Archivo de la etiqueta: Variación de parámetros

Ecuaciones Diferenciales I – Videos: Sistemas de ecuaciones lineales no homogéneas: solución por variación de parámetros

Introducción

En las últimas entradas del curso analizamos a detalle el método de valores y vectores propios para resolver sistemas lineales homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Revisamos los distintos casos que se pueden presentar, según las raíces del polinomio característico asociado a la matriz $\textbf{A}$. También resolvimos ejemplos para cada caso.

Es turno de enfocarnos en resolver sistemas lineales no homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}(t)$, donde $\textbf{Q}(t)$ es un vector de funciones que dependen de $t$. Para esto, utilizaremos el método de variación de parámetros para sistemas lineales, que es una generalización del método que lleva el mismo nombre, y que estudiamos para resolver ecuaciones lineales no homogéneas de orden uno y dos.

Sabemos que la solución general a tales sistemas es de la forma $$\textbf{X}(t)=\textbf{X}_{H}(t)+\textbf{X}_{P}(t)$$ donde $\textbf{X}_{H}(t)$ es la solución general al sistema homogéneo asociado, y $\textbf{X}_{P}(t)$ es una solución particular al sistema no homogéneo. Con ayuda de la función solución $\textbf{X}_{H}(t)$, el método de variación de parámetros nos ayudará a encontrar a $\textbf{X}_{P}(t)$. En efecto, si $$\textbf{X}_{H}(t)=c_{1}\textbf{X}_{1}(t)+c_{2}\textbf{X}_{2}(t)+…+c_{n}\textbf{X}_{n}(t)$$ donde las funciones $\textbf{X}_{i}(t)$ forman un conjunto fundamental de soluciones al sistema homogéneo, entonces supondremos que $$\textbf{X}_{P}(t)= u_{1}(t)\textbf{X}_{1}(t)+u_{2}(t)\textbf{X}_{2}(t)+…+u_{n}(t)\textbf{X}_{n}(t).$$ Si sustituimos $\textbf{X}_{P}(t)$ y su derivada en el sistema no homogéneo, después de realizar el álgebra correspondiente obtendremos un sistema de ecuaciones que tiene a las derivadas de las funciones $u_{i}(t)$ como incógnitas. Si resolvemos tal sistema, podremos encontrar a las funciones $u_{i}(t)$, y por tanto a la solución particular $\textbf{X}_{P}(t)$.

¡Vamos a comenzar!

Método de variación de parámetros para sistemas de ecuaciones lineales no homogéneas

En el primer video desarrollamos el método de variación de parámetros para sistemas lineales con coeficientes constantes. En el segundo video resolvemos un par de sistemas no homogéneos por variación de parámetros.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0\\ 2 & -3 \end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ \cos{t}\end{pmatrix}.$$
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 2 & 1\\ 3 & -2 \end{pmatrix}\textbf{X}+\begin{pmatrix} e^{3t}\\ e^{3t}\end{pmatrix}.$$
  • Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 3 & 2\\ -1 & 2 & 1\\ 4 & -1 & 1\end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ 0\\ 0\end{pmatrix} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0\\ 0\end{pmatrix}.$$
  • Encuentra la solución general a la ecuación de segundo orden $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-x}.$$ (Recuerda que podemos transformar una ecuación de orden $n$ en un sistema de $n$ ecuaciones de primer orden).
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 1\\ -3 & 5 \end{pmatrix}\textbf{X}+\begin{pmatrix} 0\\ S_{0}(1-\cos{t})\end{pmatrix}.$$ donde $S_{0}$ es una constante.

Más adelante

Con esta entrada terminamos de revisar los métodos más importantes para resolver sistemas de ecuaciones lineales con coeficientes constantes. Estamos a punto de finalizar la tercera unidad, pero aún nos falta demostrar el teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes continuos. Aunque no hemos vamos a resolver tales sistemas es importante dicho teorema, y es lo que haremos en la siguiente entrada del curso.

¡Hasta la próxima!

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros

Introducción

Con lo que hemos estudiado en las dos últimas entradas somos capaces de resolver ecuaciones diferenciales lineales de segundo orden homogéneas y no homogéneas con coeficientes constantes, es decir, ecuaciones de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = g(x) \label{1} \tag{1}$$

Con $a, b, c$ constantes y $g(x) = 0$ en el caso homogéneo o $g(x) \neq 0$ en el caso no homogéneo, en éste último caso aún estamos limitados a la forma que puede tener la función $g$, pues sabemos resolver las ecuaciones diferenciales en el caso en el que la función $g$ es una constante, una función polinomial, una función exponencial, funciones seno o coseno, o una combinación entre ellas. La pregunta ahora es, ¿cómo resolver este tipo de ecuaciones para cualquier tipo de función $g(x)$?.

En esta entrada vamos a desarrollar un método que nos permite obtener la solución general independientemente de la forma que tenga la función $g(x)$. A dicho método se le conoce como variación de parámetros.

El nombre de este método seguramente te resulta familiar. En la unidad anterior desarrollamos éste método para el caso de ecuaciones diferenciales lineales de primer orden como método alterno al método por factor integrante. Lo que haremos en esta entrada es una adaptación del método de variación de parámetros para el caso en el que las ecuaciones diferenciales son de orden superior, en particular, de segundo orden.

Variación de parámetros

Consideremos la ecuación diferencial

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g_{0}(x) \label{2} \tag{2}$$

Si $a_{2}(x) \neq 0$ para toda $x$ en el intervalo $\delta$ es el que está definida la solución, entonces podemos definir las funciones $P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}$, $Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$ y $g(x) = \dfrac{g_{0}(x)}{a_{2}(x)}$ de manera que la ecuación (\ref{2}) la podemos escribir en su forma estándar como

$$\dfrac{d^{2}y}{dx^{2}} + P(x)\dfrac{dy}{dx} + Q(x)y = g(x) \label{3} \tag{3}$$

En el caso de primer orden se hizo la suposición de que la solución particular era de la forma $y_{p}(x) = k(x)y_{1}(x) = k(x) e^{-\int{P(x)dx}}$, manteniendo esta idea, en el caso de segundo orden se busca una solución de la forma

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \label{4} \tag{4}$$

Donde $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones en $\delta$ de la ecuación homogénea asociada a (\ref{3}). Vamos a determinar la primera y segunda derivada de $y_{p}$ para sustituir los resultados en la ecuación diferencial (\ref{3}).

$$\dfrac{dy_{p}}{dx} = k_{1}\dfrac{dy_{1}}{dx} + y_{1}\dfrac{dk_{1}}{dx} + k_{2}\dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \label{5} \tag{5}$$

y

$$\dfrac{d^{2}y_{p}}{dx^{2}} = k_{1}\dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx}\dfrac{dk_{1}}{dx} + y_{1}\dfrac{d^{2}k_{1}}{dx^{2}} + k_{2}\dfrac{d^{2}y_{2}}{dx^{2}} + 2\dfrac{dy_{2}}{dx}\dfrac{dk_{2}}{dx} + y_{2}\dfrac{d^{2}k_{2}}{dx^{2}} \label{6} \tag{6}$$

