label{4} \tag{4}$$

Si el sistema es lineal, entonces se puede escribir, en su forma normal, como

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\ y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\ &\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{5} \tag{5}
\end{align*}

En esta unidad estudiaremos a detalle la propiedades cualitativas de los sistemas lineales compuestos por dos ecuaciones diferenciales de primer orden homogéneas con coeficientes constantes por muchas razones, las cuales comentaremos al final de la entrada. Dicho sistema lo podemos escribir de la siguiente forma.

\begin{align*}
x^{\prime}(t) &= ax(t) + by(t) \\
y^{\prime}(t) &= cx(t) + dy(t) \label{6} \tag{6}
\end{align*}

En donde $a, b, c$ y $d$ son constantes. Si definimos

$$\mathbf{Y}^{\prime}(t) = \begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix}, \hspace{1cm} \mathbf{Y}(t) = \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema (\ref{6}) se puede escribir como

$${\mathbf{Y}}'(t) = \mathbf{AY}(t) \label{7} \tag{7}$$

Esta es la forma común con la que estuvimos trabajando en la unidad anterior. Si ahora definimos las funciones

$$F_{1}(t, x, y) = ax(t) + by(t) \hspace{1cm} y \hspace{1cm} F_{2}(t, x, y) = cx(t) + dy(t) \label{8} \tag{8}$$

y definimos el vector compuesto por estas funciones

$$\mathbf{F}(t, x, y) = \begin{pmatrix}
F_{1}(t, x, y) \\ F_{2}(t, x, y)
\end{pmatrix} \label{9} \tag{9}$$

entonces podemos escribir al sistema (\ref{6}) como

$$\mathbf{Y}^{\prime}(t) = \mathbf{F}(t, x, y) \label{10} \tag{10}$$

De (\ref{7}) y (\ref{10}), se obtiene que

$$\mathbf{F}(t, x, y) = \mathbf{AY}(t) \label{11} \tag{11}$$

Esta es una nueva forma de ver un sistema lineal, sin embargo nuestro interés está en hacer un análisis cualitativo y geométrico, así que es conveniente ver a la ecuación (\ref{11}) como una función de varias variables definida en un dominio $U$.

Observemos que el sistema lineal (\ref{6}) no depende explícitamente de la variable $t$, por lo que podemos escribir

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{12} \tag{12}
\end{align*}

Y ahora podemos escribir

$$F_{1}(x, y) = ax + by \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = cx + dy \label{13} \tag{13}$$

Es claro que $F_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ y $F_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, es decir las funciones $F_{1}$ y $F_{2}$ son funciones de dos variables cuyo dominio está formado por puntos con $2$ coordenadas y la función asocia a cada punto un número real determinado. La gráfica de estas funciones está en $\mathbb{R}^{3}$. Ahora bien, se puede definir la función

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) = (ax + by, cx + dy) \label{14} \tag{14}$$

En este caso $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, así que ya no podemos visualizar su gráfica, sin embargo existe una técnica en la que en un mismo plano a cada elemento $(x, y) \in \mathbb{R}^{2}$ lo dibujamos como un punto y a $F(x, y)$ como un vector colocado sobre ese punto $(x, y)$. Por ejemplo, la función

$$F(x, y) = (x, y)$$

se puede visualizar como

Bosquejo de la función $F(x, y) = (x, y)$.

Este tipo de bosquejos es lo que conocemos como campos vectoriales.

Finalmente consideremos las soluciones del sistema lineal (\ref{12}). En este caso lo que obtendremos al resolver el sistema serán dos funciones $x(t)$ y $y(t)$ definidas como $x: \mathbb{R} \rightarrow \mathbb{R}$ y $y: \mathbb{R} \rightarrow \mathbb{R}$. Lo que deseamos es graficar de alguna manera estas dos funciones en el mismo plano en el que se bosqueja el campo vectorial $F(x, y)$, para hacerlo definimos la función

$$f(t) = (x(t), y(t)) \label{15} \tag{15}$$

Vemos que $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, es decir, dado un valor para $t$ las soluciones $x(t)$ y $y(t)$ toman un valor particular que sirven como entrada de la función $f$ y ésta devuelve un sólo valor.

Para tener una visualización de $f$ consideremos como ejemplo la función

$$f(t) = (t, t^{2})$$

con $t \in [-2, 2]$, es decir,

$$x(t) = t \hspace{1cm} y \hspace{1cm} y(t) = t^{2}$$

Consideremos algunos valores particulares

  • $t = -2 \hspace{0.7cm} \rightarrow \hspace{1cm} f(-2) = (-2, 4)$.
  • $t = 2 \hspace{1cm} \rightarrow \hspace{1cm} f(2) = (2, 4)$.
  • $t = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(-1) = (-1, 1)$.
  • $t = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(1) = (1, 1)$.

Para visualizar estos datos lo que vamos a hacer es dibujar vectores que parten del origen hacía las coordenadas $(x(t), y(t))$ obtenidas, tal como se muestra en la siguiente figura.

Vectores correspondientes a $f(t)$ para $t = -2, -1, 1, 2$.

$f(t)$ será la curva que trazará la punta del vector a medida que $t$ tiene distintos valores. Siguiendo con el mismo ejemplo $f(t) = (t, t^{2})$ para $t \in [-2, 2]$, la curva que traza $f$ se ve de la siguiente forma.

Curva de la función $f(t) = (t, t^{2})$ para $t \in [-2, 2]$.

Observemos que $f(t) = (t, t^{2})$ no es más que la parametrización de la parábola $y(x) = x^{2}$ en el intervalo $[-2, 2]$. Es por ello que diremos que $f(t)$ es una función paramétrica.

Recordemos que un sistema de ecuaciones paramétricas permite representar una curva o superficie en el plano o en el espacio mediante una variable $t$ llamada parámetro que recorre un intervalo de números reales, considerando cada coordenada de un punto como una función dependiente del parámetro.

Concluiremos esta entrada con un ejemplo para visualizar cómo es que esta nueva forma de ver el problema de resolver un sistema lineal nos ayudará a obtener información cualitativa del mismo.

Análisis cualitativo y geométrico

Ejemplo: Hacer un análisis cualitativo y geométrico del siguiente sistema lineal homogéneo.

\begin{align*}
x^{\prime} &= 2x + 3y \\
y^{\prime} &= 2x + y \label{16} \tag{16}
\end{align*}

Solución: Primero resolvamos el sistema de forma tradicional, es decir, analíticamente.

La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
2 & 3 \\ 2 & 1
\end{pmatrix} \label{17} \tag{17}$$

Los valores propios se obtienen de resolver la siguiente ecuación característica.

$$|\mathbf{A} -\lambda \mathbf{I})| = \begin{vmatrix}
2 -\lambda & 3 \\ 2 & 1-\lambda
\end{vmatrix} = \lambda^{2} -3 \lambda -4 = (\lambda + 1)(\lambda -4) = 0$$

Resolviendo se obtiene que los valores propios son

$$\lambda_{1} = -1 \hspace{1cm} y \hspace{1cm} \lambda_{2} = 4$$

Determinemos los vectores propios.

