Archivo de la etiqueta: Campo vectorial

Ecuaciones Diferenciales I: Las nulclinas en el estudio cualitativo de los sistemas no lineales

Algún matemático dijo que el verdadero placer no reside
en el descubrimiento de la verdad, sino en su búsqueda.
– Tolstoy

Introducción

Hemos comenzado con el estudio cualitativo de los sistemas no lineales. Hasta este momento sólo somos capaces de predecir el comportamiento de las soluciones de un sistema no lineal alrededor de los puntos de equilibrio. Vimos que para hacerlo debemos encontrar el sistema lineal cuyas soluciones mejor se aproximen a las del sistema no lineal, a tal proceso se le conoce como linearización.

Nuestro propósito es esbozar de manera general el plano fase de un sistema no lineal, o al menos describir las trayectorias en zonas lejanas a los puntos de equilibrio.

En esta entrada veremos como hacer una descripción más general del plano fase a través de un método geométrico.

Nulclinas

Una observación de la definición anterior es que las nulclinas corresponden a las curvas de nivel de las funciones $F_{1}$ y $F_{2}$

\begin{align*}
F_{1}(x, y) &= c \\
F_{2}(x, y) &= c \label{2} \tag{2}
\end{align*}

en el caso en el que $c = 0$.

Ejemplo: Determinar las nulclinas del siguiente sistema no lineal.

\begin{align*}
x^{\prime} &= x(2 -x -y) \\
y^{\prime} &= y(y -x)
\end{align*}

Solución: De este sistema no lineal vemos que

\begin{align*}
F_{1}(x, y) &= x(2 -x -y) \\
F_{2}(x, y) &= y(y -x)
\end{align*}

Para obtener la nulclina $x$ (o nulclinas $x$) hacemos $F_{1}(x, y) = 0$, es decir

$$x(2 -x -y) = 0$$

de donde $x = 0$ o $2 -x -y = 0$. Una primer nulclina $x$ corresponde al eje $y$ del plano fase ya que $x = 0$. De la segunda expresión se obtiene la función $y(x) =2 -x$, la cual corresponde a una recta con pendiente negativa. Dicha recta es una segunda nulclina $x$.

Para obtener las nulclinas $y$ hacemos $F_{2}(x, y) = 0$, es decir,

$$y(y -x) = 0$$

de donde $y = 0$ o $y -x = 0$. En este caso una nulclina $y$ corresponde al eje $x$ del plano fase ya que $y = 0$, mientras que la segunda nulclina corresponde a la recta definida por la función $y(x) =x$.

Por lo tanto, las rectas $x = 0$ (eje $y$), $y = 0$ (eje $x$), $y(x) =x$ y $y(x) =2 -x$ son las nulclinas del sistema no lineal. A continuación se muestran las nulclinas en el plano fase (o plano $XY$).

Nulclinas del sistema.

$\square$

¿Y de qué nos sirven las nulclinas?. Consideremos la función vectorial

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) \label{3} \tag{3}$$

De acuerdo a la definición de nulclinas notamos enseguida que, en general, el campo vectorial sobre una nulclina siempre será vertical (apuntará hacia arriba o hacia abajo) o será horizontal (apuntará hacia la izquierda o a la derecha) dependiendo de qué componente de la función vectorial (\ref{3}) sea cero.

Supongamos que los puntos $(x_{0}, y_{0})$ pertenecen a la nulclina $x$, entonces, por definición, se cumple

$$F(x_{0}, y_{0}) = (0, F_{2}(x_{0}, y_{0})) \label{4} \tag{4}$$

en este caso el campo vectorial en el punto $(x_{0}, y_{0})$ será vertical ya que no hay componente horizontal y apuntará hacia arriba si $F_{2}(x_{0}, y_{0}) > 0$ o hacia abajo si $F_{2}(x_{0}, y_{0}) < 0$.

De forma similar, si los puntos $(x_{0}, y_{0})$ pertenecen a la nulclina $y$, entonces se cumple

$$F(x_{0}, y_{0}) = (F_{1}(x_{0}, y_{0}), 0) \label{5} \tag{5}$$

es decir, el campo vectorial será horizontal a lo largo de la nulclina $y$. Apuntará a la izquierda si $F_{1}(x_{0}, y_{0}) < 0$ o a la derecha si $F_{2}(x_{0}, y_{0}) > 0$.

Notemos otro hecho importante. Por definición, un punto de equilibrio satisface que

$$F(x_{0}, y_{0}) = (0, 0) \label{6} \tag{6}$$

es decir,

\begin{align*}
F_{1}(x_{0}, y_{0}) &= 0 \\
F_{2}(x_{0}, y_{0}) &= 0 \label{7} \tag{7}
\end{align*}

Eso significa que existe un punto $(x_{0}, y_{0})$ que esta tanto en la nulclina $x$ como en la nulclina $y$, en otras palabras, las intersecciones entre nulclinas corresponden a los puntos de equilibrio del sistema no lineal.

Ejemplo: Determinar los puntos de equilibrio así como la dirección del campo vectorial sobre las nulclinas del sistema no lineal del ejemplo anterior.

Solución: El sistema que teníamos era

\begin{align*}
x^{\prime} &= x(2 -x -y) \\
y^{\prime} &= y(y -x)
\end{align*}

La función vectorial $F$ es

$$F(x, y) = (x(2 -x -y), y(y -x))$$

Comencemos por determinar los puntos de equilibrio, dichos puntos se obtienen de resolver el sistema

\begin{align*}
x(2 -x -y) &= 0 \\
y(y -x) &= 0
\end{align*}

De la primer ecuación tenemos $x = 0$ o $2 -x -y = 0$, de la segunda relación se obtiene $y = 2 -x$. Por otro lado, de la segunda ecuación tenemos $y = 0$ o $y -x = 0$. Sustituyendo $x = 0$, entonces $y = 0$, por lo tanto, un punto de equilibrio es el origen $Y_{0} = (0, 0)$.

Si sustituimos $y = 2-x$ en $y -x = 0$ se tiene

$$(2 -x) -x = 2 -2x = 0$$

de donde $x = 1$, así $y = 2 -1 =1$, por tanto, otro punto de equilibrio es $Y_{1} = (1, 1)$.

Finalmente si $y = 0$, entonces $x = 2$, así el punto $Y_{2} = (2, 0)$ es otro punto de equilibrio.

Recordemos que las nulclinas del sistema están definidas por las rectas $x = 0$, $y = 0$, $y = x$ y $y = 2 -x$. Verifica que los puntos de equilibrio

$$Y_{0} = (0, 0), \hspace{1cm} Y_{1} = (1, 1) \hspace{1cm} y \hspace{1cm} Y_{2} = (2, 0)$$

efectivamente corresponden a los puntos de intersección entre las nulclinas del sistema.

¿Por qué el punto $(0, 2)$ no es un punto de equilibrio si es también la intersección de dos nulclinas?.

Ahora veamos que dirección tiene el campo vectorial sobre cada nulclina.

Lo primero que debemos notar es que cada nulclina está definida en intervalos.

Distintos intervalos para las nulclinas.
  • El eje $y$ (nulclina $x = 0$) se debe estudiar en los intervalos $y \in (-\infty, 0), (0, \infty)$.
  • El eje $x$ (nulclina $y = 0$) se debe estudiar en los intervalos $x \in (-\infty, 0), (0, 2), (2, \infty)$.
  • La nulclina definida por $y(x) = x$ se debe estudiar en los intervalos en los que $x \in (-\infty, 0), (0, 1), (1, \infty)$.
  • Finalmente, la nulclina definida por $y(x) = 2 -x$ se debe estudiar en los intervalos $x \in (-\infty, 1), (1, 2), (2, \infty)$.

Determinemos la dirección de los vectores en cada intervalo de cada nulclina apoyándonos de la función vectorial

$$F(x, y) = (x(2 -x -y), y(y -x))$$

Comencemos por la nulclina $x$ definida por $x = 0$. Si $x = 0$, entonces

$$F(0, y) = (0, y^{2})$$

como $y^{2} > 0$ en todo momento, es decir para $y \in (-\infty, 0)$ y $y \in (0, \infty)$, entonces el campo vectorial sera vertical apuntando hacia arriba.

Dirección del campo vectorial sobre la nulclina definida por $x = 0$.

Para el caso de la nulclina $y$ definida por $y = 0$, se tiene

$$F(x, 0) = (2x -x^{2}, 0)$$

Comencemos con $x \in (-\infty, 0)$. Si $x < 0$, entonces $2x < 0$ y claro está que $-x^{2} < 0$, por tanto, en dicho intervalo $2x -x^{2} < 0$, esto significa que el campo vectorial será horizontal señalando hacia la izquierda.

Si $x \in (0, 2)$, entonces $x > 0$, o bien $2x > 0$ y $-x^{2} < 0$, es sencillo notar que dentro del intervalo que estamos considerando se cumple que $2x -x^{2} > 0$, por tanto, el campo apuntará a la derecha

Finamente, si $x \in (2, \infty)$, es claro que $2x -x^{2} < 0$, así que el campo volverá a apuntar hacia la izquierda.

Campo vectorial sobre las nulclinas definidas por $y = 0$ y $x = 0$.

Consideremos ahora la nulclina $y$ definida por $y = x$, en este caso el campo vectorial esta dado por

$$F(y, y) = (2y -2y^{2}, 0)$$

o bien,

$$F(x, x) = (2x -2x^{2}, 0)$$

En el intervalo $x \in (-\infty, 0)$, se cumple que $x < 0$, $2x < 0$ y claro es que $-2x^{2} < 0$, así en dicho intervalo $2x -2x^{2} < 0$, por lo tanto, el campo vectorial es horizontal y apunta hacia la izquierda.

Si $x \in (0,1)$, entonces $2x -2x^{2} > 0$, el campo apuntará a la derecha y finalmente volverá a apuntar a la izquierda para $x \in (1, \infty )$, ya que $2x -2x^{2} < 0$.

Campo vectorial sobre la nulclina definida por $y(x) = x$.

Finalmente, para la nulclina $x$ definida por $y = 2 -x$, se tiene

$$F(x, 2 -x) = (0, 2x^{2} -6x + 4)$$

Es posible verificar que si $x \in (-\infty, 1)$, entonces

$$2x^{2} -6x + 4 > 0$$

Si $x \in (1, 2)$, entonces

$$2x^{2} -6x + 4 < 0$$

y si $x \in (2, \infty)$ se cumple que

$$2x^{2} -6 + 4 > 0$$

Por lo tanto, el campo vectorial apuntará hacia arriba, luego hacia abajo y después nuevamente hacia arriba, respectivamente.

Campo vectorial sobre la nulclina definida por $y(x) = 2 -x$.

Por lo tanto, el campo vectorial sobre cada nulclina se ve de la siguiente forma.

Campo vectorial sobre las nulclinas del sistema.

$\square$

Recordemos que el campo vectorial es tangente a las trayectorias del sistema y la dirección indica la evolución de dichas trayectorias conforme $t \rightarrow \infty$, de manera que ahora tenemos una idea, aunque puede ser un poco vaga, de como se puede ir viendo el plano fase del sistema.

Una última observación que hacemos es que las curvas que representan a las nulclinas dividen al plano en varias regiones. En el ejemplo anterior se forman 10 regiones distintas las cuales se muestran en la siguiente figura.

Regiones limitadas por las nulclinas del sistema no lineal estudiado.

Esto nos permitirá esbozar el campo vectorial sobre cada región y con ello podremos trazar trayectorias obteniendo así una representación más general del plano fase de un sistema no lineal.

Ejemplo: Intentar esbozar el plano fase del sistema no lineal estudiado.

\begin{align*}
x^{\prime} &= x(2 -x -y) \\
y^{\prime} &= y(y -x)
\end{align*}

Solución: Hasta este momento conocemos los puntos de equilibrio del sistema, las nulclinas y la dirección del campo vectorial sobre cada una de ellas.

Lo que se puede hacer es determinar un vector aleatorio sobre cada una de las regiones limitadas por las nulclinas del sistema y en base a él aproximar una solución apoyándose también de los vectores ubicados sobre las nulclinas. En el segundo video de la sección de videos de este curso puedes encontrar el desarrollo de este método.

Debido a que a nosotros nos resulta más difícil dibujar algunas trayectorias, lo que haremos es utilizar nuestra herramienta de costumbre para visualizar el campo vectorial del sistema.

Campo vectorial del sistema no lineal indicando las nulclinas.

En esta figura visualizamos el campo vectorial del sistema, así como sobre las nulclinas.

Lo primero que se puede hacer es linealizar el sistema con respecto a cada uno de los puntos de equilibrio. Recordemos que la función vectorial $F$ es

$$F(x, y) = (x(2 -x -y), y(y -x))$$

de manera que

\begin{align*}
F_{1}(x, y) &= x(2 -x -y) \\
F_{2}(x, y) &= y(y -x)
\end{align*}

Las derivadas parciales son

$$\dfrac{\partial F_{1}}{\partial x} = 2 -2x -y, \hspace{1cm} \dfrac{\partial F_{1}}{\partial y} = -x, \hspace{1cm} \dfrac{\partial F_{2}}{\partial x} = -y, \hspace{1cm} \dfrac{\partial F_{2}}{\partial y} = 2y -x$$

Por lo tanto, la matriz Jacobiana es

$$\mathbf{J}(x, y) = \begin{pmatrix}
2 -2x -y & -x \\ -y & 2y -x
\end{pmatrix}$$

Los puntos de equilibrio son $(0, 0), (1, 1)$ y $(2, 0)$, evaluando cada punto en la matriz Jacobiana se obtienen las siguientes matrices.

$$\mathbf{J}(0, 0) = \begin{pmatrix}
2 & 0 \\ 0 & 0
\end{pmatrix}, \hspace{1cm} \mathbf{J}(1, 1) = \begin{pmatrix}
-1 & -1 \\ -1 & 1
\end{pmatrix}, \hspace{1cm} \mathbf{J}(2, 0) = \begin{pmatrix}
-2 & -2 \\ 0 & -2
\end{pmatrix}$$

Por lo tanto, los sistemas lineales que se aproximan a la descripción de las trayectorias del sistema no lineal alrededor de los puntos de equilibrio son:

  • $Y_{0} = (0, 0)$:

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
2 & 0 \\ 0 & 0
\end{pmatrix}\mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{0} = (0, 0)$.
  • $Y_{1} = (1, 1)$:

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 \\ -1 & 1
\end{pmatrix}\mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{1} = (1, 1)$.
  • $Y_{2} = (2, 0)$:

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-2 & -2 \\ 0 & -2
\end{pmatrix}\mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{2} = (2, 0)$.