Sustituyendo en (\ref{3}) y reorganizando los términos obtenemos lo siguiente:

\begin{align*}
k_{1} \left[ \dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} \right] + y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} + k_{2} \left[ \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} \right] \\
+ y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x)
\end{align*}

Como $y_{1}$ y $y_{2}$ son soluciones a la ecuación homogénea asociada, entonces

$$\dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} = \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} = 0$$

y además notamos que

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} \right] = y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} $$

y

$$\dfrac{d}{dx} \left[ y_{2}\dfrac{dk_{2}}{dx} \right] = y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx}$$

Considerando lo anterior la ecuación diferencial queda como

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{7} \tag{7}$$

Nuestro propósito es determinar a las funciones $k_{1}(x)$ y $k_{2}(x)$, esto implica que debemos formar un sistema con dos ecuaciones que debemos resolver para obtener dichas funciones. De acuerdo al resultado obtenido vamos a establecer la restricción de que las funciones $k_{1}$ y $k_{2}$ satisfacen la relación $y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} = 0$, considerando esto la ecuación se reduce a $\dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x)$. De esta manera, el sistema de ecuaciones que formamos es:

$$y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} = 0 \label{8} \tag{8}$$

$$\dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{9} \tag{9}$$

Como puedes notar, es un sistema para determinar las derivadas de las funciones $k_{1}$ y $k_{2}$ y no las funciones mismas, esto implica que una vez que determinemos a las derivadas será necesario hacer una integración a cada una de ellas. Resolvamos el sistema.

Vamos a multiplicar la ecuación (\ref{8}) por $\dfrac{dy_{2}}{dx}$ y la ecuación (\ref{9}) por $y_{2}$:

$$y_{1}\dfrac{dk_{1}}{dx} \dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} = 0 \label{10} \tag{10}$$

$$y_{2} \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + y_{2} \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = y_{2} g(x) \label{11} \tag{11}$$

Si a la ecuación (\ref{10}) le restamos la ecuación (\ref{11}) obtenemos lo siguiente:

$$\dfrac{dk_{1}}{dx} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx} \right) = -y_{2}(x)g(x) \label{12} \tag{12}$$

Recordando la definición del Wronskiano

$$W(y_{1}, y_{2}) = y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx}$$

La ecuación (\ref{12}) la podemos escribir como

$$\dfrac{dk_{1}}{dx} \left( W(y_{1}, y_{2}) \right) = -y_{2}(x)g(x) \label{13} \tag{13}$$

Como $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones de la ecuación homogénea asociada, entonces $W(y_{1}, y_{2}) \neq 0$, así, de la ecuación (\ref{13}) obtenemos que

$$\dfrac{dk_{1}}{dx} = -\dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} \label{14} \tag{14}$$

Hemos encontrado el valor de la derivada de la función $k_{1}(x)$, integrando obtenemos finalmente que

$$k_{1}(x) = -\int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{15} \tag{15}$$

En un proceso totalmente análogo, si multiplicamos a la ecuación (\ref{8}) por $\dfrac{dy_{1}}{dx}$ y a la ecuación (\ref{9}) por $y_{1}$ y realizamos los mismos pasos obtendremos la ecuación para la derivada de la función $k_{2}(x)$

$$\dfrac{dk_{2}}{dx} = \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} \label{16} \tag{16}$$

Integrando obtendremos la función que buscamos

$$k_{2}(x) = \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{17} \tag{17}$$

Sustituyendo los resultados (\ref{15}) y (\ref{17}) en la solución particular (\ref{4}) obtenemos finalmente la solución que buscábamos

$$y_{p}(x) = -y_{1}(x) \int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} + y_{2}(x) \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{18} \tag{18}$$

El resultado (\ref{18}) corresponde a la solución particular de la ecuación diferencial (\ref{2}) que, a diferencial del método de coeficientes indeterminados, se aplica para cualquier función $g(x)$, aunque cabe mencionar que si la función $g$ es muy compleja entonces nos resultará, en algunas ocasiones, complicado resolver las integrales involucradas.

A lo largo del curso hemos motivado a no memorizar las formulas y en su lugar desarrollar todo el procedimiento del método correspondiente, sin embargo, en esta ocasión se trata de un método muy largo y complicado para usarse cada vez que se intente resolver una ecuación diferencial por lo que se recomienda seguir las siguientes indicaciones del método al intentar resolver una ecuación diferencial del tipo (\ref{2}):

  • Primero se determina la solución complementaria $y_{c} = c_{1}y_{1} + c_{2}y_{2}$ de la ecuación diferencial homogénea asociada, esto nos permitirá determinar el conjunto fundamental de soluciones $\{y_{1}, y_{2}\}$.
  • Una vez conocido el conjunto fundamental de soluciones se procede a calcular el Wronskiano $W(y_{1}, y_{2})$.
  • Se divide la ecuación diferencial por $a_{2}$ para escribir la ecuación es su forma estándar (\ref{3}) y así obtener la forma de la función $g(x)$.
  • Se sustituyen los valores correspondientes en (\ref{15}) y (\ref{17}) para obtener las funciones $k_{1}$ y $k_{2}$ respectivamente.
  • Finalmente se sustituyen los resultados en la solución particular $y_{p} = k_{1}y_{1} + k_{2}y_{2}$ y posteriormente en la solución general $y = y_{c} + y_{p}$.

Cuando se calculan las integrales indefinidas (\ref{15}) y (\ref{17}) no es necesario considerar las constantes de integración. Para mostrar esto consideremos las constantes $c_{3}$ y $c_{4}$ tales que

\begin{align*}
y(x) &= y_{c}(x) + y_{p}(x) \\
&= c_{1}y_{1}(x) + c_{2}y_{2}(x) + \left[ k_{1}(x) + c_{3} \right] y_{1}(x) + \left[ k_{2}(x) + c_{4} \right] y_{2}(x) \\
&= \left[ c_{1} + c_{3} \right] y_{1}(x) + \left[ c_{2} + c_{4} \right] y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \\
&= C_{1}y_{1}(x) + C_{2}y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x)
\end{align*}

Es decir, las constantes de la solución complementaria contienen todas las constantes que puedan aparecer en el método.

Realicemos algunos ejemplos.