Para $\lambda_{1} = -1$, debemos resolver

$$(\mathbf{A} + \mathbf{I}) \mathbf{K} = \mathbf{0}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
3k_{1} + 3k_{2} &= 0 \\
2k_{1} + 2k_{2} &= 0
\end{align*}

De donde $k_{1} = -k_{2}$. Si elegimos $k_{2} = 1$, se obtiene $k_{1} = -1$ y entonces el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

Para $\lambda_{2} = 4$, debemos resolver

$$(\mathbf{A} -4\mathbf{I}) \mathbf{K} = \mathbf{0}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-2k_{1} + 3k_{2} &= 0 \\
2k_{1} -3k_{2} &= 0
\end{align*}

Se ve que $k_{1} = \dfrac{3}{2}k_{2}$, así si $k_{2} = 2$, entonces $k_{1} = 3$ y por tanto el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}$$

Las soluciones linealmente independientes son

$$\mathbf{\mathbf{Y}}_{1}(t) = \begin{pmatrix}
-1 \\ 1
\end{pmatrix} e^{ -t} \hspace{1cm} y \hspace{1cm}
\mathbf{\mathbf{Y}}_{2}(t) = \begin{pmatrix}
3 \\ 2
\end{pmatrix}e^{4t} \label{18} \tag{18}$$

Y por lo tanto, la solución general del sistema lineal es

$$\mathbf{\mathbf{Y}}(t) = c_{1} \begin{pmatrix}
1 \\ -1
\end{pmatrix} e^{ -t} + c_{2} \begin{pmatrix}
3 \\ 2
\end{pmatrix} e^{4t} \label{19} \tag{19}$$

Si dejamos de usar la notación matricial podemos escribir a las soluciones como

$$x(t) = c_{1} e^{-t} + 3c_{2} e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = -c_{1}e^{-t} + 2c_{2} e^{4t} \label{20} \tag{20}$$

Hasta aquí es hasta donde hemos llegado con lo visto en la unidad anterior, ahora veamos el comportamiento de estas soluciones geométricamente.

Obtuvimos dos funciones, cada una de ellas depende de la variable $t$ de forma que la primer función la podemos graficar en el plano $XT$, mientras que la segunda en el plano $YT$.

La gráfica de $x(t)$ para $c_{1} = c_{2} = 1$ se ve de la siguiente forma.

Función $ x(t) = e^{-t} + 3 e^{4t}$ en el plano $XT$.

Por otro lado, la gráfica de $y(t)$ para $c_{1} = c_{2} = 1$ se ve de la siguiente forma.

Función $y(t) = -e^{-t} + 2e^{4t}$ en el plano $YT$.

De acuerdo a (\ref{15}), la función paramétrica es

$$f(t) = (c_{1}e^{-t} + 3c_{2}e^{4t}, -c_{1}e^{-t} + 2c_{2}e^{4t}) \label{21} \tag{21}$$

Para el caso particular en el que $c_{1} = c_{2} = 1$ la función paramétrica es

$$f(t) = (e^{-t} + 3e^{4t}, -e^{-t} + 2 e^{4t}) \label{22} \tag{22}$$

Grafiquemos en el plano $XY$ la trayectoria de esta función.

Trayectoria en el plano $XY$ o plano fase.

Como ejemplo, si $t = 0$, entonces $x(0) = 4$ y $y(0) = 1$, tal coordenada $(4, 1)$ corresponde al punto mostrado en el plano $XY$, así la trayectoria se forma por el conjunto de puntos $(x(t), y(t))$ correspondientes a cada valor $t \in \mathbb{R}$.

Las tres gráficas anteriores corresponden a la solución particular en la que $c_{1} = c_{2} = 1$, así cada solución particular producirá tres curvas distintas en tres planos distintos.

Nos centraremos especialmente en el plano $XY$ o también llamado plano fase. Cada una de las curvas que se pueden formar en el plano fase correspondientes a valores específicos de $c_{1}$ y $c_{2}$ se llama trayectoria.

En el siguiente plano fase se muestra un conjunto de trayectorias definidas por (\ref{21}) para distintos valores de $c_{1}$ y $c_{2}$.

Distintas trayectorias en el plano fase.

Al conjunto de trayectorias representativas en el plano fase se llama diagrama fase.

Consideremos las soluciones independientes (\ref{18}).

$$\mathbf{\mathbf{Y}}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix} e^{ -t} \hspace{1cm} y \hspace{1cm}
\mathbf{\mathbf{Y}}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}e^{4t}$$

Y notemos lo siguiente.

De $\mathbf{Y}_{2}$ se obtienen las funciones

$$x(t) = 3e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = 2e^{4t} \label{23} \tag{23}$$

De manera que la función $y(t)$ se puede escribir en términos de $x$ como

$$y(x) = \dfrac{2}{3}x$$

con $x > 0$ y cuya gráfica en el plano $XY$ corresponde a una recta en el primer cuadrante con pendiente $\dfrac{2}{3}$.

Gráfica de $y(x) = \dfrac{2}{3}x$ para $x > 0$.

De forma similar, si consideramos la solución $-\mathbf{Y}_{1}$ se obtienen las funciones

$$x(t) = e^{-t} \hspace{1cm} y \hspace{1cm} y(t) = -e^{t} \label{24} \tag{24}$$

De forma que $y$ en términos de $x$ se ve como

$$y(x) = -x$$

Para $x < 0$ en el plano $XY$ tendremos una recta en el segundo cuadrante con pendiente $-1$.

Gráfica de $y(x) = -x$ para $x < 0$.

Consideremos ahora la solución $-\mathbf{Y}_{2}$ cuyas funciones son

$$x(t) = -3e^{4t} \hspace{1cm} y \hspace{1cm} y(t) = -2e^{4t} \label{25} \tag{25}$$

En este caso,

$$y(x) = \dfrac{2}{3}x$$

con $x < 0$, la gráfica corresponde a una recta de pendiente $ \dfrac{2}{3}$ en el tercer cuadrante.

Gráfica de $y(x) = \dfrac{2}{3}x$ para $x < 0$.

Y finalmente de $\mathbf{Y}_{1}$ se obtienen las funciones

$$x(t) = -e^{-t} \hspace{1cm} y \hspace{1cm} y(t) = e^{-t} \label{26} \tag{26}$$

tal que,

$$y(x) = -x$$

con $x > 0$ y cuya gráfica es una recta de pendiente $-1$ en el cuarto cuadrante.

Gráfica de $y(x) = -x$ para $x > 0$.

Lo interesante es que cada vector propio se puede visualizar como un vector bidimensional que se encuentra a lo largo de una de estas semirrectas.

Por ejemplo el vector propio

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

corresponde al siguiente vector en el plano $XY$.

Vector propio $K_{1}$ en el plano $XY$.

Mientras que el vector propio

$$\mathbf{K}_{2} = \begin{pmatrix}
3 \\ 2
\end{pmatrix}$$

corresponde al vector

Vector propio $K_{2}$ en el plano $XY$.

A continuación se muestran las cuatro semirrectas anteriores y los vectores propios unitarios

$$\hat{\mathbf{K}}_{1} = \dfrac{\mathbf{K}_{1}}{\left\| \mathbf{K}_{1} \right\|} \hspace{1cm} y \hspace{1cm} \hat{\mathbf{K}}_{2} = \dfrac{\mathbf{K}_{2}}{\left\| \mathbf{K}_{2} \right\|}$$

sobre el mismo plano fase de antes.

Plano fase ilustrando los vectores propios.