Con el conocimiento de la forma de las trayectorias alrededor de los puntos de equilibrio y con la dirección del campo vectorial sobre algunos puntos del plano fase, entre ellos sobre las nulclinas, es que podemos esbozar completamente el plano fase del sistema no lineal.

En este caso, el plano fase correspondiente al sistema no lineal estudiado es

Plano fase y campo vectorial del sistema.

El flujo de las trayectorias es algo que ya intuíamos al considerar toda la información que estuvimos desarrollando sobre el sistema a lo largo de la entrada.

$\square$

Con esto concluimos el estudio cualitativo de algunos sistemas no lineales sencillos.

En la siguiente entrada estudiaremos un comportamiento interesante que presentan las trayectorias de algunos sistemas no lineales y cuya descripción se establece en el conocido teorema de Poincaré – Bendixon.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Hacer un bosquejo del plano fase de los siguientes sistemas no lineales siguiendo el método desarrollado a lo largo de la unidad.
    (Recuerda que el propósito es esbozar el plano fase a mano, una vez que concluyas puede comparar tu resultado con el obtenido usando una computadora.)
  • $x^{\prime} = x(2 -x -y)$
    $y^{\prime} = y(y -x^{2})$
  • $x^{\prime} = x(x -1)$
    $y^{\prime} = y(x^{2} -y)$
  • $x^{\prime} = xy -2y$
    $y^{\prime} = x^{2} + y$
  1. Intentar hacer un bosquejo del plano fase del siguiente sistema no lineal.
  • $x^{\prime} = y$
    $y^{\prime} = -x + (1 -x^{2} -2y^{2})y$

    ¿Qué se observa de este sistema no lineal?.
    ¿Hay alguna dificultad en esbozar el plano fase?.

Más adelante…

Ahora somos capaces de hacer un estudio cualitativo de algunos sistemas no lineales, sin embargo existen situaciones en las que un sistema no lineal presenta un comportamiento interesante en el que las trayectorias tienden a una curva cerrada conocida como ciclo límite. En la siguiente y última entrada del curso estudiaremos la descripción de estos sistemas y enunciaremos el teorema de Poincaré – Bendixson en el plano.

Entradas relacionadas

Ecuaciones Diferenciales I: Linealización de los puntos de equilibrio de sistemas no lineales

La educación en matemáticas es mucho más complicada que lo que esperabas,
incluso si esperabas que es más complicada que lo que esperabas.
– Edward Griffith Begle

Introducción

Nos acercamos al final de este curso. Para concluir estudiaremos un último tema que tiene que ver con los sistemas autónomos de ecuaciones diferenciales no lineales.

Resolver de forma analítica sistemas de ecuaciones diferenciales no lineales puede ser una tarea sumamente complicada y en algunos casos hasta imposible, es por ello que en muchas ocasiones se opta por resolverlos con métodos numéricos. En este curso no veremos métodos numéricos y mucho menos métodos analíticos para resolver sistemas de ecuaciones diferenciales no lineales debido a que requerimos de más teoría que queda fuera de este primer curso de ecuaciones diferenciales. Pero lo que si podemos hacer es un análisis cualitativo como lo hemos estado haciendo en esta unidad.

Recordemos que el espacio fase de un sistema de ecuaciones diferenciales aporta la suficiente información como para conocer de forma completa el comportamiento de los soluciones a diferentes tiempos, incluso esta información puede ser suficiente para describir el fenómeno que estemos estudiando sin la necesidad de conocer explícitamente las soluciones del sistema.

En esta y las próximas entradas comenzaremos a desarrollar métodos cualitativos que nos permitirán construir el espacio fase de sistemas no lineales y por tanto conocer el comportamiento de sus soluciones a diferentes tiempos y diferentes condiciones iniciales.

En estos momentos ya conocemos métodos analíticos y geométricos que nos permiten entender completamente a los sistemas lineales, es posible combinar estos métodos con algunas otras técnicas cualitativas adicionales para describir a los sistemas no lineales. Comenzaremos desarrollando el método de linealización, el cual nos mostrará cómo es que puede aproximarse un sistema no lineal a un punto de equilibrio por medio de un sistema lineal.

Trayectorias de los sistemas no lineales

Consideremos el siguiente sistema no lineal.

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= -x + (1 -x^{2})y \label{1} \tag{1}
\end{align*}

Enseguida podemos darnos cuenta de que el único punto de equilibrio del sistema es el origen. Usando la herramienta que hemos estado utilizando a lo largo de esta unidad podemos visualizar el plano fase del sistema acompañado del campo vectorial asociado.

Plano fase del sistema no lineal (1).

Las trayectorias en general no muestran un comportamiento parecido a alguno de los sistemas estudiados en las entradas anteriores y claro que debe ser así, ya que en este caso se trata de un sistema no lineal. Sin embargo, se puede notar que alrededor del punto de equilibrio, es decir del origen, si hay un comportamiento que nos parece familiar, pues se trata de una espiral que se aleja del origen (parecido a foco inestable).

Lo que haremos será aproximar el sistema (\ref{1}) con un sistema que sea mucho más fácil de analizar. Observemos que el término que hace que el sistema no sea lineal es $x^{2}y$ en la ecuación para $y^{\prime}$. Si $x$ y $y$ son pequeñas (cercanas al punto de equilibrio), entonces el término $x^{2}y$ es aún mucho más pequeño, de manera que para valores pequeños de $x$ y de $y$ es posible aproximar el sistema (\ref{1}) en un sistema lineal en el que no aparece el término $x^{2}y$, dicho sistema es

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= -x + y \label{2} \tag{2}
\end{align*}

Ambos sistemas deben ser muy similares en una vecindad muy próxima al punto de equilibrio, en este caso en el origen. Veamos el plano fase del sistema lineal (\ref{2}).

Plano fase del sistema lineal (2).

Si observamos con cuidado ambos planos fase vemos que efectivamente son muy similares alrededor del origen, ya que ambos corresponden a espirales que se alejan del origen.

El plano fase del sistema (\ref{2}) corresponde a un sistema con valores propios complejos. Prueba que efectivamente los valores propios son

$$\lambda_{1} = \dfrac{1 + i \sqrt{3}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{1 -i \sqrt{3}}{2}$$

Como son complejos con parte real positiva, sabemos que las soluciones del sistema lineal se mueven en espiral alejándose del origen.

Lo que hemos hecho se conoce como linealización del punto de equilibrio. Cerca del punto de equilibrio aproximamos el sistema no lineal por medio de un sistema lineal apropiado. Para condiciones iniciales cerca del punto de equilibrio las soluciones del sistema no lineal y de la aproximación lineal permanecen cercanas entre sí, por lo menos en algún intervalo.

El sistema no lineal (\ref{1}) se conoce como ecuación de Van der Pol y más adelante volveremos a él.

Veamos cómo sería hacer una linealización de un sistema no polinomial. Consideremos el sistema no lineal

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= -y -\sin(x) \label{3} \tag{3}
\end{align*}

El término no lineal corresponde a la función seno. Este modelo bien puede representar el movimiento de un péndulo amortiguado.

Los puntos de equilibrio del sistema son $Y_{0} = (0, 0), (\pm \pi, 0), (\pm 2\pi, 0)$, etcétera. Concentrémonos sólo en el origen.

Sabemos que

$$\sin(x) = x -\dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} – \cdots \label{4} \tag{4}$$

Entonces podemos escribir al sistema (\ref{3}) como

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= -y -\left( x -\dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} – \cdots \right) \label{5} \tag{5}
\end{align*}

Para $x$ muy pequeña los términos con potencia son aún más pequeños, así que los podemos omitir aproximándonos al siguiente sistema lineal.

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= -y -x \label{6} \tag{6}
\end{align*}

Los valores propios de este sistema son

$$\lambda_{1} = \dfrac{-1 + i \sqrt{3}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{-1 -i \sqrt{3}}{2}$$

Como estos números son complejos con parte real negativa, esperamos que el correspondiente punto de equilibrio para el sistema no lineal sea un foco estable.

A continuación se muestra el plano fase del sistema no lineal (\ref{3}) y posteriormente el plano fase del sistema linealizado (\ref{6}) y observemos en ambos el comportamiento de las trayectorias alrededor del punto de equilibrio $Y_{0} = (0, 0)$.

Plano fase del sistema (3).
Plano fase del sistema (6).

Efectivamente, en ambos planos fase alrededor del origen presentan el mismo comportamiento correspondiente a un foco estable.

El proceso de linealización puede ser directo independientemente del sistema no lineal que tengamos, pero debemos apoyarnos de una herramienta del cálculo diferencial conocida como matriz Jacobiana.

Linealización de los puntos de equilibrio

Consideremos el siguiente sistema autónomo no lineal.

\begin{align*}
x^{\prime} &= F_{1}(x, y) \\
y^{\prime} &= F_{2}(x, y) \label{7} \tag{7}
\end{align*}

Supongamos que $Y_{0} = (x_{0}, y_{0})$ es un punto de equilibrio de este sistema (no necesariamente el origen). Queremos entender qué sucede con las soluciones cerca de $Y_{0}$, es decir, linealizar el sistema cerca de $Y_{0}$. Introducimos nuevas variables.

\begin{align*}
u &= x -x_{0} \\
v &= y -y_{0} \label{8} \tag{8}
\end{align*}

Lo que hacen estas variables es mover el punto de equilibrio al origen. Si $x$ y $y$ están cerca del punto de equilibrio $(x_{0}, y_{0})$, entonces $u$ y $v$ tienden a $0$.

Como los números $x_{0}$ y $y_{0}$ son constantes y además

$$x = u + x_{0} \hspace{1cm} y \hspace{1cm} y = v + y_{0}$$

entonces el sistema (\ref{7}) escrito en términos de $u$ y $v$ es

\begin{align*}
\dfrac{du}{dt} &= \dfrac{d(x -x_{0})}{dt} = \dfrac{dx}{dt} = F_{1}(x, y) = F_{1}(x_{0} + u, y_{0} + v) \\
\dfrac{dv}{dt} &= \dfrac{d(y -y_{0})}{dt} = \dfrac{dy}{dt} = F_{2}(x, y) = F_{2}(x_{0} + u, y_{0} + v)
\end{align*}

Esto es,

\begin{align*}
u^{\prime} &= F_{1}(x_{0} + u, y_{0} + v) \\
v^{\prime} &= F_{2}(x_{0} + u, y_{0} + v) \label{9} \tag{9}
\end{align*}

Si $u = v = 0$, entonces

\begin{align*}
u^{\prime} &= F_{1}(x_{0}, y_{0}) \\
v^{\prime} &= F_{2}(x_{0}, y_{0})
\end{align*}

Pero,

$$F_{1}(x_{0}, y_{0}) = 0 \hspace{1cm} y \hspace{1cm} F_{2}(x_{0}, y_{0}) = 0$$

ya que $Y_{0} = (x_{0}, y_{0})$ es un punto de equilibrio, esto nos muestra que hemos movido el punto de equilibrio al origen en el plano $UV$.

Lo que haremos a continuación es apoyarnos de algunos resultados del curso de Cálculo III. Necesitamos eliminar los términos de orden superior o no lineales del sistema (\ref{9}). Como esas expresiones pueden incluir funciones exponenciales, logarítmicas y trigonométricas, no siempre es claro cuáles son los términos lineales. En este caso es necesario estudiar a $F_{1}$ y $F_{2}$ con más atención.

De cálculo sabemos que es posible estudiar una función analizando su mejor aproximación lineal, la cual está dada por el plano tangente para funciones de dos variables, es decir

$$F_{1}(x_{0} + u, y_{0} + v) \approx F_{1}(x_{0}, y_{0}) + \left[ \dfrac{\partial F_{1}}{\partial x}(x_{0}, y_{0}) \right]u + \left[ \dfrac{\partial F_{1}}{\partial y}(x_{0}, y_{0}) \right]v \label{10} \tag{10}$$

El lado derecho es la ecuación para el plano tangente a la gráfica de $F_{1}$ en $Y_{0} = (x_{0}, y_{0})$. Recordemos que la expresión (\ref{10}) es también la aproximación polinomial de primer grado de Taylor para $F_{1}$.

Podemos, entonces, reescribir el sistema (\ref{9}) como

\begin{align*}
u^{\prime} &= F_{1}(x_{0}, y_{0}) + \left[ \dfrac{\partial F_{1}}{\partial x}(x_{0}, y_{0}) \right]u + \left[ \dfrac{\partial F_{1}}{\partial y}(x_{0}, y_{0}) \right]v + \vartheta_{F_{1}} \\
v^{\prime} &= F_{2}(x_{0}, y_{0}) + \left[ \dfrac{\partial F_{2}}{\partial x}(x_{0}, y_{0}) \right]u + \left[ \dfrac{\partial F_{2}}{\partial y}(x_{0}, y_{0}) \right]v + \vartheta_{F_{2}} \label{11} \tag{11}
\end{align*}

Donde $\vartheta_{F_{1}}$ y $\vartheta_{F_{2}}$ son los términos que forman la diferencia entre el plano tangente y las funciones $F_{1}$ y $F_{2}$, respectivamente, y son precisamente los términos que deseamos ignorar al formar la aproximación lineal del sistema.