Ejemplo: Determinar la solución general de la ecuación diferencial $3 \dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 6y = e^{x} \sec(x)$

Solución: El primer paso es obtener la solución complementaria. La ecuación auxiliar es $3k^{2} -6k + 6 = 0$, de donde $k_{1} = 1 + i$ y $k_{2} = 1 -i$, identificamos que $\alpha = \beta = 1$, entonces la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x)$$

El conjunto fundamental de soluciones esta conformado por $y_{1} = e^{x} \cos(x)$ y $y_{2} = e^{x} \sin(x)$. La derivada de ambas soluciones es

$$\dfrac{dy_{1}}{dx} = e^{x} \cos(x) -e^{x} \sin(x) \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = e^{x} \sin(x) + e^{x} \cos(x)$$

Usando estos resultados calculemos el Wronskiano

\begin{align*}
W &= \begin{vmatrix}
e^{x} \cos(x) & e^{x} \sin(x) \\
e^{x} \cos(x) -e^{x} \sin(x) & e^{x} \sin(x) + e^{x} \cos(x)
\end{vmatrix} \\
&= e^{2x} \cos(x) \sin(x) + e^{2x} \cos^{2}(x) -e^{2x} \cos(x) \sin(x) + e^{2x} \sin^{2}(x) \\
&= e^{2x}
\end{align*}

El Wronskiano es $W = e^{2x}$. ¡Cuidado!, como en la ecuación diferencial la segunda derivada tiene un coeficiente, debemos dividir toda la ecuación por dicho coeficiente para obtener la forma estándar y así la función $g(x)$. La ecuación en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + 2y = \dfrac{e^{x} \sec(x)}{3}$$

En este caso la función $g$ es $g(x) = \dfrac{e^{x} \sec(x)}{3}$.

Ahora que ya conocemos los valores que necesitábamos, vamos a recurrir a las ecuaciones (\ref{15}) y (\ref{17}) para obtener las funciones que buscamos.

Para la función $k_{1}(x)$ tenemos lo siguiente:

\begin{align*}
k_{1}(x) &= -\int{\dfrac{\left( e^{x} \sin(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= -\int{\dfrac{e^{2x} \sin(x) \sec(x)}{3e^{2x}} dx} \\
&= -\dfrac{1}{3} \int{\tan(x) dx} \\
&= \dfrac{1}{3} \ln|\cos(x)|
\end{align*}

La integral de la tangente es muy común. Por tanto, la función $k_{1}$ es

$$k_{1}(x) = \dfrac{1}{3} \ln|\cos(x)|$$

Por otro lado, para el caso de la función $k_{2}(x)$ tenemos lo siguiente:

\begin{align*}
k_{2}(x) &= \int{\dfrac{\left( e^{x} \cos(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= \int{\dfrac{e^{2x} \cos(x) \sec(x)}{3e^{2x}} dx} \\
&= \dfrac{1}{3} \int{dx} \\
&= \dfrac{1}{3}x
\end{align*}

La función $k_{2}$ es

$$k_{2}(x) = \dfrac{1}{3}x$$

Ya podemos establecer que la solución particular, de acuerdo a (\ref{4}), es

$$y_{p}(x) = \dfrac{1}{3} \ln|\cos(x)| \left( e^{x} \cos(x) \right) + \dfrac{1}{3}x \left( e^{x} \sin(x) \right)$$

Por lo tanto, la solución general de la ecuación diferencial es:

$$y(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x) + \dfrac{1}{3}e^{x} \cos(x) \ln|\cos(x)| + \dfrac{1}{3}x e^{x} \sin(x)$$

$\square$

Ejemplo: Determinar la solución general de la ecuación diferencial $\dfrac{d^{2}y}{dx^{2}} + 2\dfrac{dy}{dx} + y = \dfrac{e^{-x}}{x}$

Solución: Como la ecuación ya está es su forma estándar la función $g$ es $g(x) = \dfrac{e^{-x}}{x}$. Calculemos la solución complementaria, la ecuación auxiliar es $k^{2} + 2k + 1 = 0$, de donde $k_{1} = k_{2} = 1$, la multiplicidad de la solución nos indica que la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{-x} + c_{2}xe^{-x}$$

El conjunto fundamental de soluciones esta conformado por $y_{1} = e^{-x}$ y $y_{2} = xe^{-x}$, usando estas soluciones calculemos el Wronskiano

\begin{align*}
W &= \begin{vmatrix}
e^{-x} & xe^{-x} \\
-e^{-x} & e^{-x} -xe^{-x}
\end{vmatrix} \\
&= e^{-2x} -xe^{2x} + xe^{-2x} \\
&= e^{-2x}
\end{align*}

El Wronskiano es $W = e^{-2x}$. Sustituyendo estos resultados directamente en la ecuación (\ref{18}) obtenemos lo siguiente:

\begin{align*}
y_{p}(x) &= -e^{-x} \int {\dfrac{ \left( xe^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} + xe^{-x} \int {\dfrac{ \left( e^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} \\
&= -e^{-x}\int dx+xe^{-x}\int \dfrac{dx}{x} \\
&= -xe^{-x} + xe^{-x}\ln(x)
\end{align*}

La solución particular es

$$y_{p}(x) = -xe^{-x} + xe^{-x}\ln(x)$$

Por lo tanto, la solución general de la ecuación diferencial es:

$$y(x) = c_{1}e^{-x} + c_{2}xe^{-x} -xe^{-x} + xe^{-x}\ln(x)$$

$\square$

Un ejemplo más.

Ejemplo: Determinar la solución general de la ecuación diferencial $\dfrac{d^{2}y}{dx^{2}} -y = 4x^{3}e^{x}$.

Solución: La función $g$ es $g(x) = 4x^{3}e^{x}$ y la ecuación auxiliar es $k^{2} -1 = 0$, de donde $k_{1} = 1$ y $k_{2} = -1$. Entonces, la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} + c_{2}e^{-x}$$

El conjunto fundamental de soluciones esta conformado por $y_{1} = e^{x}$ y $y_{2} = e^{-x}$, usando estas soluciones calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{x} & e^{-x} \\
e^{x} & -e^{-x} \end{vmatrix} = -2
\end{align*}

El Wronskiano es $W = -2$. Sustituyendo estos resultados directamente en la ecuación (\ref{18}) obtenemos lo siguiente:

\begin{align*}
y_{p}(x) &= -e^{x} \int {\dfrac{(e^{-x})(4x^{3}e^{x})}{-2} dx} + e^{-x} \int {\dfrac{(e^{x})(4x^{3}e^{x})}{-2} dx} \\
&= 2e^{x} \int {x^{3} dx} -2e^{-x} \int {x^{3}e^{2x} dx} \\
&= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \int {x^{3}e^{2x} dx}
\end{align*}

La integral $\int {x^{3}e^{2x} dx}$ se puede resolver por partes tomando $u = x^{2}$ y $v^{\prime} = e^{2x}$. Resolviendo la integral obtendremos que

$$\int {x^{3}e^{2x} dx} = \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x}$$

Sustituyendo en la solución particular tenemos

\begin{align*}
y_{p}(x) &= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \left( \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x} \right) \\
&= \dfrac{1}{2}x^{4}e^{x} -x^{3}e^{x} + \dfrac{3}{2}x^{2}e^{x} -\dfrac{3}{2}xe^{x} + \dfrac{3}{4}e^{x}
\end{align*}

Finalmente obtenemos como solución particular a la función

$$y_{p}(x) = e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

Y por lo tanto, la solución general a la ecuación diferencial es

$$y(x) = c_{1}e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

A pesar de que el resultado es válido, la solución aún se puede simplificar más pues observa que se puede reescribir a la solución como

$$y(x) = e^{x} \left( c_{1} + \dfrac{3}{4} \right) + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

y definir la constante $C_{1} = c_{1} + \dfrac{3}{4}$ para finalmente escribir la solución como

$$y(x) = C_{1} e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

$\square$

Variación de parámetros en ecuaciones de orden superior

Este método se puede generalizar a ecuaciones de orden $n$ aunque, por su puesto, los cálculos se vuelven más extensos.