El vector propio $\hat{\mathbf{K}}_{2}$ se encuentra junto con $y = \dfrac{2}{3}x$ en el primer cuadrante y $\hat{\mathbf{K}}_{1}$ se encuentra junto con $y =-x$ en el segundo cuadrante.

Notamos que en el plano fase las trayectorias tienen flechas que indican dirección. Para saber la dirección de las trayectorias nos apoyaremos en el campo vectorial asociado.

Definamos las funciones $F_{1}$ y $F_{2}$ de acuerdo a (\ref{13}).

$$F_{1}(x, y) = 2x + 3y, \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = 2x + y \label{27} \tag{27}$$

Entonces la función $F(x, y)$ correspondiente es

$$F(x, y) = (2x + 3y, 2x + y) \label{28} \tag{28}$$

El campo vectorial será descrito por esta función. Como vimos al inicio de la entrada, para cada punto $(x, y)$ del plano fase anclaremos un vector cuya punta termina en la coordenada dada por la suma vectorial $(x, y) + F(x, y)$. Por ejemplo si $x = 0$ y $y = 1$, entonces nos situaremos en la coordenada $(0, 1)$ del plano fase, evaluando en la función $F(x, y)$ se obtiene el punto $F(0, 1) = (3, 1)$, entonces la punta del vector que parte de $(0, 1)$ terminará en la coordenada $(0, 1) + (3, 1) = (3, 2)$.

Como ejemplo dibujemos los vectores correspondientes a las siguientes evaluaciones.

$$F(0, 1) = (3, 1), \hspace{1cm} F(0, -2) = (-6, -2), \hspace{1cm} F(-3, 0) = (-6, -6)$$

$$F(0, 3) = (9, 3), \hspace{1cm} F(2, -2) = (-2, 2), \hspace{1cm} F(3, -1) = (3, 5)$$

Bosquejo de vectores dados por $F(x, y)$.

Como se puede notar, si dibujáramos todos los vectores para cada punto $(x, y)$ tendríamos un desastre de vectores, todos de distintos tamaños atravesándose entre sí y no habría forma de observar el patrón que esconde el campo vectorial. Para solucionar este problema existe la convención de escalar todos los vectores a un mismo tamaño, por su puesto esto ya no representa correctamente al campo vectorial, pero sí que es de mucha ayuda visualmente y se convierte en sólo una representación del campo vectorial.

En nuestro ejemplo la función

$$F(x, y) = (2x + 3y, 2x + y)$$

se representa por el siguiente campo vectorial.

Representación del campo vectorial generado por $F(x, y) = (2x + 3y, 2x + y)$.

Cómo $F(x, y) = (x^{\prime}, y^{\prime})$, entonces los vectores del campo vectorial deben ser tangentes a las trayectorias formadas por la función paramétrica $f(t) = (x(t), y(t))$. Concluimos entonces que las soluciones del sistema lineal serán trayectorias cuyos vectores del campo vectorial son tangentes a dichas trayectorias.

Campo vectorial y algunas trayectorias del sistema lineal.

Una característica observable del campo vectorial es que los vectores tienden a alejarse del origen, veremos más adelante que el origen no sólo es una solución constante $x = 0$, $y = 0$ (solución trivial) de todo sistema lineal homogéneo de $2$ ecuaciones lineales, sino que también es un punto importante en el estudio cualitativo de dichos sistemas.

Si pensamos en términos físicos, las puntas de flecha de cada trayectoria en el tiempo $t$ se mueven conforme aumenta el tiempo. Si imaginamos que el tiempo va de $-\infty$ a $\infty$, entonces examinando la solución

$$x(t) = c_{1}e^{ -t} + 3c_{2}e^{4t}, \hspace{1cm} y(t) = -c_{1}e^{ -t} + 2c_{2}e^{4t}, \hspace{1cm} c_{1} \neq 0, \hspace{0.4cm} c_{2} \neq 0$$

muestra que una trayectoria o partícula en movimiento comienza asintótica a una de las semirrectas definidas por $\mathbf{Y}_{1}$ o $ -\mathbf{Y}_{1}$ (ya que $e^{4t}$ es despreciable para $t \rightarrow -\infty$) y termina asintótica a una de las semirrectas definidas por $\mathbf{Y}_{2}$ o $ -\mathbf{Y}_{2}$ (ya que $e^{-t}$ es despreciable para $t \rightarrow \infty$).

El plano fase obtenido representa un diagrama de fase que es característico de todos los sistemas lineales homogéneos de $2 \times 2$ con valores propios reales de signos opuestos.

$\square$

Hemos concluido con el ejemplo. Lo que nos muestra este ejemplo es que es posible hacer un desarrollo geométrico sobre un sistema lineal, sin embargo esto sólo es posible si es un sistema con dos ecuaciones, ya que si aumenta el número de ecuaciones también aumentará el número de dimensiones y ya no seremos capaz de obtener gráficas. Es posible extender el plano fase a tres dimensiones (espacio fase para un sistema lineal con $3$ ecuaciones), pero nos limitaremos sólo a los sistemas de $2$ ecuaciones para hacer más sencilla la tarea. También es importante mencionar que podremos hacer este análisis siempre y cuando los coeficientes sean constantes y las ecuaciones no dependan explícitamente de la variable independiente $t$.

Con este método geométrico será posible estudiar el comportamiento de las soluciones sin la necesidad de resolver el sistema, incluso con este método podremos estudiar sistemas no lineales para los cuales aún no conocemos algún método para resolverlos.

Finalmente veremos que las propiedades del plano fase quedarán determinadas por los valores propios del sistema, de manera que en las siguientes entradas haremos un análisis para cada una de las posibilidades que existen, tales posibilidades son:

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$ (como en nuestro ejemplo).

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos:

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

En las próximas entradas estudiaremos a detalle cada uno de estos casos.

En este enlace se tiene acceso a una excelente herramienta para visualizar el plano fase de sistemas lineales de dos ecuaciones homogéneas con coeficientes constantes y en este enlace se puede visualizar el campo vectorial asociado, además de algunas trayectorias del sistema dando clic sobre el campo vectorial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. En la unidad anterior resolviste de tarea moral los siguientes sistemas lineales. En este caso realiza un desarrollo geométrico como lo hicimos en esta entrada e intenta describir el comportamiento de las soluciones en el plano fase. Dibuja a mano algunos vectores del campo vectorial y algunas trayectorias sobre el mismo plano fase, posteriormente verifica tu resultado visualizando el espacio fase y el campo vectorial usando los enlaces proporcionados anteriormente.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -3 \\ -2 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 2 \\ -1 & -1
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 3 \\ -3 & 5
    \end{pmatrix}\mathbf{Y}$

    ¿Qué características distintas identificas entre los planos fase de cada uno de los sistemas anteriores?.

Más adelante…

Esta entrada nos ha servido de introducción al estudio geométrico y cualitativo de los sistemas lineales. En la siguiente entrada formalizaremos lo que vimos en esta entrada para posteriormente hacer un análisis más detallado sobre los distintos tipos de sistemas tanto lineales como no lineales que se puedan presentar.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con cero como valor propio

Por Eduardo Vera Rosales

Introducción

Vamos a finalizar esta serie de entradas referentes al plano fase de sistemas de dos ecuaciones lineales homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ estudiando el caso cuando el sistema tiene al menos un cero como valor propio.