Como $Y_{0} = (x_{0}, y_{0})$ es un punto de equilibrio, entonces

$$F_{1}(x_{0}, y_{0}) = 0 \hspace{1cm} y \hspace{1cm} F_{2}(x_{0}, y_{0}) = 0$$

Así, las funciones (\ref{11}) se pueden aproximar como

\begin{align*}
u^{\prime} &\approx \left[ \dfrac{\partial F_{1}}{\partial x}(x_{0}, y_{0}) \right]u + \left[ \dfrac{\partial F_{1}}{\partial y}(x_{0}, y_{0}) \right]v \\
v^{\prime} &\approx \left[ \dfrac{\partial F_{2}}{\partial x}(x_{0}, y_{0}) \right]u + \left[ \dfrac{\partial F_{2}}{\partial y}(x_{0}, y_{0}) \right]v \label{12} \tag{12}
\end{align*}

Si usamos la notación matricial podemos escribir el sistema anterior como

$$\begin{pmatrix}
u^{\prime} \\ v^{\prime}
\end{pmatrix} \approx \begin{pmatrix}
\dfrac{\partial F_{1}}{\partial x}(x_{0}, y_{0}) & \dfrac{\partial F_{1}}{\partial y}(x_{0}, y_{0}) \\ \dfrac{\partial F_{2}}{\partial x}(x_{0}, y_{0})
& \dfrac{\partial F_{2}}{\partial y}(x_{0}, y_{0})
\end{pmatrix} \begin{pmatrix}
u \\ v
\end{pmatrix} \label{13} \tag{13}$$

La matriz de $2 \times 2$ de las derivadas parciales en esta expresión se llama matriz Jacobiana del sistema en $Y_{0} = (x_{0}, y_{0})$.

$$\mathbf{J}(x_{0}, y_{0}) = \begin{pmatrix}
\dfrac{\partial F_{1}}{\partial x}(x_{0}, y_{0}) & \dfrac{\partial F_{1}}{\partial y}(x_{0}, y_{0}) \\ \dfrac{\partial F_{2}}{\partial x}(x_{0}, y_{0})
& \dfrac{\partial F_{2}}{\partial y}(x_{0}, y_{0})
\end{pmatrix} \label{14} \tag{14}$$

Por lo tanto, el sistema linealizado en el punto de equilibrio $Y_{0} = (x_{0},y_{0})$ es

$$\begin{pmatrix}
u^{\prime} \\ v^{\prime}
\end{pmatrix} = \mathbf{J} \begin{pmatrix}
u \\ v
\end{pmatrix} \label{15} \tag{15}$$

Una observación importante de este proceso es que para crear el sistema linealizado sólo es necesario conocer las derivadas parciales de las componentes $F_{1}$ y $F_{2}$ del campo vectorial en el punto de equilibrio $Y_{0}$, no es necesario hacer el cambio de variable moviendo el punto de equilibrio al origen. Más adelante veremos ejemplos para mostrar este hecho.

Clasificación de los puntos de equilibrio

El método de linealización tiene como propósito usar un sistema lineal para predecir el comportamiento de las soluciones de un sistema no lineal cerca de un punto de equilibrio. En una vecindad de dicho punto, las soluciones de los sistemas lineales y no lineales están cercanas entre sí, por lo menos en un intervalo corto. Para la mayor parte de los sistemas, la información ganada al estudiar la linearización es suficiente para determinar el comportamiento a largo plazo de las soluciones del sistema no lineal cerca del punto de equilibrio.

Esta vez no seremos explícitos, pero es posible hacer una clasificación de los puntos de equilibrio en base a los valores propios de la matriz Jacobiana (\ref{14}).

Si todos los valores propios de $\mathbf{J}$ son números reales negativos o números complejos con parte real negativa, entonces $(u, v) = (0, 0)$ es un nodo atractor para el sistema lineal y todas las soluciones se acercan a $(u, v) = (0, 0)$ cuando $t \rightarrow \infty$. Para el sistema no lineal, las soluciones que empiezan cerca del punto de equilibrio $(x, y) = (x_{0}, y_{0})$ se acercan a éste cuando $t \rightarrow \infty$. Por tanto, decimos que $(x_{0}, y_{0})$ es un nodo atractor. Si los valores propios son complejos, entonces $(x_{0}, y_{0})$ es un foco estable.

De modo similar, si $\mathbf{J}$ sólo tiene valores propios positivos o complejos con parte real positiva, entonces las soluciones con condiciones iniciales cerca del punto de equilibrio $(x_{0}, y_{0})$ tienden a alejarse de éste cuando $t$ crece. Decimos entonces que para un sistema no lineal el punto $(x_{0}, y_{0})$ es una nodo repulsor. Si los valores propios son complejos, entonces $(x_{0}, y_{0})$ es un foco inestable.

Si $\mathbf{J}$ tiene un valor propio positivo y uno negativo, entonces el punto de equilibrio $(x_{0}, y_{0})$ es un punto silla.

Es importante mencionar que esta clasificación de los puntos de equilibrio para los sistemas no lineales no nos dice nada acerca del comportamiento de las soluciones con posiciones iniciales lejanas del punto de equilibrio $(x_{0}, y_{0})$.

Para concluir con esta entrada realicemos algunos ejemplos.

Ejemplo: Linealizar el siguiente sistema no lineal.

\begin{align*}
x^{\prime} &= x(2 -x -y) \\
y^{\prime} &= -x + 3y -2xy
\end{align*}

Solución: Comencemos por observar el plano fase de este sistema no lineal.

Plano fase del sistema no lineal.

Nota: Cuando estudiamos las propiedades cualitativas de las trayectorias vimos que es posible esbozar el plano fase de un sistema no lineal si resolvemos la ecuación diferencial

$$\dfrac{dy}{dx} = \dfrac{F_{2}(x, y)}{F_{1}(x, y)} \label{16} \tag{16}$$

pero no siempre obtendremos una ecuación sencilla de resolver. En general, aún no sabemos cómo esbozar el plano fase de un sistema no lineal, lo ideal es que nosotros lo pudiéramos hacer a mano. Por ahora sólo nos estaremos apoyando de un programa que nos permite obtenerlo, más adelante veremos cómo esbozarlo no sólo cerca de los puntos de equilibrio.

Continuemos con el ejemplo. Del plano fase podemos observar que los puntos de equilibrio son

$$Y_{0} = (0, 0), \hspace{1cm} Y_{1} = (1, 1) \hspace{1cm} y \hspace{1cm} Y_{2} = (3, -1)$$

Veamos que es así analíticamente y linealicemos cada uno de ellos.

La función vectorial $F(x, y)$ que define al campo vectorial es

$$F(x, y) = (x(2 -x -y), -x + 3y -2xy)$$

Vemos que las funciones $F_{1}(x, y)$ y $F_{2}(x, y)$ son

\begin{align*}
F_{1}(x, y) &= x(2 -x -y) \\
F_{2}(x, y) &= -x + 3y -2xy
\end{align*}

No es necesario hacer algún tipo de cambio de variable, directamente podemos determinar la matriz Jacobiana para obtener una expresión similar a (\ref{15}). Calculemos las derivadas parciales de $F_{1}(x, y)$ y $F_{2}(x, y)$.

$$\dfrac{\partial F_{1}}{\partial x} = 2 -2x -y, \hspace{1cm} \dfrac{\partial F_{1}}{\partial y} = -x, \hspace{1cm} \dfrac{\partial F_{2}}{\partial x} = -1 -2y, \hspace{1cm} \dfrac{\partial F_{2}}{\partial y} = 3 -2x$$

Por lo tanto, la matriz Jacobiana es

$$\mathbf{J}(x, y) = \begin{pmatrix}
2 -2x -y & -x \\ -1 -2y & 3 -2x
\end{pmatrix}$$

Por otro lado, determinemos los puntos de equilibrio. Buscamos los valores de $x$ y $y$, tal que

$$F_{1}(x, y) = 0 \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = 0$$

es decir,

\begin{align*}
x(2 -x -y) &= 0 \\
-x + 3y -2xy &= 0
\end{align*}

De la primer ecuación obtenemos que $x = 0$ y $2 -x -y = 0$, de este segundo resultado vemos que $x = 2 -y$, sustituyamos ambos valores en la segunda ecuación.

Para $x =0$ obtenemos $3y =0$, de donde $y =0$. Por lo tanto, el origen es un punto de equilibrio.

Para $x =2 -y$, tenemos

$$-(2 -y) + 3y -2(2 -y)y =y^{2} -1 = 0$$

De donde $y_{1} = 1$ y $y_{2} = -1$, sustituyendo ambas raíces en $x = 2 -y$, se tiene

\begin{align*}
x_{1} &= 2 -1 = 1 \\
x_{2} &= 2 -( -1) = 3
\end{align*}

Por lo tanto, los puntos de equilibrio son

$$Y_{0} = (0, 0), \hspace{1cm} Y_{1} = (1, 1) \hspace{1cm} y \hspace{1cm} Y_{2} = (3, -1)$$

tal como lo indica el plano fase.

Linealicemos el sistema, para ello evaluemos cada punto de equilibrio en la matriz Jacobiana.

$$\mathbf{J}(0, 0) = \begin{pmatrix}
2 & 0 \\ -1 & 3
\end{pmatrix}, \hspace{1cm} \mathbf{J}(1, 1) = \begin{pmatrix}
-1 & -1 \\ -3 & 1
\end{pmatrix}, \hspace{1cm} \mathbf{J}(3, -1) = \begin{pmatrix}
-3 & -3 \\ 1 & -3
\end{pmatrix}$$

Por lo tanto, alrededor del punto de equilibrio $Y_{0} = (0, 0)$ el sistema no lineal puede ser descrito por el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
2 & 0 \\ -1 & 3
\end{pmatrix}\mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{0} = (0, 0)$.

Alrededor del punto de equilibrio $Y_{0} = (1, 1)$ el sistema no lineal puede ser descrito por el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 \\ -3 & 1
\end{pmatrix} \mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{0} = (1, 1)$.

Y finalmente el sistema no lineal, alrededor del punto de equilibrio $Y_{0} = (3, -1)$, puede ser descrito por el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3 & -3 \\ 1 & -3
\end{pmatrix} \mathbf{Y}$$

Plano fase del sistema linealizado en el punto de equilibrio $Y_{0} = (3, -1)$.

Por su puesto que se puede aplicar todo lo que sabemos sobre sistemas lineales, podemos determinar los valores propios y los vectores propios para obtener las soluciones generales, podemos también determinar la traza, el determinante, el discriminante y determinar la estabilidad de los puntos de equilibrio, etcétera.

Lo que estamos obteniendo es una descripción local del comportamiento de las soluciones del sistema no lineal alrededor de los puntos de equilibrio.

Una aclaración importante es que los planos fase de los sistemas lineales obtenidos están siendo graficados en el plano $UV$, es por ello que cada uno se encuentra centrado en el origen, en el origen de dicho plano.

$\square$

Finalicemos esta entrada con un ejemplo de especies en competencia.

Un modelo de especies en competencia

El sistema Volterra – Lotka es un conocido sistema para especies en competencia y es de la forma

\begin{align*}
x^{\prime} &= x(-Ax -By + C) \\
y^{\prime} &= y(-Dx -Ey + F) \label{17} \tag{17}
\end{align*}

donde $x$ y $y$ son mayores o igual a cero y los parámetros $A -F$ son siempre positivos.

Consideremos un ejemplo particular del sistema Volterra – Lotka. Sean $x$ y $y$ las poblaciones de dos especies que compiten por recursos, un incremento en cualquier especie tiene un efecto adverso sobre la razón de crecimiento de la otra. El modelo es el siguiente.

\begin{align*}
x^{\prime} &= 2x \left( 1 -\dfrac{x}{2} \right) -xy \\
y^{\prime} &= 3y \left( 1 -\dfrac{y}{3} \right) -2xy
\end{align*}

Para un valor dado de $x$, si $y$ se incrementa entonces el término $-xy$ ocasiona que $x^{\prime}$ decrezca. De forma similar, para un valor dado de $y$, si $x$ crece entonces $-2xy$ provoca que $y^{\prime}$ disminuya. Un aumento en la población de cualquiera de las especies ocasiona una disminución en la razón de crecimiento de la otra.

El plano fase del sistema no lineal es

Plano fase del sistema de especies en competencia.

Nota: El plano fase se ilustra para $x$ y $y$ en $\mathbb{R}$, sin embargo, recordemos que el sistema Volterra – Lotka sólo esta definido en el primer cuadrante en el que $x, y \geq 0$, esto debido a que no existen poblaciones negativas. Se puede observar que los cuatro puntos de equilibrio del sistema si pertenecen al primer cuadrante. Sólo consideraremos esta zona.

La funciones $F_{1}(x, y)$ y $F_{2}(x, y)$ son

\begin{align*}
F_{1}(x, y) &= 2x \left( 1 -\dfrac{x}{2} \right) -xy \\
F_{2}(x, y) &= 3y \left( 1 -\dfrac{y}{3} \right) -2xy
\end{align*}

Calculemos las derivadas parciales.

$$\dfrac{\partial F_{1}}{\partial x} = 2 -2x -y, \hspace{1cm} \dfrac{\partial F_{1}}{\partial y} = -x, \hspace{1cm} \dfrac{\partial F_{2}}{\partial x} = -2y, \hspace{1cm} \dfrac{\partial F_{2}}{\partial y} = 3 -2y -2x$$

Por lo tanto, la matriz Jacobiana es

$$\mathbf{J}(x, y) = \begin{pmatrix}
2 -2x -y & -x \\ -2y & 3 -2y -2x
\end{pmatrix}$$

Determinemos los puntos de equilibrio.

\begin{align*}
x(2 -x -y) &= 0 \\
y(3 -y-2x) &= 0
\end{align*}

La primer ecuación se satisface si $x = 0$ o si $2 -x -y = 0$, y la segunda se cumple si $y = 0$ o si $3 -y -2x = 0$.