A continuación mostraremos el panorama general para ecuaciones diferenciales de orden $n$ y mostraremos los resultados para el caso $n = 3$ que nos mostrará la forma en que aumenta la complejidad de los cálculos.

La ecuación de orden $n$ es su forma estándar es

$$\dfrac{d^{n}y}{dx^{n}} + P_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + P_{1}(x) \dfrac{dy}{dx} + P_{0}(x) y = g(x) \label{19} \tag{19}$$

Si la solución complementaria de (\ref{19}) es

$$y_{c}(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{20} \tag{20}$$

Entonces una solución particular debe ser

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + \cdots + k_{n}(x)y_{n}(x) \label{21} \tag{21}$$

Análogo a las ecuaciones (\ref{8}) y (\ref{9}), las derivadas $\dfrac{dk_{i}}{dx} = k^{\prime}_{i}$ con $i = 1, 2, \cdots, n$ se determinan por las $n$ ecuaciones

\begin{align*}
y_{1}k^{\prime}_{1} + y_{2}k^{\prime}_{2} + \cdots + y_{n}k^{\prime}_{n} &= 0 \\
y^{\prime}_{1}k^{\prime}_{1} + y^{\prime}_{2}k^{\prime}_{2} + \cdots + y^{\prime}_{n}k^{\prime}_{n} &= 0 \\
\vdots \\
y^{(n -1)}_{1}k^{\prime}_{1} + y^{(n -1)}_{2}k^{\prime}_{2} + \cdots + y^{(n-1)}_{n}k^{\prime}_{n} &= g(x) \label{22} \tag{22}
\end{align*}

Al igual que el caso de segundo orden, las primeras $n -1$ ecuaciones del sistema son suposiciones que se hacen para simplificar la ecuación resultante después de que la solución (\ref{21}) se sustituye en la ecuación (\ref{19}).

Usando la regla de Cramer para resolver el sistema se obtiene que

$$\dfrac{dk_{i}}{dx} = \dfrac{W_{i}}{W}; \hspace{1cm} i = 1, 2 , \cdots, n \label{23} \tag{23}$$

Donde $W$ es el Wronskiano del conjunto fundamental $\{ y_{1}(x), y_{2}(x), \cdots, y_{n}(x) \}$ y $W_{i}$ es el determinante que se obtiene de remplazar la $i$-ésima columna del Wronskiano por la columna formada por el lado derecho de (\ref{22}), es decir, la columna que consta de $(0, 0, \cdots, g(x))$.

Para que quede más claro lo anterior, en el caso $n = 3$ las $\dfrac{dk_{i}}{dx}$, $i = 1, 2, 3$ quedan como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W}, \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W}, \hspace{1cm} \dfrac{dk_{3}}{dx} = \dfrac{W_{3}}{W} \label{24} \tag{24}$$

Donde

$$W = \begin{vmatrix}
y_{1} & y_{2} & y_{3} \\
y^{\prime}_{1} & y^{\prime}_{2} & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix} \label{25} \tag{25}$$

y

\begin{align*}
W_{1} = \begin{vmatrix}
0 & y_{2} & y_{3} \\
0 & y^{\prime}_{2} & y^{\prime}_{3} \\
g(x) & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 & y_{3} \\
y^{\prime}_{1} & 0 & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & g(x) & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{3} = \begin{vmatrix}
y_{1} & y_{2} & 0 \\
y^{\prime}_{1} & y^{\prime}_{2} & 0 \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & g(x)
\end{vmatrix}
\end{align*}

Habrá que integrar las ecuaciones de (\ref{24}) para lograr obtener las funciones $k_{i}$, $i = 1, 2, 3$ y así obtener la solución particular $y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + k_{3}(x)y_{3}(x)$.

Notemos que usando esta notación, los resultados (\ref{14}) y (\ref{16}) del caso $n = 2$ se pueden reescribir como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W} = -\dfrac{y_{2}g(x)}{W} \hspace{1cm} y \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W} = \dfrac{y_{1}g(x)}{W} \label{26} \tag{26}$$

Donde

\begin{align*} W = \begin{vmatrix}
y_{1} & y_{2} \\
y^{\prime}_{1} & y^{\prime}_{2}
\end{vmatrix}, \hspace{1cm} W_{1} = \begin{vmatrix}
0 & y_{2} \\
g(x) & y^{\prime}_{2}
\end{vmatrix} \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 \\
y^{\prime}_{1} & g(x)
\end{vmatrix} \label{27} \tag{27}
\end{align*}

Realicemos un ejemplo con una ecuación de orden $3$.

Ejemplo: Resolver la ecuación diferencial de tercer orden $\dfrac{d^{3}y}{dx^{3}} + \dfrac{dy}{dx} = \tan(x)$.

Solución: La función $g$ es $g(x) = \tan(x)$ y la ecuación auxiliar es $k^{3} + k = k(k^{2} + 1) = 0$, de donde $k_{1} = 0$, $k_{2} = i$ y $k_{3} = -i$. Dos raíces son complejas conjugadas con $\alpha = 0$ y $\beta = 1$. La primer raíz nos indica una solución de la forma $y_{1}(x) = e^{k_{1}x} = 1$, mientras que las dos raíces restantes nos indican una solución de la forma $y_{2}(x) = e^{\alpha x} \cos(\beta x) = \cos(x)$ y $y_{3}(x) = e^{\alpha x} \sin(\beta x) = \sin(x)$. Por lo tanto, la solución complementaria de la ecuación diferencial es

$$y_{c}(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x)$$

Como vimos, el conjunto fundamental de soluciones es $\{ y_{1} = 1, y_{2} = \cos(x) , y_{3} = \sin(x) \}$, las primeras y segundas derivadas correspondientes son:

$$\dfrac{dy_{1}}{dx} = 0, \hspace{1cm} \dfrac{dy_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dy_{3}}{dx} = \cos(x)$$

y

$$\dfrac{d^{2}y_{1}}{dx^{2}} = 0, \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -\cos(x), \hspace{1cm} \dfrac{d^{2}y_{3}}{dx^{2}} = -\sin(x)$$

Ahora calculemos los determinantes correspondientes, el primero de ellos es el Wronskiano

$$W = \begin{vmatrix}
1 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
0 & -\cos(x) & -\sin(x)
\end{vmatrix} = \sin^{2}(x) + \cos^{2}(x) = 1$$