En las entradas anteriores revisamos los casos cuando los valores propios son reales distintos y no nulos, son complejos o se repiten, por lo que el caso que revisaremos en esta entrada es el último por estudiar. En todos los casos anteriores el punto de equilibrio es único y se encuentra en el punto $(0,0)$ del plano fase. Sin embargo, cuando el cero es un valor propio de la matriz asociada al sistema resultará que no habrá un único punto equilibrio, sino que tendremos una infinidad de dichos puntos. Es por eso que dejamos este caso al final.

Veremos cómo se distribuyen los puntos de equilibrio en el plano fase. Finalmente las curvas solución serán muy fáciles de dibujar según el análisis que realizaremos de la solución general al sistema, que será de la forma $$\textbf{X}(t)=c_{1}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+c_{2}e^{\lambda_{2} t}\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$ donde $(u_{1},u_{2})$ es un vector propio asociado al valor propio $\lambda_{1}=0$ y $(v_{1},v_{2})$ es un vector propio asociado al valor propio $\lambda_{2} \neq 0$ (si $\lambda_{2}=0$ la solución general se simplifica aún más y es igualmente sencillo hacer el análisis del plano fase).

Dicho lo anterior, vamos a comenzar.

Plano fase para sistemas con cero como valor propio

En el primer video analizamos el plano fase para un sistema de ecuaciones de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuando este tiene a cero como un valor propio asociado.

En el segundo video dibujamos el plano fase de algunos sistemas en particular que tienen al menos un valor propio igual a cero.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Encuentra todas las matrices de tamaño $2 \times 2$ diagonalizables cuyo único valor propio es cero.
  • Encuentra todos los sistemas de ecuaciones lineales homogéneos con coeficientes constantes cuyo campo vectorial se ve de la siguiente manera:
Campo vectorial 1 cero valor propio
Campo vectorial. Elaboración propia.
  • En el segundo video dibujamos los planos fase de los siguientes sistemas $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$ $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$ ¿Qué puedes decir acerca de los puntos de equilibrio en cada caso? ¿Son estables, asintóticamente estables, inestables, o ninguno de los tres?
  • Encuentra la solución general del siguiente sistema y dibuja su plano fase: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 2 \\ 0 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve el siguiente sistema y dibuja su plano fase: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Encuentra la solución general y dibuja el plano fase del siguiente sistema: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 4 & 6 \\ -2 & -3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$

Más adelante

Hemos terminado de estudiar el plano fase para sistemas de dos ecuaciones lineales homogéneas con coeficientes constantes. Determinamos el comportamiento de las soluciones en el plano y la estabilidad de los puntos de equilibrio en función de los valores propios del sistema.

Estamos a punto de comenzar a estudiar sistemas no lineales, al menos de manera cualitativa (ya que estos sistemas no los sabemos resolver analíticamente). Pero antes vamos a hacer un resumen de todo el análisis realizado recientemente en un dibujo que clasifica las formas del plano fase según dos características de la matriz asociada al sistema: la traza (que es la suma de los elementos en la diagonal) y su determinante.

¡Hasta la próxima!

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con valores propios repetidos

Por Eduardo Vera Rosales

Introducción

En las dos entradas anteriores estudiamos el plano fase para un sistema de dos ecuaciones homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuyos valores propios son reales distintos no nulos o complejos. Analizamos el comportamiento de las soluciones en el plano fase y también la estabilidad del punto de equilibrio. Clasificamos los puntos de equilibrio en repulsores, atractores, puntos silla, centros, repulsores espirales y atractores espirales, según sea el caso.

Continuamos en esta entrada revisando el plano fase para sistemas de ecuaciones del mismo tipo, pero ahora consideraremos el caso cuando dicho sistema tiene valores propios repetidos. Sabemos que existen dos casos: cuando la matriz asociada al sistema es diagonalizable y cuando no lo es.

Si la matriz asociada es diagonalizable veremos que el plano fase tiene una forma muy sencilla. En efecto, como la solución general es de la forma $$\textbf{X}(t)=c_{1}e^{\lambda_{1} t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}+c_{2}e^{\lambda_{2} t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$ Veremos que todo vector en $\mathbb{R}^{2}$ es un vector propio del sistema, y por tanto las soluciones (no triviales) en el plano fase son rayos que salen del origen.

Si la matriz asociada al sistema no es diagonalizable entonces la solución general tiene la forma $$\textbf{X}(t)=c_{1}e^{\lambda t}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+c_{2}e^{\lambda t}\left(\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}+t\left(\textbf{A}-\lambda\textbf{Id}\right)\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)$$ donde $\lambda$ es el único valor propio del sistema, $(u_{1},u_{2})$ su único vector propio y $(v_{1},v_{2})$ es un vector propio generalizado. En este caso, solo tenemos una solución de línea recta en el plano fase, así que veremos cuál es el comportamiento de las demás soluciones.

Por supuesto, veremos algunos ejemplos para terminar de entender las ideas presentadas.

Plano fase para sistemas con valores propios repetidos

En el primer video estudiamos el plano fase de manera general para sistemas de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuando este tiene un único valor propio. Consideramos los casos cuando la matriz asociada al sistema es diagonalizable y cuando no lo es.

En el segundo video dibujamos el plano fase de algunos sistemas de ecuaciones con un único valor propio.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Sea $\textbf{A}$ una matriz de tamaño $2\times 2$ con entradas reales. Muestra que $\textbf{A}$ es diagonalizable y con único valor propio si y sólo si $\textbf{A}=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$.
  • Encuentra la solución general y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 4 & -4 \\0 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 3 & -4 \\1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} -6 & -5 \\5 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$

Más adelante

Estamos a punto de finalizar el estudio del plano fase para sistemas de dos ecuaciones con coeficientes constantes. Sin embargo, aún nos falta un caso, que es cuando el sistema tiene un valor propio igual a cero. El plano fase para este tipo de sistemas es peculiar ya que el sistema tiene infinitos puntos de equilibrio. En la siguiente entrada estudiaremos este caso particular.

¡No te lo pierdas!

Entradas relacionadas

Ecuaciones Diferenciales I: Sistemas lineales no homogéneos – Método de variación de parámetros

Por Omar González Franco

Las ciencias matemáticas exhiben particularmente orden, simetría
y límites; y esas son las más grandes formas de belleza.
– Aristóteles

Introducción

Ya sabemos resolver sistemas lineales homogéneos con coeficientes constantes, en esta entrada estudiaremos el caso no homogéneo.

Como hemos visto en las dos unidades anteriores, el método de variación de parámetros ha sido fundamental para resolver ecuaciones diferenciales en el caso no homogéneo. Éste mismo método es el que desarrollaremos en esta entrada para resolver sistemas lineales no homogéneos con coeficientes constantes.

Cabe mencionar que en esta entrada utilizaremos bastante el concepto de exponencial de una matriz y el de matriz fundamental de soluciones.

Sistemas lineales homogéneos

El sistema lineal que hemos estudiado es

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} \label{1} \tag{1}$$

Donde $\mathbf{A}$ es una matriz con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Ahora sabemos que la solución general del sistema lineal homogéneo (\ref{1}) es de la forma

$$\mathbf{Y}_{c}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) \label{3} \tag{3}$$

En donde las funciones $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$ son soluciones linealmente independientes del mismo sistema. Usamos el subíndice $c$ debido a que, como antes, al resolver el caso no homogéneo será necesario resolver primero el sistema homogéneo asociado y la solución general de dicho sistema será la solución complementaria del sistema no homogéneo.