Supongamos primero que $x = 0$. Entonces la ecuación $y = 0$ da un punto de equilibrio en el origen y $3 -y -2x = 0$ lo proporciona en $(0, 3)$.

Digamos ahora que $2 -x -y = 0$. Entonces la ecuación $y = 0$ da un punto de equilibrio en $(2, 0)$ y $3 -y -2x = 0$ lo da en $(1, 1)$.

Por lo tanto, los puntos de equilibrio son

$$Y_{0} = (0, 0), \hspace{1cm} Y_{1} = (0, 3), \hspace{1cm} Y_{2} = (2, 0) \hspace{1cm} y \hspace{1cm} Y_{3} = (1, 1)$$

Consideremos el punto de equilibrio $Y_{3} = (1,1)$, el cual nos indica que es posible para las dos especies coexistir en equilibrio (como las flores y las abejas que se ayudan a sobrevivir y prosperar mutuamente).

Linealizamos el sistema alrededor del punto de equilibrio $Y_{3} = (1, 1)$, para ello evaluemos en la matriz Jacobiana.

$$\mathbf{J}(1,1) = \begin{pmatrix}
-1 & -1 \\ -2 & -1
\end{pmatrix}$$

Por lo tanto, el sistema lineal que describe al sistema no lineal alrededor del punto de equilibrio $Y_{3} = (1, 1)$, es

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 \\ -2 & -1
\end{pmatrix}\mathbf{Y}$$

Los valores propios del sistema son

$$\lambda_{1} = -1 + \sqrt{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = -1 -\sqrt{2}$$

como uno es positivo y otro negativo concluimos que el punto de equilibrio es un punto silla. El plano fase del sistema lineal es

Plano fase linealizado alrededor del punto de equilibrio $Y_{3} = (1, 1)$.

Sólo hay dos trayectorias que tienden hacia el punto de equilibrio $Y_{3} = (1, 1)$ cuando $t$ crece, de modo que bajo cualquier perturbación en las condiciones iniciales provocará que una especie domine sobre la otra, sin embargo, este modelo de especies es muy simplificado que no esperamos ver soluciones que conduzcan al punto de equilibrio $(1, 1)$ en la naturaleza.

De tarea moral linealiza el sistema para el resto de puntos de equilibrio.

$\square$

Ahora sabemos como estudiar las soluciones de un sistema no lineal alrededor de sus puntos de equilibrio, esto sólo nos dará información local, de manera que no es suficiente si lo que queremos es describir las soluciones para tiempos grandes. En la siguiente entrada veremos una técnica que nos permite describir las soluciones lejos de los puntos de equilibrio.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Considerar los siguientes tres sistemas no lineales:
  • $x^{\prime} = 2x + y$
    $y^{\prime} = -y + x^{2}$
  • $x^{\prime} = 2x + y$
    $y^{\prime} = y + x^{2}$
  • $x^{\prime} = 2x + y$
    $y^{\prime} = -y -x^{2}$

    Los tres sistemas tienen un punto de equilibrio en $(0,0)$. ¿Cuáles dos sistemas tienen planos fase similares cerca de $(0,0)$?. Justificar la respuesta.
  1. Considerar los siguientes tres sistemas no lineales:
  • $x^{\prime} = 3 \sin(x) + y$
    $y^{\prime} = 4x + \cos(y) -1$
  • $x^{\prime} = -3 \sin(x) + y$
    $y^{\prime} = 4x + \cos(y) -1$
  • $x^{\prime} = -3 \sin(x) + y$
    $y^{\prime} = 4x + 3 \cos(y) -3$

    Los tres sistemas tienen un punto de equilibrio en $(0,0)$. ¿Cuáles son los dos sistemas que tienen planos fase similares cerca de $(0,0)$?. Justificar la respuesta.
  1. Dado el siguiente sistema no lineal:

    $x^{\prime} = -2x + y$
    $y^{\prime} = -y + x^{2}$
  • Encontrar el sistema linealizado para el punto de equilibrio $(0, 0)$.
  • Clasificar el punto de equilibrio.
  • Esbozar el plano fase para el sistema no lineal cerca del origen $(0, 0)$.
  • Repetir los puntos anteriores para el punto de equilibrio $(2, 4)$.
  1. Para el modelo de población de especies en competencia

    $x^{\prime} = 2x \left( 1 -\dfrac{x}{2} \right) -xy$
    $y^{\prime} = 3y \left( 1 -\dfrac{y}{3} \right) -2xy$

    mostramos que el punto de equilibrio $(1, 1)$ es un punto silla.
  • Encontrar el sistema linealizado cerca de cada uno de los otros puntos de equilibrio.
  • Clasificar cada punto de equilibrio.
  • Esbozar el plano fase de cada sistema linealizado.
  • Dar una breve descripción del plano fase cerca de cada punto de equilibrio del sistema no lineal.
  1. Considerar el siguiente sistema no lineal:

    $x^{\prime} = y -(x^{2} + y^{2})x$
    $y^{\prime} = -x-(x^{2} + y^{2})y$
  • Visualizar el plano fase del sistema.
  • Determinar los puntos de equilibrio.
  • Linealizar el sistema con respecto al punto de equilibrio $(0, 0)$.
  • Visualizar el plano fase del sistema linealizado.

    ¿Los planos fase de ambos sistemas alrededor del punto de equilibrio $(0, 0)$ son similares?.
    ¿Qué puede estar sucediendo?.

Más adelante…

Una propiedad interesante del campo vectorial

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y))$$

es que en un punto el vector $F$ puede ser totalmente vertical si la componente $F_{1}$ es cero, o bien puede ser totalmente horizontal se la componente $F_{2}$ es cero. Esta propiedad resultará sumamente útil a la hora de estudiar las trayectorias de un sistema no lineal lejos de un punto de equilibrio.

Al conjunto de puntos en los que alguna de las componentes de la función vectorial $F$ es cero se les denomina nulclinas.

Entradas relacionadas

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios nulos

Un matemático es un hombre ciego en un cuarto oscuro
tratando de buscar a un gato negro que no está allí.
– Charles Darwin

Introducción

En esta entrada concluiremos con el estudio cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales.

Hasta ahora somos capaces de clasificar y esbozar el comportamiento de las soluciones para los casos en los que los valores propios son reales, complejos y repetidos. Es momento de estudiar el último caso en donde uno o ambos de los valores propios son cero. Este caso es importante ya que divide los sistemas lineales con valores propios estrictamente positivos (repulsores) y valores propios estrictamente negativos (atractores) de aquellos que poseen un valor propio positivo y uno negativo (puntos silla).

Los casos posibles son

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Recordemos que el sistema que estamos estudiando es de la forma

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Este sistema lo podemos escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

en donde,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

Sean $\lambda_{1}$ y $\lambda_{2}$ los valores propios de $\mathbf{A}$ y sean $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ asociados a cada valor propio, respectivamente.

Comencemos por revisar el caso en el que un valor propio es nulo y el otro negativo.

Un valor propio nulo y otro negativo

Caso 1: $\lambda_{1} = 0$ y $\lambda_{2} < 0$.

Supongamos que $\lambda_{1} = 0$ y $\lambda_{2} < 0$ son los valores propios de $\mathbf{A}$. Debido a que $\lambda_{1} = 0$ y $\lambda_{2} \neq 0$, es decir, los valores propios son reales y distintos, entonces la solución general de (\ref{1}) debe ser de la forma

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2} \label{3} \tag{3}$$

Pero $\lambda_{1} = 0$, por consiguiente la solución general es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2} \label{4} \tag{4}$$

Observemos que esta solución depende de $t$ sólo a través del segundo término, de manera que si $c_{2} = 0$, entonces la solución será el vector constante

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} \label{5} \tag{5}$$

En este caso, todos los puntos $c_{1} \mathbf{K}_{1}$, para cualquier $c_{1}$, son puntos de equilibrio y todo aquel que esté situado en la línea de vectores propios para el valor propio $\lambda_{1} = 0$ es un punto de equilibrio.

Si $\lambda_{2} < 0$, entonces el segundo término en la solución general (\ref{4}) tiende a cero cuando $t$ crece, por lo que dicha solución tiende al punto de equilibrio $c_{1} \mathbf{K}_{1}$ a lo largo de una línea paralela a $\mathbf{K}_{2}$.

El plano fase indicando estas características es el siguiente.

Plano fase para un valor propio nulo y otro negativo.

Veamos que ocurre si $\lambda_{2} > 0$.

Un valor propio nulo y otro positivo

Caso 2: $\lambda_{1} = 0$ y $\lambda_{2} > 0$.

La solución general del sistema (\ref{1}) sigue siendo

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$$

Pero en este caso $\lambda_{2} > 0$, lo que implica que la solución se aleja de la línea de puntos de equilibrio cuando $t$ crece.

El plano fase es el siguiente.

Plano fase para un valor propio nulo y otro positivo.

Finalmente veamos que ocurre si $\lambda_{1} = \lambda_{2} = 0$.

Ambos valores propios nulos

Caso 3: $\lambda_{1} = \lambda_{2} = 0$.

En este caso ambos valores propios son repetidos, lo que significa que podemos aplicar la teoría vista en la entrada anterior. Sea $\mathbf{K}_{1}$ el único vector propio de la matriz $\mathbf{A}$ y sea $\mathbf{K}_{2}$ un vector propio generalizado de $\mathbf{A}$. Sabemos que la solución general del sistema (\ref{1}) en el caso de valores propios repetidos es

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K}_{1} + c_{2} e^{\lambda t} \left[ \mathbf{K}_{2} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K}_{2} \right] \label{6} \tag{6}$$

Sin embargo $\lambda = 0$, entonces la solución anterior se reduce a

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} + c_{2} \left[ \mathbf{K}_{2} + t \mathbf{A} \mathbf{K}_{2} \right] \label{7} \tag{7}$$

El hecho de que los valores propios sean nulos un vector propio podrá ser algún vector canónico

$$\mathbf{K} = \begin{pmatrix}
1 \\ 0
\end{pmatrix} \hspace{1cm} o \hspace{1cm} \mathbf{K} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Las consecuencias de esto es que terminaremos con una solución en la que sólo una función $x(t)$ o $y(t)$ dependerá de $t$, mientras que la otra será una constante.

Supongamos que sólo $x$ depende de $t$, es decir, $x = x(t)$ y $y(t) = c$, con $c$ una constante, entonces para todo $t$ la función $y(t)$ tendrá el mismo valor, mientras que $x(t)$ dependerá de $t$ linealmente, esto en el plano fase se traduce en rectas paralelas al eje $X$ (ya que $y$ no cambia). La dirección de las trayectorias dependerá del signo de la constante que acompaña a la función $y(x)$.

El plano fase para el caso en el $x$ depende de $t$ es

Plano fase para ambos valores propios nulos.

Si se presenta el caso en el que $x(t)$ es una constante y $y(t)$ depende de $t$, entonces las trayectorias serán rectas verticales paralelas al eje $Y$.

En este caso los puntos de equilibrio del sistema serán el eje $X$ o el eje $Y$ dependiendo de que función sea la que dependa de $t$.

Concluyamos esta entrada con un ejemplo por cada caso visto.

Caso 1: $\lambda_{1} = 0$ y $\lambda_{2} < 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3 & 1 \\ 3 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
-3 -\lambda & 1 \\ 3 & -1 -\lambda
\end{vmatrix} = \lambda (\lambda -4) = 0$$

Las raíces son $\lambda_{1} = 0$ y $\lambda_{2} = -4$. El vector propio asociado a $\lambda_{1} = 0$ lo obtenemos del siguiente sistema.

$$(\mathbf{A} -0 \mathbf{I}) \mathbf{K} = \mathbf{AK} = \begin{pmatrix}
-3 & 1 \\ 3 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $3k_{1} = k_{2}$. Elegimos $k_{1} = 1$, tal que $k_{2} = 3$. El primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 3
\end{pmatrix}$$

Determinemos el segundo vector propio asociado a $\lambda_{2} = -4$.

$$(\mathbf{A} + 4 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
1 & 1 \\ 3 & 3
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso $k_{1} = -k_{2}$. Sea $k_{1} = -3$, tal que $k_{2} = 3$. El segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
-3 \\ 3
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 3
\end{pmatrix} + c_{2} e^{-4t} \begin{pmatrix}
-3 \\ 3
\end{pmatrix}$$

O bien,

\begin{align*}
x(t) &= c_{1} -3c_{2}e^{-4t} \\
y(t) &= 3c_{1} + 3c_{2}e^{-4t}
\end{align*}

De acuerdo a la teoría vista, los puntos de equilibrio corresponden a la recta situada a lo largo del vector propio $\mathbf{K}_{1}$. Para encontrar esta recta consideremos que $c_{2} = 0$, de manera que la solución es

\begin{align*}
x(t) &= c_{1} \\
y(t) &= 3c_{1}
\end{align*}

De donde $y(x) = 3x$, por lo tanto, toda la recta $y = 3x$ contiene puntos de equilibrio.

Otra forma de verlo es a través de la definición. La función vectorial $F(x, y)$ en este caso es

$$F(x, y) = (-3x + y, 3x -y)$$

Los puntos de equilibrio son aquellos en los que $F(x, y) = (0, 0)$, es decir,

\begin{align*}
-3x + y &= 0 \\
3x -y &= 0
\end{align*}

De este sistema obtenemos que los puntos de equilibrio son aquellos en los que $3x = y$, es decir, la recta definida por la función $y(x) = 3x$.