Para el resto de determinates tenemos

$$W_{1} = \begin{vmatrix}
0 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
\tan(x) & -\cos(x) & -\sin(x)
\end{vmatrix} = \tan(x) \left( \cos^{2}(x) + \sin^{2}(x) \right) = \tan(x)$$

$$W_{2} = \begin{vmatrix}
1 & 0 & \sin(x) \\
0 & 0 & \cos(x) \\
0 & \tan(x) & -\sin(x)
\end{vmatrix} = -\cos(x) \tan(x) = -\sin(x)$$

y

$$W_{3} = \begin{vmatrix}
1 & \cos(x) & 0 \\
0 & -\sin(x) & 0 \\
0 & -\cos(x) & \tan(x)
\end{vmatrix} = -\sin(x) \tan(x) = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Sustituyendo estos resultados en (\ref{24}) obtenemos que

$$\dfrac{dk_{1}}{dx} = \tan(x), \hspace{1cm} \dfrac{dk_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dk_{3}}{dx} = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Procedemos a integrar cada ecuación para obtener las funciones que buscamos (recuerda que no es necesario considerar las constantes de integración).

La primer integral es común, recordemos que

$$k_{1}(x) = \int{\tan(x) dx} = -\ln|\cos(x)|$$

La segunda integral es directa

$$k_{2}(x) = -\int{\sin(x) dx} = \cos(x)$$

Mientras que para la tercer integral si se requiere de un mayor cálculo

\begin{align*}
k_{3}(x) &= -\int{\dfrac{\sin^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1 -\cos^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1}{\cos(x)} dx} + \int{\cos(x) dx} \\
\end{align*}

Por un lado

$$-\int{\dfrac{1}{\cos(x)} dx} = -\int{\sec(x) dx} = -\ln|\tan(x) + \sec(x)|$$

por otro lado,

$$\int{\cos(x) dx} = \sin(x)$$

entonces

$$k_{3}(x) = -\ln|\tan(x) + \sec(x)| + \sin(x)$$

Ahora que conocemos las funciones incógnita concluimos que la solución particular a la ecuación diferencial es

\begin{align*}
y_{p}(x) &= -\ln|\cos(x)|(1) + \cos(x) (\cos(x)) + \left[ -\ln|\tan(x) + \sec(x)| + \sin(x) \right] (\sin(x)) \\
&= -\ln|\cos(x)| + \cos^{2}(x) -\sin(x) \ln|\tan(x) + \sec(x)| + \sin^{2}(x) \\
&= -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)| \\
\end{align*}

Por lo tanto, la solución general a la ecuación diferencial de tercer orden es

$$y(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x) -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)|$$

$\square$

Como pudiste notar, los cálculos se hacen más extensos, sin embargo los pasos a seguir son los mismos para cualquier orden.

El método de variación de parámetros, a diferencia del método de coeficientes indeterminados, tiene la ventaja de que siempre produce una solución a la ecuación diferencial independientemente de la forma de la función $g(x)$ siempre y cuando se pueda resolver la ecuación homogénea asociada. Además, el método de variación de parámetros es aplicable a ecuaciones diferenciales lineales con coeficientes variables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales.
  • $\dfrac{d^{2}y}{dx^{2}} -9\dfrac{dy}{dx} = 18x^{2}e^{9x}$
  • $\dfrac{d^{2}y}{dx^{2}} + 9y = 18e^{x} \sin(x)$
  • $4 \dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + y = e^{x/2}\sqrt{1 -x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales para las condiciones iniciales dadas.
  • $\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} = 12e^{4x}(x + 1); \hspace{1cm} y(0) = 0, \hspace{0.6cm} y^{\prime}(0) = 4$
  • $\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} -6y = 10e^{x} \sin(x); \hspace{1cm} y(0) = \dfrac{2}{17}, \hspace{0.6cm} y^{\prime}(0) = 0$
  1. Obtener la solución general de las siguientes ecuaciones diferenciales de tercer orden. Simplifica la forma de la solución redefiniendo las constantes.
  • $\dfrac{d^{3}y}{dx^{3}} + 4 \dfrac{dy}{dx} = \sec(2x)$
  • $\dfrac{d^{3}y}{dx^{3}} + \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -y = 2e^{-x}$

Más adelante…

Hemos concluido con el estudio de las ecuaciones diferenciales lineales de orden superior con coeficientes constantes.

Lo que sigue es estudiar el mismo tipo de ecuación pero en el caso en el que los coeficientes NO son constantes, es decir, son coeficientes variables. Estas ecuaciones suelen ser mucho más difícil de resolver, sin embargo existe un tipo de ecuación especial, conocida como ecuación de Cauchy-Euler, que contiene coeficientes variables pero que su método de resolución es bastante similar a lo que hemos visto en el caso de coeficientes constantes pues su resolución involucra resolver una ecuación auxiliar.

En la siguiente entrada estudiaremos dicha ecuación.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros

Introducción

Es momento de estudiar el caso no homogéneo, es decir, ecuaciones del tipo $\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$, donde la función $g$ no es la función constante cero. El primer método que estudiaremos es el de variación de parámetros que es, en cierta parte, análogo al método de variación de parámetros para ecuaciones lineales no homogéneas de primer orden, y que puedes encontrar en el siguiente enlace.

El teorema principal de esta entrada nos dice que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada, que denotaremos por $y_{H}$, y una solución particular a la ecuación no homogénea denotada por $y_{P}$.

Dado que en entradas anteriores estudiamos ecuaciones lineales homogéneas y sabemos cómo encontrar su solución general, nos enfocaremos en encontrar únicamente la solución particular. El método de variación de parámetros nos ayudará a resolver este problema.

Vamos a comenzar!

Soluciones a ecuaciones lineales no homogéneas de segundo orden

En el video demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

Método de variación de parámetros

En el primer video desarrollamos el método de variación de parámetros para encontrar a la solución particular $y_{P}$. En el segundo video empleamos este método para resolver dos ejemplos particulares.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una expresión para $u_{2}(t)$ similar a la encontrada para $u_{1}(t)$ en el segundo video: $$u_{1}(t)=-\int \frac{g(t)y_{2}(t)}{W[y_{1},y_{2}](t)} dt$$ con $u_{1}(t)$, $u_{2}(t)$ que satisfacen $$y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$$ donde $y_{P}(t)$ es una solución particular a la ecuación diferencial $\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$, y $y_{1}$, $y_{2}$ son soluciones a la ecuación homogénea asociada. (Revisa el video para mayor referencia).
  • Prueba que $y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$ es solución a la ecuación diferencial $\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$, una vez que has encontrado las expresiones para $u_{1}(t)$, $u_{2}(t)$.
  • Resuelve la ecuación diferencial $\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-t}$ por el método de variación de parámetros.
  • Resuelve el problema de condición inicial $3\frac{d^{2}y}{dt^{2}}+4\frac{dy}{dt}+y=e^{-t}\sin{t}$; $y(0)=1$, $\frac{dy}{dt}(0)=0$.