Recordemos que la matriz que tiene por columnas a las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ de (\ref{3}) corresponde a la matriz fundamental de soluciones.

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1}(t) & \mathbf{Y}_{2}(t) & \cdots & \mathbf{Y}_{n}(t) \end{pmatrix} = \begin{pmatrix} y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{4} \tag{4}$$

Si definimos el vector de constantes

$$\mathbf{C} = \begin{pmatrix}
c_{1} \\ c_{2} \\ \vdots \\ c_{n}
\end{pmatrix} \label{5} \tag{5}$$

podemos escribir la solución (\ref{3}) como

$$\mathbf{Y}_{c}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} \label{6} \tag{6}$$

Recordemos este resultado para más adelante.

Sistemas lineales no homogéneos

El sistema lineal no homogéneo que intentaremos resolver es de la forma

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G} \label{7} \tag{7}$$

Donde $\mathbf{G} = \mathbf{G}(t)$ es una matriz de $n \times 1$ con componentes dependientes de $t$.

$$\mathbf{G}(t) = \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{8} \tag{8}$$

Dada la forma de la solución general de un sistema lineal homogéneo (\ref{3}), parecería natural pensar que el sistema lineal no homogéneo tiene por solución una función de la forma

$$\mathbf{Y}_{p}(t) = u_{1}(t) \mathbf{Y}_{1}(t) + u_{2}(t) \mathbf{Y}_{2}(t) + \cdots + u_{n}(t) \mathbf{Y}_{n}(t) \label{9} \tag{9}$$

En donde $u_{i}(t)$, $i = 1, 2, \cdots, n$ son funciones escalares de $t$ derivables y las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ forman una matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$. Si definimos el vector

$$\mathbf{U}(t) = \begin{pmatrix}
u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{n}(t)
\end{pmatrix} \label{10} \tag{10}$$

Entonces la solución propuesta (\ref{9}) adquiere la forma

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \mathbf{U}(t) \label{11} \tag{11}$$

El método de variación de parámetros nos permitirá obtener la forma del vector $\mathbf{U}(t)$, una vez obtenida podremos formar la solución general del sistema lineal no homogéneo (\ref{7}) que, como siempre, será la superposición de la solución complementaria del sistema lineal homogéneo asociado $\mathbf{Y}_{c}(t)$ más la solución particular del sistema lineal no homogéneo $\mathbf{Y}_{p}(t)$, esto es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t) \label{12} \tag{12}$$

Variación de parámetros

Comencemos a desarrollar el método de variación de parámetros, como mencionamos antes, el objetivo es encontrar la forma explícita del vector (\ref{10}) para formar la solución particular del sistema lineal no homogéneo.

Consideremos la función propuesta (\ref{11}) y derivémosla.

$$\mathbf{Y}_{p}^{\prime}(t) = \hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) \label{13} \tag{13}$$

Si sustituimos (\ref{11}) y (\ref{13}) en el sistema lineal no homogéneo (\ref{7}), se tiene

$$\hat{\mathbf{Y}}^{\prime}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} [\hat{\mathbf{Y}}(t) \mathbf{U}(t)] + \mathbf{G}(t) \label{14} \tag{14}$$

Como $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones sabemos que satisface el sistema homogéneo, es decir,

$$\hat{\mathbf{Y}}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \label{15} \tag{15}$$

Si sustituimos en (\ref{14}) la ecuación queda como

$$\mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{A} \hat{\mathbf{Y}}(t) \mathbf{U}(t) + \mathbf{G}(t)$$

O bien,

$$\hat{\mathbf{Y}}(t) \mathbf{U}^{\prime}(t) = \mathbf{G}(t) \label{16} \tag{16}$$

La matriz fundamental es no singular, de manera que siempre existe su inversa, esto nos permite establecer que

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) \label{17} \tag{17}$$

Esta ecuación es matricial y sabemos que es posible integrar sobre matrices, así que integremos la ecuación anterior con el objetivo de hallar la forma de $\mathbf{U}$.

$$\mathbf{U}(t) = \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{18} \tag{18}$$

Ahora que conocemos la forma de $\mathbf{U}(t)$, sustituimos en la solución propuesta (\ref{11}), de forma que una solución particular del sistema lineal no homogéneo es

$$\mathbf{Y}_{p}(t) = \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{19} \tag{19}$$

Por lo tanto, de (\ref{6}) y el resultado (\ref{19}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t) dt \label{20} \tag{20}$$

Si $\hat{\mathbf{Y}}(t)$ es la matriz fundamental de soluciones $e^{\mathbf{A} t}$ y considerando que $\hat{\mathbf{Y}}^{-1}(t) = e^{-\mathbf{A} t}$, el resultado anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{C} + e^{\mathbf{A}t} \int e^{-\mathbf{A} t} \mathbf{G}(t) dt \label{21} \tag{21}$$

Problema con valores iniciales

Consideremos el problema con valores iniciales

$$\mathbf{Y}^{\prime} = \mathbf{A} \mathbf{Y} + \mathbf{G}; \hspace{1cm} \mathbf{Y}(t_{0}) = \mathbf{Y}_{0} \label{22} \tag{22}$$

De nuestro desarrollo anterior consideremos la relación (\ref{17}).

$$\mathbf{U}^{\prime}(t) = \hat{\mathbf{Y}}^{ -1}(t) \mathbf{G}(t)$$

En esta ocasión integremos de $t_{0}$ a $t$ y usemos el teorema fundamental del cálculo.

$$\mathbf{U}(t) = \mathbf{U}(t_{0}) + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{23} \tag{23}$$

Notemos que si aplicamos la condición inicial $\mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$ sobre la función (\ref{11}), se obtiene

$$\mathbf{Y}_{p}(t_{0}) = \hat{\mathbf{Y}}(t_{0}) \mathbf{U}(t_{0}) = \mathbf{Y}_{0} \label{24} \tag{24}$$

De donde,

$$\mathbf{U}(t_{0}) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} \label{25} \tag{25}$$

Sustituimos este resultado en la ecuación (\ref{23}).

$$\mathbf{U}(t) = \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{26} \tag{26}$$

Aquí debemos tener cuidado, si sustituimos la función (\ref{26}) en (\ref{11}), se obtiene

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{27} \tag{27}$$

Pero $\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0}$ es una matriz de constantes, digamos

$$\hat{\mathbf{Y}}^{ -1}(t_{0}) \mathbf{Y}_{0} = \mathbf{C}$$

Entonces el resultado (\ref{27}) queda como

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \mathbf{C} + \hat{\mathbf{Y}}(t) \int_{t_{0}}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{28} \tag{28}$$

Este resultado se parece a la ecuación (\ref{20}), es decir, a pesar de que sustituimos (\ref{26}) en (\ref{11}) esperando obtener la solución particular $\mathbf{Y}_{p}(t)$, en realidad estamos obteniendo la solución general, la solución general del problema de valores iniciales.