Por otro lado, considerando nuevamente la solución general, es claro que

$$\lim_{t \to \infty} x(t) = c_{1} \hspace{1cm} y \hspace{1cm} \lim_{t \to \infty} y(t) = 3c_{1}$$

por lo que todas las trayectorias tienden a los puntos de equilibrio $c_{1}\mathbf{K}_{1}$ por cada valor de $c_{1}$ y lo hacen de forma paralela al vector propio $\mathbf{K}_{2}$.

El plano fase indicando las características anteriores es el siguiente.

Plano fase del sistema.

Ya vimos que la función vectorial es

$$F(x, y) = (-3x + y, 3x -y)$$

El campo vectorial definido por esta función, y algunas trayectorias correspondientes a soluciones del sistema, se muestran en la siguiente figura.

Trayectorias y campo vectorial.

$\square$

Caso 2: $\lambda_{1} = 0$ y $\lambda_{2} > 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & 2 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

Solución: Comencemos por determinar los valores propios.

$$\begin{vmatrix}
4 -\lambda & 2 \\ 2
& 1 -\lambda
\end{vmatrix} = \lambda (\lambda -5) = 0$$

Las raíces son $\lambda_{1} = 0$ y $\lambda_{2} = 5$. Determinemos primero el vector propio asociado al valor propio $\lambda_{1} = 0$.

$$(\mathbf{A} -0 \mathbf{I}) \mathbf{K} = \mathbf{AK} = \begin{pmatrix}
4 & 2 \\ 2 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

De este sistema obtenemos que $2k_{1} = -k_{2}$. Sea $k_{1} = -1$, entonces $k_{2} = 2$. Por lo tanto, el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 2
\end{pmatrix}$$

Determinemos el segundo vector propio asociado a $\lambda_{2} = 5$.

$$(\mathbf{A} -5 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
-1 & 2 \\ 2 & -4
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $2k_{2} = k_{1}$. Sea $k_{2} = 2$, entonces $k_{1} = 4$. Por lo tanto, el segundo vector propio es

$$\mathbf{K}_{2} =\begin{pmatrix}
4 \\ 2
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
-1 \\ 2
\end{pmatrix} + c_{2}e^{5t} \begin{pmatrix}
4 \\ 2
\end{pmatrix}$$

O bien,

\begin{align*}
x(t) &= -c_{1} + 4c_{2}e^{5t} \\
y(t) &= 2c_{1} + 2c_{2}e^{5t}
\end{align*}

La recta que contiene a los puntos de equilibrio es aquella línea definida por el vector propio $\mathbf{K}_{1}$, es decir, si en la solución general hacemos $c_{2} = 0$, entonces obtenemos la solución

\begin{align*}
x(t) &= -c_{1} \\
y(t) &= 2c_{1}
\end{align*}

De donde obtenemos la función $y(x) = -2x$, todos los puntos de esta recta son puntos de equilibrio.

La función vectorial $F(x, y)$ en este caso es

$$F(x, y) = (4x + 2y, 2x + y)$$

Prueba que efectivamente si $y = -2x$, entonces $F(x, y) = (0, 0)$.

Por otro lado, de la solución general vemos que

$$\lim_{t \to -\infty} x(t) = -c_{1} \hspace{1cm} y \hspace{1cm} \lim_{t \to -\infty} y(t) = 2c_{1}$$

Y $x(t)$ y $y(t)$ divergen si $t \rightarrow \infty$, esto nos indica que las trayectorias se alejan de los puntos de equilibrio $c_{1} \mathbf{K}_{1}$ por cada valor de $c_{1}$ y lo hacen de forma paralela al vector propio $\mathbf{K}_{2}$.

El plano fase del sistema es el siguiente.

Plano fase del sistema.

La función vectorial que define al campo vectorial asociado es

$$F(x, y) = (4x + 2y, 2x + y)$$

El campo vectorial y algunas trayectorias se muestran en la siguiente figura.

Trayectorias y campo vectorial.

$\square$

Concluyamos con el caso especial en el que ambos valores propios son cero.

Caso 3: $\lambda_{1} = \lambda_{2} = 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \mathbf{Y}$$

Solución: Antes de comenzar a desarrollar el método notemos que se trata de un sistema muy sencillo, la ecuación de $y^{\prime}$ es

$$\dfrac{dy}{dt} = 0$$

Es claro que la solución es cualquier constante $C_{1}$, es decir $y(t) = C_{1}$, si sustituimos en la ecuación para $x^{\prime}$, tenemos

$$\dfrac{dx}{dt} = 2C_{1}$$

Resolviendo esta ecuación obtenemos la función

$$x(t) = 2C_{1}t + C_{2}$$

Por tanto, la solución general del sistema es

\begin{align*}
x(t) &= 2C_{1}t + C_{2} \\
y(t) &= C_{1}
\end{align*}

Vemos que sólo la función $x(t)$ depende de $t$, mientras que $y(t)$ es una constante.

Esto lo hacemos debido a que el sistema es bastante sencillo. Sin embargo, a continuación haremos el desarrollo hecho en la entrada anterior ya que, como veremos, los valores propios serán repetidos y nulos. Dichos valores propios los obtenemos de la siguiente ecuación característica.

$$\begin{vmatrix}
0 -\lambda & 2 \\ 0 & 0 -\lambda
\end{vmatrix} = \lambda^{2} = 0$$

La única raíz es $\lambda = 0$, es decir, cero es el único valor propio con multiplicidad $2$.

Para determinar el vector propio resolvemos el siguiente sistema.

$$\mathbf{AK} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix}$$

Este sistema nos indica que $2k_{2} = 0$, es decir, $k_{2} = 0$ y que $k_{1}$ puede tomar cualquier valor en $\mathbb{R}$. Tomemos $k_{1} = 1$, tal que el primer vector propio sea

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

Buscamos ahora un vector propio generalizado.

$$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} = \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Debido a que cualquier vector $\mathbf{K}$, tal que

$$\mathbf{AK} \neq \mathbf{0}$$

es un vector propio generalizado, elegimos el vector ortogonal

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Por lo tanto, la solución general es

\begin{align*}
\mathbf{Y}(t) &= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
0 & 2 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 1
\end{pmatrix} \right] \\
&= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
0 \\ 1
\end{pmatrix} + t
\begin{pmatrix}
2 \\ 0
\end{pmatrix} \right] \\
&= c_{1} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} \left[ \begin{pmatrix}
0 \\ 1
\end{pmatrix} + 2t
\begin{pmatrix}
1 \\ 0
\end{pmatrix} \right]
\end{align*}

Solución que podemos escribir como

\begin{align*}
x(t) &= c_{1} + 2c_{2}t \\
y(t) &= c_{2}
\end{align*}

Esta solución es la misma que encontramos antes. Debido a que $x(t)$ depende de $t$ linealmente, entonces por cada valor de $y(t)$, es decir de $c_{2}$, $x(t)$ tomará todos los valores en $\mathbb{R}$. Esto significa que en el plano fase las trayectorias serán rectas paralelas al eje $X$.

Verifica que los puntos de equilibrio del sistema corresponden al eje $X$ del plano fase.

Notemos que si $y(x) > 0$, o bien, $c_{2} > 0$, entonces

$$\lim_{t \to \infty} x(t) = \infty$$

y si $y(x) < 0$, o bien, $c_{2} < 0$, entonces

$$\lim_{t \to \infty} x(t) = -\infty$$

De manera que para $y > 0$ las trayectorias se moverán hacía la derecha y lo harán en sentido opuesto si $y < 0$. El plano fase es el siguiente.

Plano fase del sistema.

La función que define al campo vectorial es

$$F(x, y) = (2y, 0)$$

En la siguiente figura se muestra el campo vectorial asociado y algunas trayectorias.

Trayectorias y campo vectorial.

$\square$

Hemos concluido con el estudio de los sistemas lineales.

Más adelante comenzaremos a estudiar sistemas no lineales, al menos desde una perspectiva cualitativa, y veremos que mucho de los que vimos en los casos lineales nos será de ayuda ya que los planos fase de los sistemas no lineales en la vecindad de un punto de equilibrio son, con frecuencia, muy similares a los planos fase de sistemas lineales, así que veremos esta conexión entre ambos sistemas.

Pero antes de estudiar a los sistemas no lineales dedicaremos la siguiente entrada en hacer un repaso de lo visto en las últimas 4 entradas y resumirlo en lo que se conoce como el plano traza – determinante, ya que seguramente en este punto podría parecernos que hay muchas posibilidades diferentes para los sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 4 \\ 3 & 6
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 1 \\ 3 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & -3 \\ 0 & 0
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 6 \\ -1 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 4 \\ 1/2 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 0 \\ 5 & 0
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Hemos concluido con el análisis analítico y cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales del primer orden. Para tener todo en perspectiva, en la siguiente entrada haremos un breve repaso de todo lo visto con respecto a estos sistemas y resumiremos todo en un plano especial conocido como el plano traza – determinante.

Entradas relacionadas

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios repetidos

En mi opinión, todas las cosas en la naturaleza ocurren matemáticamente.
– Descartes

Introducción

Continuaremos con nuestro estudio cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales de primer orden con coeficientes constantes.

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Este sistema lo podemos escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

en donde

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

En esta entrada analizaremos el caso en el que los vectores propios de $\mathbf{A}$ son repetidos.

El caso $\lambda_{1} = \lambda_{2} = 0$ lo revisaremos en la siguiente entrada cuando veamos que ocurre si uno o ambos de los valores propios son nulos.

Los casos que estudiaremos son

  • $\lambda_{1} = \lambda_{2} < 0$
  • $\lambda_{1} = \lambda_{2} > 0$

Sin embargo se presentan dos situaciones distintas en este caso.

Recordemos que cuando estudiamos este caso en la unidad anterior se presentaba el problema de que podían faltarnos soluciones linealmente independientes que nos permitieran determinar la solución general del sistema. Por ejemplo, si el sistema está compuesto por $n$ ecuaciones diferenciales de primer orden, entonces debemos encontrar $n$ soluciones linealmente independientes para poder formar la solución general, sin embargo, si algunos valores propios resultan ser repetidos, entonces sólo obtendremos $k$ soluciones linealmente independientes, una por cada valor propio distinto, y nos faltarán encontrar $n -k$ soluciones para formar la solución general. Los conceptos de exponencial de una matriz y de vector propio generalizado resultaron útiles para resolver este problema.

En este caso estamos estudiando un sistema con dos ecuaciones diferenciales lo que vuelve al problema anterior relativamente más sencillo, pues habrá ocasiones en los que es posible determinar dos vectores propios de $\mathbf{A}$ linealmente independientes asociados al mismo valor propio $\lambda$, pero en otras ocasiones sólo habrá un vector propio asociado al único valor propio $\lambda$, así que tendremos que encontrar un vector propio generalizado. Por supuesto, cada caso tendrá efectos muy distintos en el plano fase del sistema.

Estudiemos cada situación y hagamos un análisis cualitativo para cada caso.

Sistemas con vectores propios arbitrarios

Consideremos la matriz

$$\mathbf{A} = \begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} \label{3} \tag{3}$$

con $\lambda$ una constante.

Notemos lo siguiente.

$$\mathbf{AK} = \begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
\lambda k_{1} \\ \lambda k_{2}
\end{pmatrix} = \lambda \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \lambda \mathbf{K}$$

Hemos obtenido que

$$\mathbf{AK} = \lambda \mathbf{K} \label{4} \tag{4}$$

Es decir, $\lambda$ es el valor propio de $\mathbf{A}$.

Intentemos determinar los vectores propios de $\mathbf{A}$.

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \begin{pmatrix}
\lambda -\lambda & 0 \\ 0 & \lambda -\lambda
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que cualquier vector

$$\mathbf{K} = \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} \label{5} \tag{5}$$

es vector propio de $\mathbf{A}$.

Supongamos que la matriz (\ref{3}) es la matriz de coeficientes de un sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} \mathbf{Y} \label{6} \tag{6}$$

Considerando los resultados anteriores podemos establecer que su solución general es de la forma

$$\mathbf{Y}(t) = c_{1}e^{\lambda t} \mathbf{K}_{1} + c_{2}e^{\lambda t} \mathbf{K}_{2} \label{7} \tag{7}$$

En donde $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son vectores propios de $\mathbf{A}$ linealmente independientes. Como vimos, estos vectores pueden ser arbitrarios, así que podemos elegir los vectores canónicos

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

De esta forma, la solución general del sistema (\ref{6}) es

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2} e^{\lambda t} \begin{pmatrix}
0 \\ 1
\end{pmatrix} \label{8} \tag{8}$$

Si dejamos de usar la notación matricial y escribimos las funciones $x(t)$ y $y(t)$, tenemos

\begin{align*}
x(t) &= c_{1} e^{\lambda t} \\
y(t) &= c_{2} e^{\lambda t} \label{9} \tag{9}
\end{align*}

Observemos que

$$\dfrac{y}{x} = \dfrac{c_{2}}{c_{1}}$$

es decir,

$$y(x) = Cx \label{10} \tag{10}$$

Con $C$ una constante. Esta función en el plano $XY$ o plano fase corresponde a infinitas rectas, una por cada posible valor de la constante $C$.

Plano fase de un sistema con vectores propios arbitrarios.

Este caso corresponde a una situación de las dos que pueden ocurrir. Aún nos falta determinar el sentido de las trayectorias en el plano fase, éste será determinado por el signo de los valores propios.

A continuación haremos un análisis más detallado sobre los casos que se pueden presentar.

Sistemas lineales con valores propios negativos repetidos

Caso 1a: $\lambda_{1} = \lambda_{2} = \lambda < 0$ y dos vectores linealmente independientes.