Más adelante

Hemos presentado un primer método para resolver ecuaciones lineales no homogéneas de segundo orden. En la siguiente entrada estudiaremos otro método de resolución, en particular para resolver ecuaciones de la forma $a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$, donde $a$, $b$ y $c$ son constantes, $a \neq 0$ y en la función $g(t)$ aparecen funciones exponenciales, polinómicas y funciones $\sin{\beta t}$ y $\cos{\beta t}$.

El método que estudiaremos será llamado coeficientes indeterminados.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad

Introducción

En la entrada anterior estudiamos las ecuaciones diferenciales lineales de primer orden. Recapitulando, el tipo de ecuaciones que queremos resolver es

\begin{equation}
\dfrac{dy}{dx} + P(x) y = Q(x) \tag{1} \label{1}
\end{equation}

Vimos que la solución general $y(x)$ es la suma de la solución homogénea y la solución particular:

$$y(x) = y_{h}(x) + y_{p}(x)$$

La solución homogénea está dada como:

$$y_{h}(x) = k e^{- \int P(x) dx} = \dfrac{k}{\mu (x)}$$

mientras que la solución particular tiene la forma:

$$y_{p}(x) = e^{- \int{P(x) dx}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right)$$

Donde $\mu (x)$ es el factor integrante, $\mu (x) = e^{\int{P(x) dx}}$

Así, la solución general a la ecuación diferencial (\ref{1}) es:

\begin{equation}
y(x) = k e^{-\int{P(x) dx}} + e^{-\int{P(x) dx}} \left(\int{e^{\int{P(x) dx}}Q(x) dx}\right) \tag{2} \label{2}
\end{equation}

O de forma más compacta

\begin{equation}
y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + k \right) \tag{3} \label{3}
\end{equation}

Con $\mu (x) = e^{\int{P(x) dx}}$.

En la entrada anterior mencionamos que hay dos métodos distintos para la obtención de la solución particular, ya presentamos el método por factor integrante, en este entrada vamos a desarrollar el método conocido como variación de parámetros.

Método de variación de parámetros

En la entrada anterior vimos que la solución a la ecuación homogénea

$$\dfrac{dy}{dx} + P(x) y = 0$$

es $y_{h}(x) = k e^{- \int P(x) dx}$. Vamos a suponer que para la ecuación

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

la solución particular es $y_{p}(x) = k(x) e^{- \int P(x) dx}$, en este caso $k$ es una función de $x$. Vamos a buscar la expresión explícita de $k(x)$, para ello vamos a sustituir $y_{p}$ en la ecuación diferencial.

\begin{align*}
\dfrac{dy_{p}}{dx} + P(x) y_{p} &= \dfrac{d}{dx} \left(k e^{- \int P(x) dx} \right) + P(x) k e^{- \int P(x) dx} \\
&= \left[k \dfrac{d}{dx} \left( e^{- \int P(x) dx} \right) + \dfrac{dk}{dx} e^{- \int P(x) dx}\right] + P(x) k e^{- \int P(x) dx} \\
&= – k P(x) e^{- \int P(x) dx} + \dfrac{dk}{dx} e^{- \int P(x) dx} + k P(x) e^{- \int P(x) dx} \\
&= \dfrac{dk}{dx} e^{- \int P(x) dx} \\
&= Q(x)
\end{align*}

De la última igualdad obtenemos que

$$\dfrac{dk}{dx} = e^{\int P(x) dx} Q(x)$$

Integrando ambos lados de la ecuación con respecto a $x$ tenemos

\begin{align*}
\int{\left( \dfrac{dk}{dx} \right) dx} &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) + c &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) &= \int{ e^{\int P(x) dx} Q(x) dx}
\end{align*}

Donde consideramos que $c = 0$. Sustituyendo el valor de $k(x)$ en la solución particular $y_{p} = k(x) e^{- \int P(x) dx}$ obtenemos finalmente que

$$y_{p}(x) = e^{- \int P(x) dx} \left( \int{e^{\int P(x) dx} Q(x) dx} \right)$$

Si sustituimos el factor integrante $\mu (x) = e^{\int P(x) dx}$ el resultado queda como

$$y_{p} = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} \right)$$

De esta manera recuperamos el mismo resultado que usando el método del factor integrante visto en la entrada anterior.

Algunas consideraciones

En esta sección queremos aclarar algunos puntos importantes sobre la resolución de ecuaciones diferenciales de primer orden lineales.

Al inicio de la entrada anterior vimos que la solución completa (o solución general) a la ecuación diferencial lineal $\dfrac{dy}{dx} + P(x) y = Q(x)$ es la suma de la solución homogénea $y_{h}(x)$ mas la solución particular $y_{p}(x)$, es importante reconocer este hecho ya que en muchas ocasiones la ecuación homogénea y por tanto la solución homogénea serán muy relevantes si estamos estudiando un fenómeno real, sin embargo, cuando nuestro objetivo es obtener la solución completa no es necesario obtener ambas soluciones por separado para después sumarlas, sino que podemos directamente intentar obtener la solución general. Obtener directamente la solución general está relacionado con la omisión de constantes de integración que hemos hecho, así que es momento de explicar qué está ocurriendo con estas constantes.

Te invito a que desarrolles de nuevo el método de factor integrante y de variación de parámetros pero ahora manteniendo a las constantes de integración, los cálculos serán un poco más extensos pero al final notarás que todas las constantes que resulten se pueden agrupar en una sola constante $C$, es así que en ambos métodos llegarás al siguiente resultado:

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + C \right)$$

Donde $C$ es la constante resultante de juntar todas las contantes de integración que pudieran aparecer y $\mu$ es el factor integrante. Puedes notar que esta es la forma de la solución general que hemos obtenido anteriormente, es decir, si en ambos métodos mantenemos a las contantes de integración podemos obtener la solución general. Lo que nosotros hicimos anteriormente fue que la constante $k$ de la ecuación (\ref{3}) la asociábamos a la solución homogénea $y_{h}(x) = k e^{- \int P(x) dx}$ de manera que al sumar ambas soluciones ya obteníamos la solución general pero en realidad también se puede obtener de ambos métodos manteniendo a las constantes. Decidimos hacerlo así porque es importante el papel que pueden tomar por separado las soluciones homogénea y particular en algunas situaciones, además de que omitir las constantes evitó hacer cálculos extensos en ambos métodos.

Finalmente, como ya mencionamos antes, no se recomienda intentar resolver este tipo de ecuaciones usando las formulas obtenidas para las soluciones sino aplicar cada paso de cualquiera de los métodos desarrollados, sin embargo, a continuación presentamos una serie de pasos que se recomiendan seguir para la resolución de ecuaciones diferenciales lineales de primer orden.