Si consideramos nuevamente que $\hat{\mathbf{Y}}(t) = e^{\mathbf{A} t}$, el resultado (\ref{27}) se reduce significativamente.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} e^{-\mathbf{A} t_{0}} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{29} \tag{29}$$

O bien,

$$\mathbf{Y}(t) = e^{\mathbf{A}(t -t_{0})} \mathbf{Y}_{0} + \int_{t_{0}}^{t}e^{\mathbf{A} (t -s)} \mathbf{G}(s) ds \label{30} \tag{30}$$

Por otro lado, si $t_{0} = 0$, de (\ref{27}) se obtiene que

$$\mathbf{Y}(t) = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{ -1}(0) \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds$$

Pero recordemos que

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0) \label{31} \tag{31}$$

Entonces la solución anterior queda como

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + \hat{\mathbf{Y}}(t) \int_{0}^{t} \hat{\mathbf{Y}}^{ -1}(s) \mathbf{G}(s) ds \label{32} \tag{32}$$

Si nuestro propósito es determinar la solución general de un sistema lineal no homogéneo (\ref{7}), primero resolvemos el sistema lineal homogéneo asociado para obtener la solución complementaria en la forma (\ref{3}). Con las funciones $\mathbf{Y}_{i}(t)$, $i = 1, 2, \cdots, n$ obtenidas formamos una matriz fundamental $\hat{\mathbf{Y}}(t)$, se calcula su inversa y se sustituyen las matrices correspondientes en la solución particular (\ref{19}). Una vez obtenidas ambas soluciones, la solución general del sistema lineal no homogéneo será

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

Sin embargo, si lo que tenemos es un problema de valores iniciales, debemos nuevamente obtener la solución del sistema lineal homogéneo asociado ya que eso es lo que nos permite formar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$, una vez obtenida esta función calculamos su inversa y se sustituyen las matrices correspondientes en la ecuación (\ref{27}), esto nos dará la solución completa del problema de valores iniciales, es decir, no es necesario aplicar las condiciones iniciales en la solución complementaria para obtener los valores de las constantes $c_{1}, c_{2}, \cdots, c_{n}$.

Para concluir con esta entrada realicemos dos ejemplos, en el primero de ellos obtendremos la solución general de un sistema lineal no homogéneo y en el segundo ejemplo resolveremos un problema con valores iniciales. Con estos ejemplos se espera que el método quede claro.

Ejemplo: Obtener la solución general del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
1 \\ -1
\end{pmatrix} e^{t}$$

Solución: Resolvamos primero el sistema homogéneo asociado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix} \mathbf{Y}$$

En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
0 & 2 \\ -1 & 3
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz.

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
-\lambda & 2 \\ -1 & 3 -\lambda
\end{vmatrix} = 0$$

La ecuación característica es

$$\lambda^{2} -3 \lambda + 2 = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios son

$$\lambda_{1} = 1\hspace{1cm} y \hspace{1cm} \lambda_{2} = 2$$

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \begin{pmatrix}
-1 & 2 \\ -1 & 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + 2 k_{2} = 0$$

Es decir, $2 k_{2} = k_{1}$. Elegimos $k_{2} = 1$, entonces $k_{1} = 2$. Por lo tanto el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 2$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
-2 & 2 \\ -1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

$$-k_{1} + k_{2} = 0$$

Es decir, $k_{1} = k_{2}$. Elegimos $k_{1} = k_{2} = 1$. Por lo tanto, el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Con estos resultados concluimos que la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Para determinar la solución particular $\mathbf{Y}_{p}(t)$, formemos, con el resultado anterior, la matriz fundamental de soluciones (\ref{4}).

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix}$$

Como también requerimos de la matriz inversa, verifica que

$$\hat{\mathbf{Y}}^{-1}(t) = \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix}$$

La matriz $\mathbf{G}$ en este caso es

$$ \mathbf{G}(t) = \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix}$$

Sustituyamos estas matrices en la solución particular (\ref{19}).

\begin{align*}
\mathbf{Y}_{p}(t) &= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t}
\end{pmatrix} \begin{pmatrix}
e^{t} \\ -e^{t}
\end{pmatrix} dt \\
&= \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt
\end{align*}

Resolviendo la integral (sin considerar constantes de integración), se obtiene

$$\int \begin{pmatrix}
2 \\ -3e^{-t}
\end{pmatrix} dt = \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix}$$

Entonces,

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
2e^{t} & e^{2t} \\ e^{t} & e^{2t}
\end{pmatrix} \begin{pmatrix}
2t \\ 3e^{-t}
\end{pmatrix} = \begin{pmatrix}
4t e^{t} + 3e^{t} \\ 2te^{t} + 3e^{t}
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}_{p}(t) =\begin{pmatrix}
4 \\ 2
\end{pmatrix} te^{t} + \begin{pmatrix}
3 \\ 3
\end{pmatrix} e^{t}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
1 \\ 1
\end{pmatrix} + \begin{pmatrix}
3 \\ 3
\end{pmatrix}e^{t} + \begin{pmatrix}
4 \\ 2
\end{pmatrix} t e^{t}$$

$\square$

Realicemos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix}$$

Solución: Primero debemos obtener la solución del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} \mathbf{Y}$$

Ello nos permitirá obtener la matriz fundamental de soluciones. En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix}$$

Determinemos los valores y vectores propios de esta matriz. La ecuación característica se obtendrá de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
1-\lambda & 0 & 0 \\ 2 & 1 -\lambda & -2 \\ 3 & 2 & 1 -\lambda
\end{vmatrix} = 0$$

Desarrollando el determinante obtendremos que

$$(1 -\lambda )(\lambda ^{2} -2 \lambda + 5) = 0$$

Resolviendo para $\lambda$ se obtiene que los valores propios de $\mathbf{A}$ son

$$\lambda_{1} = 1 \hspace{1cm} y \hspace{1cm} \lambda_{2} = 1 + 2i, \hspace{1cm} \lambda_{3} = 1 -2i$$

De acuerdo a los valores propios obtenidos, la manera de resolver el sistema homogéneo será aplicando la teoría vista en la entrada sobre valores propios complejos.

Determinemos los vectores propios correspondientes a cada valor propio.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -\mathbf{I}) \mathbf{K} = \left[ \begin{pmatrix}
1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \right] \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 2 & 0 & -2 \\ 3 & 2 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema que se obtiene es

\begin{align*}
2 k_{1} -2 k_{3} &= 0 \\
3 k_{1} + 2 k_{2} &= 0
\end{align*}

De este sistema se observa que

\begin{align*}
k_{1} &= k_{3} \\
k_{2} &= -\dfrac{3k_{1}}{2}
\end{align*}

Elegimos $k_{1} = 2 = k_{3}$, de tal manera que $k_{2} = -3$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + 2i$.

Buscamos un vector $\mathbf{K}$, diferente de cero, tal que

$$[\mathbf{A} -(1 + 2i) \mathbf{I}] \mathbf{K} = \begin{pmatrix}
-2i & 0 & 0 \\ 2 & -2i & -2 \\ 3 & 2 & -2i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-2i k_{1} &= 0 \\
2k_{1} -2i k_{2} -2k_{3} &= 0 \\
3k_{1} + 2k_{2} -2i k_{3} &= 0
\end{align*}

De este sistema se observa que $k_{1} = 0$ y $k_{3} = -ik_{2}$. Elegimos $k_{2} = 1$, de manera que el segundo vector propio sea

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Caso 3: $\lambda_{2} = 1 -2i$.