Este caso corresponde al visto anteriormente.

Supongamos que la matriz $\mathbf{A}$ del sistema (\ref{1}) tiene dos vectores propios linealmente independientes $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ con valor propio $\lambda < 0$. En este caso la solución general del sistema (\ref{1}) se puede expresar como

$$\mathbf{Y}(t) = c_{1}e^{\lambda t}\mathbf{K}_{1} + c_{2}e^{\lambda t} \mathbf{K}_{2} = e^{\lambda t} (c_{1} \mathbf{K}_{1} + c_{2} \mathbf{K}_{2}) \label{11} \tag{11}$$

Observemos que el vector $e^{\lambda t} (c_{1} \mathbf{K}_{1} + c_{2} \mathbf{K}_{2})$ es paralelo al vector $(c_{1} \mathbf{K}_{1} + c_{2} \mathbf{K}_{2})$ para toda $t$. Por lo tanto, la trayectoria de cualquier solución $\mathbf{Y}(t)$ de (\ref{1}) es una semirrecta en el plano fase.

Como $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son linealmente independientes, el conjunto de vectores $\left \{ c_{1} \mathbf{K}_{1} + c_{2} \mathbf{K}_{2} \right \}$, para todas las elecciones de $c_{1}$ y $c_{2}$, cubren cualquier dirección en el plano $XY$.

El plano fase con estas características es el siguiente.

Plano fase para valores propios negativos repetidos y dos vectores propios linealmente independientes.

El sentido de las trayectorias es hacia el origen debido a que si $t \rightarrow \infty$, entonces $e^{\lambda t} \rightarrow 0$ ya que $\lambda < 0$.

Se dice que el punto de equilibrio $Y_{0} = (0, 0)$ es un atractor y es asintóticamente estable.

Caso 1b: $\lambda_{1} = \lambda_{2} = \lambda < 0$ y sólo un vector linealmente independiente.

Este caso resulta ser más interesante. Supongamos que $\mathbf{A}$ tiene solamente un vector propio $\mathbf{K}$ linealmente independiente, con valor propio $\lambda$. La solución de (\ref{1}) en este caso es

$$\mathbf{Y}_{1}(t) = e^{\lambda t} \mathbf{K} \label{12} \tag{12}$$

Para encontrar una segunda solución de (\ref{1}) que sea linealmente independiente de $\mathbf{Y}_{1}$ buscamos un vector $\hat{\mathbf{K}}$, tal que se cumpla simultáneamente

$$(\mathbf{A} -\lambda \mathbf{I})^{2} \hat{\mathbf{K}} = \mathbf{0} \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}} \neq \mathbf{0} \label{13} \tag{13}$$

Es decir, $\hat{\mathbf{K}}$ es un vector propio generalizado y sabemos que una segunda solución de (\ref{1}) es de la forma

$$\mathbf{Y}_{2}(t) = e^{\lambda t} \left[ \hat{\mathbf{K}} + t(\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}} \right] \label{14} \tag{14}$$

De modo que la solución general del sistema (\ref{1}), en este caso, es

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K} + c_{2} e^{\lambda t} \left[ \hat{\mathbf{K}} + t(\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}} \right] \label{15} \tag{15}$$

para alguna elección de constantes $c_{1}$ y $c_{2}$.

Esta ecuación puede simplificarse observando que $(\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}}$ debe ser un múltiplo $k$ de $\mathbf{K}$. Esto se sigue inmediatamente de la ecuación

$$(\mathbf{A} -\lambda \mathbf{I}) \left[ (\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}} \right ] = \mathbf{0} \label{16} \tag{16}$$

y el hecho de que $\mathbf{A}$ sólo tiene un vector propio $\mathbf{K}$ linealmente independiente.

Entonces, la solución (\ref{15}) puede escribirse como

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K} + c_{2} e^{\lambda t}(\hat{\mathbf{K}} + tk \mathbf{K}) = e^{\lambda t}(c_{1} \mathbf{K} + c_{2} \hat{\mathbf{K}} + c_{2} tk \mathbf{K}) \label{17} \tag{17}$$

Observemos que toda solución de (\ref{1}) de la forma (\ref{17}) tiende a $(0, 0)$ cuando $t$ tiende a infinito. Además, notemos que $c_{1} \mathbf{K} + c_{2} \hat{\mathbf{K}}$ es muy pequeño comparado con $c_{2} tk \mathbf{K}$ si $c_{2}$ es diferente de cero y $t$ es muy grande. Por lo tanto, la tangente a la trayectoria de $\mathbf{Y}(t)$ tiende a $\pm \mathbf{K}$, dependiendo del signo de $c_{2}$, cuando $t$ tiende a infinito.

El plano fase con estas características es el siguiente.

Plano fase para valores propios negativos repetidos y sólo un vector propio linealmente independiente.

Nuevamente decimos que el punto de equilibrio $Y_{0} = (0, 0)$ es un atractor y es asintóticamente estable ya que todas las trayectorias tienden a él.

Ambas situaciones también se presentan cuando $\lambda > 0$.

Sistemas lineales con valores propios positivos repetidos

Caso 2a: $\lambda_{1} = \lambda_{2} = \lambda > 0$ y dos vectores linealmente independientes.

Sean $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los dos vectores linealmente independientes de la matriz de coeficientes $\mathbf{A}$ asociados al único valor propio $\lambda$. Nuevamente la solución general de (\ref{1}) será

$$\mathbf{Y}(t) = c_{1}e^{\lambda t}\mathbf{K}_{1} + c_{2}e^{\lambda t} \mathbf{K}_{2} = e^{\lambda t} (c_{1} \mathbf{K}_{1} + c_{2} \mathbf{K}_{2})$$

El análisis es exactamente el mismo que en el caso 1a, sin embargo, como $\lambda > 0$, entonces $e^{\lambda t} \rightarrow \infty$ conforme $t \rightarrow \infty$. Por lo tanto, el plano fase para este caso es exactamente el mismo que el del caso 1a con la excepción de que el sentido de las flechas es el opuesto.

Plano fase para valores propios positivos repetidos y dos vectores propios linealmente independientes.

En este caso se dice que el punto de equilibrio $Y_{0} = (0, 0)$ es un repulsor, por lo tanto inestable.

Concluyamos con el último caso.

Caso 2b: $\lambda_{1} = \lambda_{2} = \lambda > 0$ y sólo un vector linealmente independiente.

Sea $\mathbf{K}$ el único vector propio de $\mathbf{A}$ asociado al valor propio $\lambda$. Y sea $\hat{\mathbf{K}}$ un vector propio generalizado de $\mathbf{A}$. La solución general del sistema lineal (\ref{1}) es

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K} + c_{2} e^{\lambda t} \left[ \hat{\mathbf{K}} + t(\mathbf{A} -\lambda \mathbf{I}) \hat{\mathbf{K}} \right]$$

Vimos anteriormente que esta solución puede escribirse como

$$\mathbf{Y}(t) = e^{\lambda t}(c_{1} \mathbf{K} + c_{2} \hat{\mathbf{K}} + c_{3} t \mathbf{K})$$

En este caso las trayectorias son exactamente las mismas que en el caso 2a por el mismo análisis, sin embargo la dirección de las flechas es el opuesto debido a que $\lambda > 0$.

El plano fase es el siguiente.

Plano fase para valores propios positivos repetidos y sólo un vector propio linealmente independiente.

El punto de equilibrio $Y_{0} = (0, 0)$ es un repulsor e inestable.

Concluyamos esta entrada realizando un ejemplo por cada caso.

Comencemos con un ejemplo del caso 1a y 2a.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-5 & 0 \\ 0 & -5
\end{pmatrix} \mathbf{Y}$$

Solución: Nuestro ejemplo corresponde a un sistema lineal de la forma (\ref{6}), de manera que el único valor propio es $\lambda = -5$. Sólo para verificarlo veamos que

$$\begin{vmatrix}
-5 -\lambda & 0 \\ 0 & -5 -\lambda
\end{vmatrix} = (-5 -\lambda)^{2} = 0$$

La única raíz es $\lambda = -5$, es decir, hay un valor propio con multiplicidad $2$.

Cualquier par de vectores linealmente independientes son vectores propios de la matriz de coeficientes. Elegimos los vectores canónicos.

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Por lo tanto, la solución general es

$$\mathbf{Y}(t) = c_{1}e^{-5t} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2}e^{-5t} \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Las solución la podemos escribir como

\begin{align*}
x(t) &= c_{1}e^{-5t} \\
y(t) &= c_{2}e^{-5t}
\end{align*}

Notemos que si $t \rightarrow \infty$, entonces $(x, y) \rightarrow (0, 0)$, lo que nos indica que las semirrectas correspondientes a las soluciones del sistema tienden al punto de equilibrio $Y_{0} = (0, 0)$, esto convierte a dicho punto en un atractor.

El plano fase, indicando algunas trayectorias y los vectores propios, se muestra a continuación.

Plano fase del sistema.

La función vectorial que define al campo vectorial es

$$F(x, y) = (-5x, -5y)$$

En la siguiente figura se muestra el campo vectorial y algunas trayectorias correspondientes a soluciones particulares del sistema.

Trayectorias y campo vactorial.

$\square$

Si modificamos el sistema del ejemplo anterior por

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
5 & 0 \\ 0 & 5
\end{pmatrix}\mathbf{Y}$$

Entonces, la solución general será

$$\mathbf{Y}(t) = c_{1}e^{5t} \begin{pmatrix}
1 \\ 0
\end{pmatrix} + c_{2}e^{5t} \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

O bien,

\begin{align*}
x(t) &= c_{1}e^{5t} \\
y(t) &= c_{2}e^{5t}
\end{align*}

En este caso $x(t)$ y $y(t)$ tienden a infinito conforme $t$ también lo hace. Las trayectorias corresponden a semirrectas que parten del origen hacia infinito, por tanto, $Y_{0} = (0, 0)$ es un repulsor.

El plano fase es el siguiente.

Plano fase del sistema.

$\square$

Ahora veamos un ejemplo para el caso 1b y uno para el caso 2b, es decir, en la situación en la que sólo tenemos un único vector propio.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & -1 \\ 1 & 3
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
1 -\lambda & -1 \\ 1 & 3 -\lambda
\end{vmatrix} = \lambda^{2} -4 \lambda + 4 = (\lambda -2)^{2} = 0$$

El valor propio con multiplicidad $2$ es $\lambda = 2$. Determinemos un vector propio resolviendo la siguiente ecuación.

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1 & -1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Del sistema obtenemos que $k_{1} = -k_{2}$. Sea $k_{1} = 1$, entonces $k_{2} = -1$. Por lo tanto, el vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ -1
\end{pmatrix}$$

Determinemos ahora un vector propio generalizado resolviendo la siguiente ecuación.

$$(\mathbf{A} -2 \mathbf{I})^{2} \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1 & -1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
-1 & -1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Esta ecuación se cumple para cualquier vector que no sea vector propio, es decir, que cumpla que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} \neq \mathbf{0}$$

Como el único vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ -1
\end{pmatrix}$$

Elegimos el vector ortogonal

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Notemos que se cumple

$$\begin{pmatrix}
1 \\ 1
\end{pmatrix} = c \begin{pmatrix}
1 \\ -1
\end{pmatrix}$$

sólo si $c = 0$, así que ambos vectores $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son linealmente independientes.

La solución general del sistema tiene la siguiente forma.

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K}_{1} + c_{2} e^{\lambda t} \left[ \mathbf{K}_{2} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K}_{2} \right]$$

Sustituyendo, se tiene

\begin{align*}
\mathbf{Y}(t) &= c_{1}e^{2t} \begin{pmatrix}
1 \\ -1
\end{pmatrix} + c_{2}e^{2t} \left[ \begin{pmatrix}
1 \\ 1
\end{pmatrix} + t \begin{pmatrix}
-1 & -1 \\ 1
& 1
\end{pmatrix} \begin{pmatrix}
1 \\ 1
\end{pmatrix} \right] \\
&= c_{1}e^{2t} \begin{pmatrix}
1 \\ -1
\end{pmatrix} + c_{2}e^{2t} \left[ \begin{pmatrix}
1 \\ 1
\end{pmatrix} + t \begin{pmatrix}
-2 \\ 2
\end{pmatrix} \right] \\
&= c_{1}e^{2t} \begin{pmatrix}
1 \\ -1
\end{pmatrix} + c_{2}e^{2t} \left[ \begin{pmatrix}
1 \\ 1
\end{pmatrix} + 2t \begin{pmatrix}
-1 \\ 1
\end{pmatrix} \right]
\end{align*}

La solución general del sistema es

$$\mathbf{Y}(t) = c_{1}e^{2t} \begin{pmatrix}
1 \\ -1
\end{pmatrix} + c_{2}e^{2t} \left[ \begin{pmatrix}
1 \\ 1
\end{pmatrix} -2t \begin{pmatrix}
1 \\ -1
\end{pmatrix} \right]$$

Observemos que, tal como lo mostramos en la teoría (\ref{17}), esta solución es de la forma

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K}_{1} + c_{2} e^{\lambda t}(\mathbf{K}_{2} + tk \mathbf{K}_{1})$$

Las funciones $x(t)$ y $y(t)$ son

\begin{align*}
x(t) &= c_{1}e^{2t} + c_{2}e^{2t}(1 -2t) \\
y(t) &= -c_{1}e^{2t} + c_{2}e^{2t}(1+ 2t)
\end{align*}

Muestra explícitamente que

$$\lim_{t \to -\infty} x(t) = \lim_{t \to -\infty} y(t) = 0$$

Mientras que

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} y(t) = \infty$$

Esto nos indica que las trayectorias parten del origen y se extienden por todo el plano infinitamente.