Método para resolver ecuaciones lineales

Si bien es cierto que ya conocemos las formulas explícitas de las soluciones a las ecuaciones diferenciales lineales es conveniente seguir una serie de pasos para resolver este tipo de ecuaciones en lugar de sólo sustituir en las formulas y así evitar memorizarlas. Dichos pasos se describen a continuación.

  1. Escribir la ecuación lineal en la forma canónica

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

  1. Calcular el factor integrante $\mu (x)$ mediante la formula $\mu (x) = e^{\int{P(x) dx}}$.
  2. Multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados de la ecuación.

$$\mu (x) \dfrac{dy}{dx} + \mu (x) P(x) y = \mu (x) Q(x)$$

  1. Identificar que el lado izquierdo de la ecuación es la derivada de $\mu(x)$ por $y(x)$ y sustituir.

$$\dfrac{d}{dx} (\mu y) = \mu (x) Q(x)$$

  1. Integrar la última ecuación y dividir por $\mu (x)$ para obtener finalmente la solución general $y(x)$. En la última integración debemos considerar a la constante de integración.

Esta serie de pasos nos permiten obtener directamente la solución general de la ecuación diferencial lineal es por ello que en el último paso sí debemos considerar a la constante de integración, dicha constante representa el resultado de juntar todas las contantes que podremos omitir en pasos intermedios.

Anteriormente resolvimos algunas ecuaciones diferenciales en las que usando las formulas de las soluciones sólo sustituíamos las funciones correspondientes y sumábamos ambos resultados para obtener la solución general, veamos ahora un ejemplo en el que vamos a aplicar estos pasos para resolver la ecuación.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

Solución: Para resolver la ecuación diferencial vamos a seguir los pasos establecidos anteriormente. El primer paso será escribir a la ecuación en la forma canónica $\dfrac{dy}{dx} + P(x) y = Q(x)$:

\begin{align*}
\left( x^{2} +1 \right) \dfrac{dy}{dx} &= x^{2} + 2x -1 -4xy \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1 -4xy}{x^{2} +1} \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1}{x^{2} +1} -\left(\dfrac{4x}{x^{2} +1} \right) y\\
\dfrac{dy}{dx} + \left( \dfrac{4x}{x^{2} +1} \right) y &= \dfrac{x^{2} + 2x -1}{x^{2} +1}
\end{align*}

En la última relación ya podemos determinar que $P(x) = \dfrac{4x}{x^{2} +1}$ y $Q(x) = \dfrac{x^{2} + 2x -1}{x^{2} +1}$.

El segundo paso es determinar el factor integrante de acuerdo a la formula $\mu (x) = \large e^{\int{P(x) dx}}$

\begin{align*}
\mu (x) = e^{\int{P(x) xd}} = e^{\int{\left( \dfrac{4x}{x^{2} +1}\right) dx}}
\end{align*}

Vamos a resolver la integral

\begin{align*}
\int{\dfrac{4x}{x^{2} +1} dx} &= 4 \int{\dfrac{x}{x^{2} +1} dx} \\
&= \dfrac{4}{2} \ln{\left( x^{2} + 1 \right)} \\
&= 2 \ln{\left(x^{2} + 1\right)} \\
&= \ln{\left( x^{2} + 1\right)^{2}}
\end{align*}

Como se trata de un paso intermedio podemos omitir a la constante de integración. Sustituyendo en el factor integrante:

\begin{align*}
\mu (x) = e^{\ln{\left( x^{2} + 1\right)^{2}}} = \left( x^{2} + 1\right)^{2}
\end{align*}

Por lo tanto el factor integrante es: $\mu (x) = \left( x^{2} + 1\right)^{2}$

El tercer paso es multiplicar la ecuación diferencial en su forma canónica por el factor integrante:

\begin{align*}
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + \left( x^{2} + 1\right)^{2} \left( \dfrac{4x}{x^{2} +1} \right) y &= \left( x^{2} + 1\right)^{2} \left(\dfrac{x^{2} + 2x -1}{x^{2} +1}\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= \left( x^{2} + 1\right) \left(x^{2} + 2x -1\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= x^{4} + 2x^{3} +2x -1
\end{align*}

El cuarto paso es identificar que

$$\dfrac{d}{dx}(\mu (x) y(x)) = \dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = \left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y$$

Así que ahora podemos escribir:

$$\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = x^{4} + 2x^{3} +2x -1$$

El quinto y último paso es integrar esta relación por ambos lados con respecto a $x$, en esta última integración sí debemos considerar a la constante de integración.

\begin{align*}
\int{\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) dx} &= \int{\left( x^{4} + 2x^{3} +2x -1\right)}dx \\
y \left( x^{2} + 1\right)^{2} + k &= \int{\left( x^{4} + 2x^{3} +2x -1\right)} dx
\end{align*}

Resolvamos la integral.

\begin{align*}
\int{\left( x^{4} + 2x^{3} +2x -1\right)} dx &= \int{x^{4} dx} + \int{2x^{3} dx} + \int{2x dx} -\int{dx} \\
&= \dfrac{x^{5}}{5} + 2\left(\dfrac{x^{4}}{4}\right) + 2 \left(\dfrac{x^{2}}{2}\right) -x \\
&= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x
\end{align*}

Omitimos todas las constantes para englobarlas en la constante $K = -k$. Sustituyendo este resultado obtenemos que

\begin{align*}
y \left( x^{2} + 1\right)^{2} + k &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x \\
y\left( x^{2} + 1\right)^{2} &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \\
y(x) &= \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \right)
\end{align*}

Por lo tanto, la solución general a la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

es

$$y(x) = \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K\right)$$

Donde $K$ es la constante que engloba a todas las contantes de integración que omitimos.

$\square$

Para concluir el análisis de las ecuaciones diferenciales lineales de primer orden, presentaremos el teorema de existencia y unicidad para este tipo de ecuaciones.

Teorema de existencia y unicidad

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden, podemos usar dicho resultado para justificar el teorema de existencia y unicidad para el caso de ecuaciones diferenciales lineales de primer orden.

Teorema: Consideremos la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Si $P(x)$ y $Q(x)$ son funciones continuas en un intervalo $\delta \subseteq \mathbb{R}$, entonces existe una única función $\gamma (x)$ tal que satisface el problema de valor inicial (PVI):

$$\dfrac{dy}{dx} + P(x) y = Q(x), \hspace{0.8cm} y(x_{0}) = y_{0}, \hspace{0.8cm} x_{0} \in \delta, \hspace{0.8cm} y_{0} \in Im(y).$$

Demostración: Consideremos la ecuación diferencial

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Reescribiendo esta ecuación en la forma normal tenemos que

$$\dfrac{dy}{dx} = Q(x) -P(x) y$$

Definimos

$$f(x, y) = Q(x) -P(x) y$$

De manera que

$$\dfrac{dy}{dx} = f(x, y)$$

Debido a que en un intervalo de solución $\delta$ debe satisfacerse que $P(x)$ y $Q(x)$ sean continuas entonces tenemos garantizado que $f(x, y) = Q(x) -P(x) y$ es continua y por tanto $\dfrac{\partial f}{\partial y}$ también lo es, con esto estamos cumpliendo las hipótesis del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden que establecimos anteriormente, aplicando dicho teorema obtenemos que entonces existe algún intervalo $\delta_{0}: (x_{0} -h, x_{0} + h)$, $h > 0$, contenido en $\delta$, y una función única $\gamma (x)$, definida en $\delta_{0}$, que satisface la condición inicial $y(x_{0}) = y_{0}$.