Sabemos que este caso es el conjugado del caso anterior, por lo que directamente establecemos que el tercer vector propio es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

La solución general del sistema lineal homogéneo asociado, en su forma compleja, es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} + c_{3} e^{(1 -2i) t} \begin{pmatrix}
0 \\ 1 \\ i
\end{pmatrix}$$

Sin embargo esta solución no nos sirve de mucho, pues desearíamos construir la matriz fundamental de soluciones con valores reales. Recordando lo visto en la entrada sobre valores propios complejos, podemos encontrar dos funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$, tal que la solución general sea de la forma

$$\mathbf{Y}_{c}(t) = c_{1} e^{\lambda_{1} t} + c_{2} \mathbf{W}_{1}(t) + c_{3} \mathbf{W}_{2}(t) \label{33} \tag{33}$$

Recordemos que las funciones $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ están dadas por

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] \label{34} \tag{34}$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{35} \tag{35}$$

Consideremos el caso 2 en el que $\lambda_{2} = 1 + 2i$ y

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} $$

De estos resultados obtenemos que $\alpha = 1$, $\beta = 2$ y

$$\mathbf{U} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix}$$

Sustituyamos en la funciones (\ref{34}) y (\ref{35}). Por un lado,

\begin{align*}
\mathbf{W}_{1}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \cos(2t) -\begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \sin(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} -\begin{pmatrix}
0 \\ 0 \\ -\sin(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix}$$

Por otro lado,

\begin{align*}
\mathbf{W}_{2}(t) &= e^{t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \sin(2t) + \begin{pmatrix}
0 \\ 0 \\ -1
\end{pmatrix} \cos(2t) \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

Recordemos que estas funciones también se pueden obtener considerando la identidad de Euler. Del caso 2 la solución que se obtiene es

$$\mathbf{Y}_{2c}(t) = e^{(1 + 2i) t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix}$$

Así,

$$\mathbf{W}_{1}(t) = Re \{ \mathbf{Y}_{2c}(t) \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = Im \{ \mathbf{Y}_{2c}(t) \}$$

Usando la identidad de Euler sobre esta solución obtenemos lo siguiente.

\begin{align*}
e^{(1 + 2i)t} \begin{pmatrix}
0 \\ 1 \\ -i
\end{pmatrix} &= e^{t}[\cos(2t) + i \sin(2t)] \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -i \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] + i e^{t} \left[ \sin(2t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} -\cos(2t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{t} \left[ \begin{pmatrix}
0 \\ \cos(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \sin(2t)
\end{pmatrix} \right] + ie^{t} \left[ \begin{pmatrix}
0 \\ \sin(2t) \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ -\cos(2t)
\end{pmatrix} \right]
\end{align*}

De donde,

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix}$$

De esta forma, la solución general del sistema lineal homogéneo asociado es

$$\mathbf{Y}_{c}(t) = c_{1} e^{t} \begin{pmatrix}
2 \\ -3 \\ 2
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ \cos(2t) \\ \sin(2t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \sin(2t) \\ -\cos(2t)
\end{pmatrix} \label{36} \tag{36}$$

Esta solución es de la forma (\ref{3}) por lo que la matriz fundamental de soluciones, formada por estos vectores linealmente independientes, es

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t} & e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix}$$

Para obtener la solución del problema con valores iniciales usaremos el resultado (\ref{29}) para $t_{0} = 0$.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0} + e^{\mathbf{A}t} \int_{0}^{t} e^{-\mathbf{A} s} \mathbf{G}(s) ds \label{37} \tag{37}$$

Es decir, consideraremos a la matriz $e^{\mathbf{A} t}$ como la matriz fundamental de soluciones. También es posible usar la relación (\ref{32}) usando la matriz $\hat{\mathbf{Y}}(t)$ antes establecida. ¿Por qué son equivalentes ambas formas?.

Determinemos la matriz $e^{\mathbf{A} t}$ usando la relación (\ref{31}). Si evaluamos $t = 0$ en la matriz $\hat{\mathbf{Y}}(t)$ se obtiene la matriz

$$\hat{\mathbf{Y}}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}$$

Comprueba que la matriz inversa es

$$\hat{\mathbf{Y}}^{ -1}(0) = \begin{pmatrix}
2 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 0 & -1
\end{pmatrix}^{ -1} = \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix}$$

Sustituyamos en (\ref{31}).

\begin{align*}
e^{\mathbf{A}t} &= \begin{pmatrix}
2e^{t} & 0 & 0 \\ -3e^{t} & e^{t} \cos(2t) & e^{t} \sin(2t) \\ 2e^{t}& e^{t} \sin(2t) & -e^{t} \cos(2t)
\end{pmatrix} \begin{pmatrix}
\dfrac{1}{2} & 0 & 0 \\ \dfrac{3}{2} & 1 & 0 \\ 1 & 0 & -1
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}
\end{align*}

Por lo tanto, la matriz que consideraremos como matriz fundamental de soluciones es

$$e^{\mathbf{A}t} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix}$$

Como también requerimos de la inversa de esta matriz, verifica que

$$e^{-\mathbf{A}t} = e^{-t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) -\sin(2t) & \cos(2t) & \sin(2t) \\ 1 -\dfrac{3}{2} \sin(2t) -\cos(2t) & -\sin(2t) & \cos(2t)
\end{pmatrix}$$

En este caso la matriz $\mathbf{G}(t)$ es

$$\mathbf{G}(t) = \begin{pmatrix}
0 \\ 0 \\ e^{t} \cos(2t)
\end{pmatrix}$$

Sustituyamos todos estos resultados en la solución (\ref{37}).

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{s} \cos(2s)
\end{pmatrix}ds$$

Por un lado,

$$e^{\mathbf{A} t} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 1
\end{pmatrix} = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix}$$

De tarea moral, determina las constantes $c_{1}$, $c_{2}$ y $c_{3}$ aplicando los valores iniciales sobre la solución complementaria (\ref{36}). ¿Qué relación tiene tu resultado con la operación anterior?.

Por otro lado,

$$e^{-s} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2s) -\sin(2s)
& \cos(2s) & \sin(2s) \\ 1 -\dfrac{3}{2} \sin(2s) -\cos(2s) & -\sin(2s) & \cos(2s)
\end{pmatrix} e^{s} \begin{pmatrix}
0 \\ 0 \\ \cos(2s)
\end{pmatrix} = \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix}$$

Sustituimos estas matrices en $\mathbf{Y}(t)$.