A continuación se muestra el correspondiente plano fase del sistema indicando algunas trayectorias y al único vector propio de la matriz $\mathbf{A}$.

Plano fase del sistema.

El punto de equilibrio $Y_{0} = (0, 0)$ es un repulsor.

El campo vectorial asociado lo obtenemos de la función vectorial

$$F(x, y) = (x -y,x +3y)$$

El campo vectorial y algunas trayectoria del sistema se visualizan en la siguiente figura.

Trayectorias y campo vectorial.

$\square$

Realicemos un último ejemplo.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3/2 & 1 \\ -1/4 & -1/2
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
-3/2 -\lambda & 1 \\ -1/4 & -1/2 -\lambda
\end{vmatrix} = \lambda^{2} + 2 \lambda + 1 = (\lambda + 1)^{2} = 0$$

El valor propio es $\lambda = -1$ con multiplicidad $2$. Determinemos un vector propio resolviendo la siguiente ecuación.

$$(\mathbf{A} + \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1/2 & 1 \\ -1/4 & 1/2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Del sistema obtenemos que $k_{2} = \dfrac{1}{2}k_{1}$. Sea $k_{1} = 2$, entonces $k_{2} = 1$. Por lo tanto, el vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Determinemos un vector propio generalizado resolviendo la siguiente ecuación.

$$(\mathbf{A} -\mathbf{I})^{2} \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1/2 & 1 \\ -1/4 & 1/2
\end{pmatrix} \begin{pmatrix}
-1/2 & 1 \\ -1/4 & 1/2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Nuevamente podemos elegir cualquier vector arbitrario que no sea vector propio, es decir, que cumpla que

$$(\mathbf{A} + \mathbf{I}) \mathbf{K} \neq \mathbf{0}$$

Elegimos el vector

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 2
\end{pmatrix}$$

La ecuación

$$\begin{pmatrix}
0 \\ 2
\end{pmatrix} = c \begin{pmatrix}
2 \\ 1
\end{pmatrix} $$

se cumple sólo si $c = 0$, por lo tanto $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son linealmente independientes.

Sabemos que la solución general es de la forma

$$\mathbf{Y}(t) = c_{1} e^{\lambda t} \mathbf{K}_{1} + c_{2} e^{\lambda t} \left[ \mathbf{K}_{2} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K}_{2} \right]$$

Sustituyendo, se tiene

\begin{align*}
\mathbf{Y}(t) &= c_{1}e^{-t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2}e^{-t} \left[ \begin{pmatrix}
0 \\ 2
\end{pmatrix} + t \begin{pmatrix}
-1/2 & 1 \\ -1/4 & 1/2
\end{pmatrix} \begin{pmatrix}
0 \\ 2
\end{pmatrix} \right] \\
&= c_{1}e^{ -t} \begin{pmatrix}
2 \\ 1
\end{pmatrix} + c_{2}e^{ -t} \left [ \begin{pmatrix}
0 \\ 2
\end{pmatrix} + t \begin{pmatrix}
2 \\ 1
\end{pmatrix} \right]
\end{align*}

Esta solución la podemos escribir como

\begin{align*}
x(t) &= 2c_{1}e^{-t} + 2c_{2}te^{-t} \\
y(t) &= c_{1}e^{-t} + c_{2}e^{-t}(2 + t)
\end{align*}

En este caso nos interesa el caso límite $t \rightarrow \infty$. Muestra explícitamente que

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} y(t) = 0$$

Este resultado nos indica que las trayectorias del sistema tienden al origen. Para valores grandes de $t$ las funciones $x(t)$ y $y(t)$ se pueden aproximar por

\begin{align*}
x(t) &\approx 2c_{2}te^{-t} \\
y(t) &\approx c_{2}te^{-t}
\end{align*}

Es decir, la tangente de las trayectorias tienden hacia la recta paralela al vector propio $\mathbf{K}_{1}$, esto lo podemos ver si escribimos a $y$ en función de $x$, dicha función es

$$y(x) \approx \dfrac{x}{2}$$

El plano fase, indicando algunas trayectorias y al único vector propio, se muestra a continuación.

Plano fase del sistema.

El punto de equilibrio $Y_{0} = (0, 0)$ es un atractor.

El campo vectorial lo obtenemos de la función vectorial

$$F(x, y) = \left( -\dfrac{3}{2}x + y, -\dfrac{1}{4}x -\dfrac{1}{2}y \right)$$

Dicho campo y algunas trayectorias se muestran a continuación.

Trayectorias y campo vectorial.

$\square$

Hemos concluido con el caso en el que los valores propios son repetidos. Para concluir con esta sección, en la siguiente entrada revisaremos el último caso en el que puede haber valores propios nulos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    -5 & 0 \\ 0 & -5
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    3 & -4 \\ 1 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    -3 & 5/2 \\ -5/2 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    200 & 0 \\ 0 & 200
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    5/4 & 3/4 \\ -3/4 & -1/4
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} \begin{pmatrix}
    1 & -4 \\ 4 & -7
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Estamos por concluir con el estudio cualitativo de los sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales de primer orden con coeficientes constantes. En la siguiente entrada revisaremos el último caso en el que uno o ambos valores propios son nulos.

Entradas relacionadas

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios complejos

Las matemáticas es una ciencia que dibuja conclusiones necesarias.
– Benjamin Peirce

Introducción

En la entrada anterior estudiamos los sistemas lineales en los que los valores propios de la matriz $\mathbf{A}$ eran reales y distintos, en esta entrada estudiaremos sistemas lineales en los que los valores propios son complejos.

Antes de comenzar con el desarrollo cualitativo es conveniente recordar algunos resultados importantes de estos sistemas.

Sistemas lineales con valores propios complejos

El sistema que estamos analizando es

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Definimos,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

De manera que el sistema (\ref{1}) se pueda escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

Sea

$$\lambda = \alpha + i \beta \label{3} \tag{3}$$

un valor propio de la matriz $\mathbf{A}$, con $\alpha$ y $\beta$ reales. Y sea

$$\mathbf{K} = \mathbf{U} + i \mathbf{V} \label{4} \tag{4}$$

un vector propio de $\mathbf{A}$ asociado a $\lambda$. Entonces la solución del sistema (\ref{1}) se puede escribir como

$$\mathbf{Y}(t) = (\mathbf{U} + i \mathbf{V}) e^{(\alpha + i \beta)t} \label{5} \tag{5}$$

En la unidad anterior vimos que si definimos los vectores

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

donde $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ están dados como

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] \label{6} \tag{6}$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{7} \tag{7}$$

entonces la solución general real del sistema (\ref{1}) es

$$\mathbf{Y}(t) = c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) \label{8} \tag{8}$$

Por lo tanto, las soluciones linealmente independientes son

$$\mathbf{Y}_{1}(t) = c_{1} e^{\alpha t} \left[ \mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t) \right] \label{9} \tag{9}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{\alpha t} \left[ \mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t) \right] \label{10} \tag{10}$$

La expresión $k_{1} \cos(\beta t) + k_{2} \sin(\beta t)$, donde $k_{1}$ y $k_{2}$ son constantes, se puede expresar en la forma $R \cos(\beta t -\delta)$ para una elección adecuada de constantes $R$ y $\delta$. De tarea moral demuestra que la solución (\ref{8}) se puede expresar de la siguiente forma.

$$\mathbf{Y}(t) = e^{\alpha t} \begin{pmatrix}
R_{1} \cos(\beta t -\delta_{1}) \\ R_{2} \cos(\beta t -\delta_{2})
\end{pmatrix} \label{11} \tag{11}$$

para alguna elección de constantes $R_{1} \geq 0$, $R_{2} \geq 0$, $\delta_{1}$ y $\delta_{2}$.

Con esto en mente pasemos a estudiar cada caso en el que los valores propios son complejos.

Valores propios complejos con parte real nula

Caso 1: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha = 0$.

En este caso se dice que los valores propios son imaginarios puros ya que no tienen parte real. De la solución (\ref{11}) vemos que si $\alpha = 0$, entonces la expresión se reduce a

$$\mathbf{Y}(t) = \begin{pmatrix}
R_{1} \cos(\beta t -\delta_{1}) \\ R_{2} \cos(\beta t -\delta_{2})
\end{pmatrix} \label{12} \tag{12}$$

Las soluciones $x(t)$ y $y(t)$ son

$$x(t) = R_{1} \cos(\beta t -\delta_{1}) \hspace{1cm} y \hspace{1cm} y(t) = R_{2} \cos(\beta t -\delta_{2}) \label{13} \tag{13}$$

Estas funciones son periódicas en el tiempo, con periodo $2 \pi / \beta$. Como $|\cos(\beta t -\delta_{1})| \leq 1$ y $|\cos(\beta t -\delta_{2})| \leq 1$, entonces la función $x(t)$ varia entre $-R_{1}$ y $+R_{1}$, mientras que $y(t)$ varia entre $-R_{2}$ y $+R_{2}$. Por tanto, la trayectoria de cualquier solución $\mathbf{Y}(t)$ de (\ref{1}) es una curva cerrada que rodea al origen $x = y = 0$, es por ello que se dice que el punto de equilibrio $Y_{0} = (0, 0)$ es un centro y es estable.

A continuación se muestra el plano fase.

Plano fase con parte real nula.

La dirección de las trayectorias se determina a partir del sistema (\ref{1}). Buscamos el signo de $y^{\prime}$ cuando $y = 0$. Si $y^{\prime}$ es mayor que cero para $y = 0$ y $x > 0$, entonces todas las trayectorias se mueven en sentido contrario a las manecillas del reloj. Si $y^{\prime}$ es menor que cero para $y = 0$ y $x > 0$, entonces todas las trayectorias se mueven en el sentido de las manecillas del reloj.

Ahora estudiemos los casos en los que los valores propios tienen parte real no nula.

Valores propios complejos con parte real negativa

Caso 2: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha < 0$.

En este caso las soluciones son

$$\mathbf{Y}(t) = e^{\alpha t} \begin{pmatrix}
R_{1} \cos(\beta t -\delta_{1}) \\ R_{2} \cos(\beta t -\delta_{2})
\end{pmatrix}$$

o bien,

$$x(t) = e^{\alpha t} R_{1} \cos(\beta t -\delta_{1}) \hspace{1cm} y \hspace{1cm} y(t) = e^{\alpha t} R_{2} \cos(\beta t -\delta_{2}) \label{14} \tag{14}$$

Si $t = 0$, se obtiene que

$$\mathbf{Y}(0) = \begin{pmatrix}
R_{1} \cos(-\delta_{1}) \\ R_{2} \cos(-\delta_{2})
\end{pmatrix} \label{15} \tag{15}$$

Sabemos que el periodo es $2 \pi / \beta$, notemos que si $t = 2 \pi / \beta$, entonces

$$\mathbf{Y}(2 \pi / \beta) = e^{2 \pi \alpha / \beta} \begin{pmatrix}
R_{1} \cos(2 \pi -\delta_{1}) \\ R_{2} \cos(2 \pi -\delta_{2})
\end{pmatrix} = e^{2 \pi \alpha / \beta} \begin{pmatrix}
R_{1} \cos(-\delta_{1}) \\ R_{2} \cos(-\delta_{2})
\end{pmatrix}$$

esto es,

$$\mathbf{Y}(2 \pi / \beta) = e^{2 \pi \alpha / \beta } \mathbf{Y}(0) \label{16} \tag{16}$$

Como

$$\mathbf{Y}(2 \pi / \beta) < \mathbf{Y}(0)$$

es decir,

$$x(2 \pi / \beta) < x(0) \hspace{1cm} y \hspace{1cm} y( 2 \pi / \beta) < y(0)$$

entonces $\mathbf{Y}(2 \pi / \beta)$ está más cerca del origen que $\mathbf{Y}(0)$. Esto significa que, para $\alpha < 0$, el efecto del factor $e^{\alpha t}$ sobre la solución (\ref{11}) es el de cambiar las curvas cerradas del caso anterior en espirales que se aproximan hacia el origen.

El plano fase se muestra a continuación.

Plano fase con parte real negativa.

De forma similar al caso anterior, la dirección de las trayectorias se determina a partir del sistema (\ref{1}). En este caso se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un foco estable, o también se conoce como espiral atractor. La estabilidad de este punto de equilibrio es asintóticamente estable.

Para concluir veamos que ocurre si $\alpha$ es positiva.

Valores propios complejos con parte real positiva

Caso 3: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha > 0$.

En este caso nuevamente las soluciones son

$$\mathbf{Y}(t) = e^{\alpha t} \begin{pmatrix}
R_{1} \cos(\beta t -\delta_{1}) \\ R_{2} \cos(\beta t -\delta_{2})
\end{pmatrix}$$

o bien,

$$x(t) = e^{\alpha t} R_{1} \cos(\beta t -\delta_{1}) \hspace{1cm} y \hspace{1cm} y(t) = e^{\alpha t} R_{2} \cos(\beta t -\delta_{2})$$

Sin embargo, debido a que $\alpha > 0$, se puede probar que

$$\mathbf{Y}(2 \pi / \beta) > \mathbf{Y}(0)$$

es decir,

$$x(2 \pi / \beta) > x(0) \hspace{1cm} y \hspace{1cm} y( 2 \pi / \beta) > y(0)$$

lo que significa que ahora $\mathbf{Y}(0)$ está más cerca del origen que $\mathbf{Y}(2 \pi / \beta)$.

Por lo tanto, en este caso todas las soluciones de (\ref{1}) describen espirales que se alejan del origen conforme $t \rightarrow \infty$, y se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un foco inestable o espiral repulsor. Es claro que el punto de equilibrio es inestable.

El plano fase se muestra a continuación.

Plano fase con parte real positiva.

Hemos revisado los casos posibles. Para concluir con la entrada realicemos un ejemplo por cada caso.