$\square$

Apliquemos este resultado a la solución general. Consideremos la condición inicial $y(x_{0}) = y_{0}$ y la solución general a la ecuación (\ref{1})

\begin{align}
y(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} + k\right) \label{4} \tag{4}
\end{align}

A la solución vamos a aplicarle la condición inicial:

\begin{align}
y_{0} = y(x_{0}) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx}\Bigg|_{x =x_{0}} + k\right) \label{5} \tag{5}
\end{align}

De este resultado se puede despejar $k$ obteniendo un único valor, digamos $k = k_{0}$, por lo tanto la función

\begin{align}
\gamma (x) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} + k_{0}\right) \label{6} \tag{6}
\end{align}

es solución al problema de valor inicial (PVI). Así para cada $x_{0} \in \delta_{0}$, encontrar una solución particular a la ecuación (\ref{4}) es exactamente lo mismo que encontrar un valor adecuado de $k$ en la ecuación (\ref{5}), es decir, a toda $x_{0} \in \delta_{0}$ le corresponde un distinto $k$.

Con esto damos por concluido el análisis de las ecuaciones diferenciales lineales de primer orden, en la siguiente entrada comenzaremos con el estudio de las ecuaciones diferenciales de primer orden que no son lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Realizando los pasos del método para resolver ecuaciones diferenciales lineales de primer orden, encuentra la solución general de las siguientes ecuaciones.
  • $3\dfrac{y}{x} -8 + 3\dfrac{dy}{dx} = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$
  • $\dfrac{dy}{dx} + cos(x) (y -1) = 0$
  1. Ya que conoces la solución general a la ecuación diferencial $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$. Resuelve los siguientes problemas de valor inicial y analiza cada situación considerando el teorema de existencia y unicidad.
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = y_{0}, \hspace{1cm} y_{0} > 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(x_{0}) = y_{0}, \hspace{1cm} x_{0} > 0, \hspace{0.3cm} y_{0} > 0$

¿Que puedes concluir al respecto?.

Más adelante…

En esta entrada continuamos con el estudio de las ecuaciones diferenciales de primer orden lineales y presentamos el teorema de existencia y unicidad para este tipo de ecuaciones. En la siguiente entrada continuaremos con el estudio de métodos de resolución de ecuaciones diferenciales de primer orden pero ahora estudiaremos las ecuaciones que no son lineales.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante y por variación de parámetros

Introducción

En la entrada anterior comenzamos el estudio de las ecuaciones diferenciales lineales de primer orden. En particular, resolvimos el caso cuando la función $g(t)$ que aparece en la ecuación $a_{0}(t) \frac{dy}{dt}+a_{1}(t)y=g(t)$ es la función constante cero.

Ahora veremos el caso no homogéneo, es decir, cuando la función $g(t)$ no es cero. Resolveremos esta ecuación por dos vías distintas. El primer método es mediante la búsqueda de una función que dependa de la variable independiente $t$ que nos ayude a simplificar la ecuación. A esta función la llamaremos factor integrante. El segundo método, llamado variación de parámetros, utiliza la solución general a la ecuación homogénea asociada, para encontrar a su vez la solución general a la ecuación no homogénea.

Vamos entonces a comenzar el estudio de estas ecuaciones.

Solución a ecuación lineal no homogénea por factor integrante

En el primer video resolvemos la ecuación diferencial $a_{0}(t) \frac{dy}{dt}+a_{1}(t)y=g(t)$ como un caso general por el método de factor integrante. En el segundo video resolvemos algunas ecuaciones por el mismo método.

Solución a ecuación lineal no homogénea por variación de parámetros

En el primer video resolvemos de forma general la ecuación lineal no homogénea, pero ahora por el método de variación de parámetros. En el segundo video resolvemos dos ecuaciones por este método, una de ellas la resolvimos en la sección anterior por el método de factor integrante, esto para comprobar que los dos métodos llevan a la misma solución.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que la expresión de la solución general para la ecuación lineal homogénea es un caso particular de la solución general de la ecuación lineal no homogénea.
  • Resuelve las siguientes ecuaciones diferenciales por los métodos de factor integrante y variación de parámetros:
  1. $\frac{dy}{dt}=y+t^{2}$
  2. $\frac{dy}{dt}+y+t+t^{2}+t^{3}=0$
  • Intenta resolver la ecuación $t^{2}\frac{dy}{dt}+y=\frac{1}{t}$ con $t>0$, por el método de variación de parámetros. ¿Qué dificultades se presentan? Esto muestra que habrá ocasiones en que alguna ecuación diferencial no podrá ser resuelta por ciertos métodos.
  • Sean $y_{1}$ y $y_{2}$ soluciones a las ecuaciones diferenciales $\frac{dy}{dt}+p(t)y=q_{1}(t)$ y $\frac{dy}{dt}+p(t)y=q_{2}(t)$. Prueba que $c_{1}y_{1}+c_{2}y_{2}$ es solución a la ecuación $\frac{dy}{dt}+p(t)y=c_{1}q_{1}(t)+c_{2}q_{2}(t)$, donde $c_{1}$ y $c_{2}$ son constantes.
  • Cuando resolvimos la ecuación lineal no homogénea por variación de parámetros, encontramos una forma explícita para la suma de soluciones $y_{H}+y_{P}$ donde $y_{H}$ es solución general a la ecuación homogénea y $y_{P}$ es una solución particular a la ecuación no homogénea, y afirmamos que esta nueva solución es la misma que encontramos por el método del factor integrante. Ahora supongamos por un momento que no conocemos el método del factor integrante. Argumenta por qué $y_{H}+y_{P}$ es solución general a la ecuación no homogénea. (Hint: Utiliza el ejercicio anterior).
  • Resuelve la ecuación diferencial $\frac{dT}{dt}=-50(T(t)-30)$ con condición inicial $T(0)=75$.

Más adelante

Hasta el momento hemos estudiado diversos tipos de ecuaciones diferenciales desde un punto de vista cualitativo y también analítico. Sin embargo, muchos de los resultados a los que hemos llegado tienen una justificación que aún no hemos revisado a detalle. Dicha justificación está dada por el Teorema de existencia y unicidad.

En la siguiente entrada demostraremos una primera versión de este teorema, enfocado en ecuaciones lineales de primer orden, que son las ecuaciones que hemos estudiado en los últimos videos.

Entradas relacionadas