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A} t} \int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds$$

Resolvamos la integral.

\begin{align*}
\int_{0}^{t} \begin{pmatrix}
0 \\ \sin(2s) \cos(2s) \\ \cos^{2}(2s)
\end{pmatrix} ds &= \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{t} – \left. \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4s) \\ \dfrac{s}{2} + \dfrac{\sin(4s)}{8}
\end{pmatrix} \right|_{0} \\
&= \begin{pmatrix}
0 \\ -\dfrac{1}{8} \cos(4t) \\ \dfrac{t}{2} + \dfrac{\sin(4t)}{8}
\end{pmatrix} -\begin{pmatrix}
0 \\ -\dfrac{1}{8} \\ 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}
\end{align*}

Entonces,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix}$$

Ahora realicemos el producto del segundo sumando.

\begin{align*}
e^{\mathbf{A}t} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} &= e^{t} \begin{pmatrix}
1 & 0 & 0 \\ -\dfrac{3}{2} + \dfrac{3}{2} \cos(2t) + \sin(2t) & \cos(2t) & -\sin(2t) \\ 1 + \dfrac{3}{2} \sin(2t) -\cos(2t) & \sin(2t) & \cos(2t)
\end{pmatrix} \begin{pmatrix}
0 \\ \dfrac{1 -\cos(4t)}{8} \\ \dfrac{4t + \sin(4t)}{8}
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ \cos(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) -\sin(2t) \left( \dfrac{4t + \sin(4t)}{8} \right) \\ \sin(2t) \left( \dfrac{1 -\cos(4t)}{8} \right) + \cos(2t) \left( \dfrac{4t + \sin(4t)}{8} \right)
\end{pmatrix} \\
&= e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}
\end{align*}

Así,

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\sin(2t) \\ \cos(2t) + \sin(2t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\dfrac{t \sin(2t)}{2} + \dfrac{\cos(2t) -\cos(4t) \cos(2t) -\sin(4t) \sin(2t)}{8}
\\ \dfrac{t \cos(2t)}{2} + \dfrac{\sin(2t) + \sin(4t) \cos(2t) -\cos(4t) \sin(2t)}{8}
\end{pmatrix}$$

Haciendo las operaciones correspondientes se obtiene finalmente que la solución al problema con valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(2t) -\left( 1+ \dfrac{1}{2}t \right) \sin(2t) \\ \left( 1 + \dfrac{1}{2}t \right) \cos(2t) + \dfrac{5}{4} \sin(2t)
\end{pmatrix}$$

$\square$

Vemos que este método puede ser bastante largo y complicado, de hecho se puede volver una tarea imposible de hacer a mano si se tienen sistemas con matriz $\mathbf{A}$ de $3 \times 3$ o más. Se recomienda, en la medida de lo posible, usar algún programa computacional para llevar a cabo algunas de las operaciones, lo importante es entender como llevar a cabo el método.

Con esto concluimos lo que corresponde al estudio de los distintos métodos para resolver sistemas lineales. Prácticamente hemos concluido con la unidad 3 del curso.

En las siguientes dos entradas de esta unidad trataremos de justificar los teoremas de existencia y unicidad en el caso de los sistemas lineales, esto con el propósito de justificar toda la teoría desarrollada a lo largo de la unidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de los siguientes sistemas lineales no homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \cos(t) \\ \sin(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 \\ -\dfrac{1}{2} & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    \csc(t) \\ \sec(t)
    \end{pmatrix} e^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    e^{t} \\ e^{2t} \\ te^{3t}
    \end{pmatrix}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 1
    \end{pmatrix} e^{2t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 & -2 \\ 1 & 1 & 1 \\ 2 & 1 & 3
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 0 \\ 0
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 0 \\ 0
    \end{pmatrix}$

Más adelante…

En la siguiente entrada demostraremos los teoremas de existencia y unicidad para el caso de los sistemas lineales de primer orden con coeficientes constantes homogéneos y no homogéneos y posteriormente, en la última entrada de esta unidad, justificaremos el teorema de existencia y unicidad en el caso general, es decir, para sistemas lineales y no lineales.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con valores propios complejos

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos a estudiar el plano fase para sistemas de dos ecuaciones homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$ En particular, revisamos el caso cuando los valores propios del sistema son reales distintos y no son cero. Vimos que el comportamiento de las curvas y la estabilidad del punto de equilibrio dependen del signo de los valores propios. Así, cuando los signos difieren tenemos un punto silla (inestable), cuando los dos valores propios son negativos tenemos un atractor (punto de equilibrio asintóticamente estable) y finalmente, cuando ambos valores propios son positivos el punto de equilibrio es un repulsor (inestable).

Es turno ahora de analizar el plano fase para sistemas cuyos valores propios son complejos. Sabemos que si $\lambda_{1}=\alpha + \beta i$ es un valor propio del sistema, entonces su conjugado $\lambda_{2}=\alpha – \beta i$ también es un valor propio. Además la solución general a dichos sistemas tiene la forma $$\textbf{X}(t)=c_{1}e^{\alpha t}\left(\cos{\beta t}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}-\sin{\beta t}\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)+c_{2}e^{\alpha t}\left(\sin{\beta t} \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+\cos{\beta t} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}\right)$$ donde los vectores $(u_{1},u_{2})$ y $(v_{1},v_{2})$ son vectores tales que $$\textbf{w}=(u_{1},u_{2})+i(v_{1},v_{2})$$ es un vector propio para $\lambda_{1}$.

Estudiaremos las soluciones cuando $t \rightarrow \infty$. La forma del plano fase va a depender de la parte real $\alpha$ de los valores propios (nota que los dos valores propios tienen la misma parte real), por lo que distinguiremos tres casos, según $\alpha$ sea positivo, negativo o cero. Finalmente clasificaremos a los puntos de equilibrio según su estabilidad.

Plano fase para sistemas con valores propios complejos

En el primer video estudiamos de manera general el plano fase para sistemas de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuyos valores propios son complejos. Analizamos tres casos: cuando la parte real de los valores propios es positiva, negativa o cero.

En el segundo video resolvemos y dibujamos el plano fase para distintos sistemas con valores propios complejos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Prueba que la función $$\textbf{X}(t)=\begin{pmatrix} (c_{1}u_{1}+c_{2}v_{1})\cos{\beta t}+(c_{2}u_{1}-c_{1}v_{1})\sin{\beta t} \\ (c_{1}u_{2}+c_{2}v_{2})\cos{\beta t}+(c_{2}u_{2}-c_{1}v_{2})\sin{\beta t} \end{pmatrix}$$ es periódica, con período $\frac{2\pi}{\beta}$, donde $c_{1},c_{2},u_{1},u_{2},v_{1},v_{2}$ son valores constantes.
  • De acuerdo al ejercicio anterior, concluye que si un sistema homogéneo con coeficientes constantes tiene un valor propio complejo $\lambda_{1}=\beta i$ con vector propio asociado $\textbf{w}=(u_{1},u_{2})+i(v_{1},v_{2})$, entonces las curvas en el plano fase son cerradas.
  • Considera ahora la función $$\textbf{X}(t)=e^{\alpha t}\begin{pmatrix} (c_{1}u_{1}+c_{2}v_{1})\cos{\beta t}+(c_{2}u_{1}-c_{1}v_{1})\sin{\beta t} \\ (c_{1}u_{2}+c_{2}v_{2})\cos{\beta t}+(c_{2}u_{2}-c_{1}v_{2})\sin{\beta t} \end{pmatrix}$$ con $\alpha \neq 0$. Prueba que los puntos en el plano que son imagen de valores periódicos bajo la función del primer ejercicio se quedan contenidos en una recta. Concluye el comportamiento espiral de las soluciones a sistemas de ecuaciones con valores complejos cuya parte real es distinta de cero.
  • Prueba que el punto de equilibrio del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ es un centro.
  • Resuelve y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Encuentra la solución general y dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Dibuja el plano fase del sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

(Recuerda que puedes apoyarte del campo vectorial asociado para dibujar el plano fase).

Más adelante

Seguimos avanzando en el estudio del plano fase para sistemas homogéneos con coeficientes constantes. Ya sabemos la forma de las soluciones para sistemas cuyos valores propios son reales distintos y no nulos, o complejos. En la próxima entrada continuaremos revisando el plano fase, pero ahora para sistemas que tienen valores propios repetidos.

¡Hasta la próxima!

Entradas relacionadas