Caso 1: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha = 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
2 & 1 \\ -5 & -2
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
2 -\lambda & 1 \\ -5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = \lambda^{2} + 1 = 0$$

Las raíces son $\lambda_{1} = i$ y $\lambda_{2} = -i$, notamos que $\alpha = 0$ y $\beta = 1$, determinemos los vectores propios resolviendo la ecuación

$$(\mathbf{A} -i \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
2 -i & 1 \\ -5 & -2-i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)k_{1} + k_{2} &= 0 \\
-5k_{1} -(2 + i)k_{2} &= 0
\end{align*}

Vemos que

$$k_{1} = -\left( \dfrac{2 + i}{5} \right)k_{2}$$

Sea $k_{2} = -5$, tal que $k_{1} = 2 + i$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 + i \\ -5
\end{pmatrix} = \begin{pmatrix}
2 \\ -5
\end{pmatrix} + i \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

Sabemos que $\mathbf{K}_{2} = \bar{\mathbf{K}}_{1}$, entonces el segundo vector propio asociado al valor propio $\lambda_{2} = -i$ es

$$\mathbf{K}_{2} = \begin{pmatrix}
2 -i \\ -5
\end{pmatrix} = \begin{pmatrix}
2 \\ -5
\end{pmatrix} -i \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

La primera solución linealmente independiente es

$$\mathbf{Y}_{1}(t) = e^{it} \begin{pmatrix}
2 + i \\ -5
\end{pmatrix}$$

Notemos lo siguiente.

\begin{align*}
e^{it} \begin{pmatrix}
2 + i \\ -5
\end{pmatrix} &= \left[ \cos(t) + i \sin(t) \right] \left[ \begin{pmatrix}
2 \\ -5
\end{pmatrix} + i \begin{pmatrix}
1 \\ 0
\end{pmatrix} \right] \\
&= \cos(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix} -\sin(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix} + i \cos(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix} + i \sin(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix}
\end{align*}

De donde definimos

$$\mathbf{W}_{1} = \cos(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix} -\sin(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

y

$$\mathbf{W}_{2} = \sin(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix} + \cos(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix}$$

Por lo tanto, la solución general real es

$$\mathbf{Y}(t) = c_{1} \left[ \cos(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix} -\sin(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix} \right] + c_{2} \left[ \sin(t) \begin{pmatrix}
2 \\ -5
\end{pmatrix} + \cos(t) \begin{pmatrix}
1 \\ 0
\end{pmatrix} \right]$$

En términos de las funciones $x(t)$ y $y(t)$ se tienen las soluciones

\begin{align*}
x(t) &= [2c_{1} + c_{2}] \cos(t) + [-c_{1} + 2c_{2}] \sin(t) \\
y(t) &= -5c_{1} \cos(t) -5c_{2} \sin(t)
\end{align*}

Las soluciones son de la forma

\begin{align*}
x(t) &= k_{1} \cos(t) + k_{2} \sin(t) \\
y(t) &= k_{3} \cos(t) + k_{4} \sin(t)
\end{align*}

También es posible determinar las constantes $R_{1}$, $R_{2}$, $\delta_{1}$ y $\delta_{2}$ en términos de las constantes $c_{1}$ y $c_{2}$, tal que la solución se pueda escribir como

\begin{align*}
x(t) &= R_{1} \cos(t -\delta_{1})\\
y(t) &= R_{2} \cos(t -\delta_{2})
\end{align*}

En este caso como $\beta = 1$, entonces el periodo es $T = 2\pi$. La función paramétrica que define las trayectorias está dada por

$$f(t) = (k_{1} \cos(t) + k_{2} \sin(t), k_{3} \cos(t) + k_{4} \sin(t))$$

Es claro que las trayectorias son curvas cerradas con periodo $2 \pi$.

Para determinar la dirección de las trayectorias consideremos la ecuación $y^{\prime}$ del sistema, dicha ecuación es

$$y^{\prime} = -5x -2y$$

Si $y = 0$ se tiene la ecuación $y^{\prime} = -5x$, vemos que si $x > 0$, entonces $y^{\prime} < 0$, por lo tanto las trayectorias se mueven en el sentido de las manecillas del reloj.

El plano fase indicando algunas trayectorias se muestra a continuación.

Plano fase del sistema.

El campo vectorial está definido por la función

$$F(x, y) = (2x + y, -5x -2y)$$

A continuación se muestra dicho campo vectorial y algunas trayectorias.

Trayectorias y campo vectorial.

Efectivamente, el punto de equilibrio $Y_{0} = (0, 0)$ es un centro.

$\square$

Veamos como se pierde esta regularidad si $\alpha \neq 0$.

Caso 2: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha < 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -4 \\ 1 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
-1 -\lambda & -4 \\ 1 & -1 -\lambda
\end{vmatrix} = (-1 -\lambda)^{2} + 4 = \lambda^{2} + 2 \lambda + 5 = 0$$

Las raíces son $\lambda_{1} = -1 + 2i$ y $\lambda_{2} = -1 -2i$ (con $\alpha = -1$ y $\beta = 2$). Resolvamos la siguiente ecuación para obtener los vectores propios.

$$(\mathbf{A} -( -1 + 2i) \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-2i & -4 \\ 1 & -2i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Se obtiene que $k_{1} = 2ik_{2}$. Sea $k_{2} = 1$, entonces $k_{1} = 2i$, así el primer vector propios es

$$\mathbf{K}_{1} = \begin{pmatrix}
2i \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
2 \\ 0
\end{pmatrix} $$

Considerando que $\mathbf{K}_{2} = \bar{\mathbf{K}}_{1}$ , entonces el segundo vector propio, asociado a $\lambda_{2} = -1 -2i$ es

$$\mathbf{K}_{2} = \begin{pmatrix}
-2i \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\ 1
\end{pmatrix} -i \begin{pmatrix}
2 \\ 0
\end{pmatrix}$$

Sabemos que la primer solución es

$$\mathbf{Y}_{1}(t) = e^{(-1 + 2i)t} \begin{pmatrix}
2i \\ 1
\end{pmatrix}$$

Notemos lo siguiente.

\begin{align*}
e^{(-1 + 2i)t} \begin{pmatrix}
2i \\ 1
\end{pmatrix} &= e^{-t} [\cos(2t) + i \sin(2t)] \left[ \begin{pmatrix}
0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
2 \\ 0
\end{pmatrix} \right] \\
&= e^{-t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1
\end{pmatrix} -\sin(2t) \begin{pmatrix}
2 \\ 0
\end{pmatrix} + i \cos (2t) \begin{pmatrix}
2 \\ 0 \end{pmatrix} + i \sin(2t) \begin{pmatrix}
0 \\ 1 \end{pmatrix} \right]
\end{align*}

De donde definimos

$$\mathbf{W}_{1}(t) = e^{-t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1
\end{pmatrix} -\sin (t) \begin{pmatrix}
2 \\ 0
\end{pmatrix} \right]$$

y

$$\mathbf{W}_{2}(t) = e^{-t} \left[ \cos(t) \begin{pmatrix}
2 \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
0 \\ 1
\end{pmatrix} \right]$$

Por lo tanto, la solución general real es

$$\mathbf{Y}(t) = c_{1} e^{-t} \left[ \cos(2t) \begin{pmatrix}
0 \\ 1
\end{pmatrix} -\sin (t) \begin{pmatrix}
2 \\ 0
\end{pmatrix} \right] + c_{2} e^{-t} \left[ \cos(t) \begin{pmatrix}
2 \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
0 \\ 1
\end{pmatrix} \right]$$

Las funciones $x(t)$ y $y(t)$ son

\begin{align*}
x(t) &= -2c_{1}e^{-t} \sin(2t) + 2c_{2}e^{-t} \cos(2t) \\
y(t) &= c_{1}e^{-t} \cos(2t) + c_{2}e^{-t} \sin(2t)
\end{align*}

Estas funciones también se pueden escribir como

\begin{align*}
x(t) &= e^{-t} R_{1} \cos(2t -\delta_{1}) \\
y(t) &= e^{-t} R_{2} \cos(2t -\delta_{2})
\end{align*}

De tarea moral determina las constantes $R_{1}$, $R_{2}$, $\delta_{1}$ y $\delta_{2}$ en términos de las constantes $c_{1}$ y $c_{2}$.

Podemos notar que las soluciones ya no son trayectorias cerradas debido al término $e^{-t}$. En este caso el periodo es $t = 2 \pi / 2 = \pi$. Notemos que

\begin{align*}
x(0) &= 2c_{2} = R_{1} \cos(-\delta_{1}) \\
y(0) &= c_{1} = R_{2} \cos(-\delta_{2})
\end{align*}

Mientras que

\begin{align*}
x(\pi) &= 2 e^{-\pi} c_{2} = R_{1} e^{-\pi} \cos(-\delta_{1}) \\
y(\pi) &= e^{-\pi} c_{1} = R_{2} e^{-\pi} \cos(-\delta_{2})
\end{align*}

Como $e^{-\pi} < 1$, entonces

$$x(\pi) < x(0) \hspace{1cm} y \hspace{1cm} y(\pi) < y(0)$$

Por lo tanto las trayectorias corresponden a espirales que se aproximan hacia el origen.

La función paramétrica que define las trayectorias es

$$f(t) = (-2c_{1}e^{-t} \sin(2t) + 2c_{2}e^{-t} \cos(2t), c_{1}e^{-t} \cos(2t) + c_{2}e^{-t} \sin(2t))$$

Para determinar la dirección en que giran las trayectorias consideremos la ecuación $y^{\prime}$ del sistema, dicha ecuación es

$$y^{\prime} = x -y$$

Si $y = 0$, entonces $y^{\prime} = x$ y si $x > 0$, entonces $y^{\prime} > 0$, por lo tanto las trayectorias se mueven en el sentido opuesto a las manecillas del reloj.

El plano fase con algunas trayectorias se muestra a continuación.

Plano fase del sistema.

El campo vectorial asociado está definido por la función

$$F(x, y) = (-x -4y, x -y)$$

Dicho campo y algunas trayectorias se muestran en la siguiente figura.

Trayectorias y campo vectorial.

El punto de equilibrio $Y_{0} = (0, 0)$ es un foco estable.

$\square$

Concluyamos con un último ejemplo.

Caso 3: $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$, con $\alpha > 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
3 & -2 \\ 4 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
3 -\lambda & -2 \\ 4 & -1 -\lambda
\end{vmatrix} = (3 -\lambda)(-1 -\lambda) + 8 = \lambda^{2} -2 \lambda + 5 = 0$$

Los valores propios son $\lambda_{1} = 1 + 2i$ y $\lambda_{2} = 1 -2i$ (con $\alpha = 1$ y $\beta = 2$ ). Determinemos los vectores propios con la ecuación

$$(\mathbf{A} -(1 + 2i) \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
2 -2i & -2 \\ 4 & -2 -2i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

De este sistema se obtiene que

$$k_{1} = \left( \dfrac{1+ i}{2} \right) k_{2}$$

Sea $k_{2} = 1$, entonces $k_{1} = \dfrac{1 + i}{2}$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
\dfrac{1 + i}{2} \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} $$

y sabemos enseguida que

$$\mathbf{K}_{2} = \begin{pmatrix}
\dfrac{1 -i}{2} \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\ 1
\end{pmatrix} -i \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} $$

La primer solución linealmente independiente es

$$Y_{1}(t) = e^{(1 + 2i)t} \begin{pmatrix}
\dfrac{1 + i}{2} \\ 1
\end{pmatrix}$$

Vemos que

\begin{align*}
e^{(1 + 2i)t} \begin{pmatrix}
\dfrac{1 + i}{2} \\ 1
\end{pmatrix} &= e^{t} [\cos(2t) + i \sin(2t)] \left[ \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} + i \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} -\sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} + i \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} + i \sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} \right]
\end{align*}

de donde,

$$\mathbf{W}_{1}(t) = e^{t} \left[ \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} -\sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} \right]$$

y

$$\mathbf{W}_{2}(t) = e^{t} \left[ \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} \right]$$

Por lo tanto, la solución general real del sistema es

$$\mathbf{Y}(t) = c_{1} e^{t} \left[ \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} -\sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} \right] + c_{2} e^{t} \left[ \cos(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 0
\end{pmatrix} + \sin(2t) \begin{pmatrix}
\dfrac{1}{2} \\ 1
\end{pmatrix} \right]$$

Las funciones $x(t)$ y $y(t)$ son

\begin{align*}
x(t) &= e^{t} \left( \dfrac{c_{1} + c_{2}}{2} \right) \cos(2t) + e^{t} \left( \dfrac{c_{2} -c_{1}}{2} \right) \sin(2t) \\
y(t) &= c_{1}e^{t} \cos(2t) + c_{2}e^{t} \sin(2t)
\end{align*}

El periodo de las soluciones es $T = 2 \pi / 2 = \pi$. Muestra, de manera similar a como lo hicimos en el ejemplo anterior, que

$$x(\pi) > x(0) \hspace{1cm} y \hspace{1cm} y(\pi) > y(0)$$

esto debido a que $e^{\pi} > 1$. Por lo tanto, las trayectorias describen espirales que se alejan del origen.

La función paramétrica que define a las trayectorias es

$$f(t) = (k_{1} e^{t} \cos(2t) + k_{2} e^{t} \sin(2t), c_{1}e^{t} \cos(2t) + c_{2}e^{t} \sin(2t) )$$

Con

$$k_{1} = \left( \dfrac{c_{1} + c_{2}}{2} \right) \hspace{1cm} y \hspace{1cm} k_{2} = \left( \dfrac{c_{2} -c_{1}}{2} \right)$$

Para determinar la dirección de las trayectorias consideremos la ecuación

$$y^{\prime} = 4x -y$$

Si $y = 0$ se obtiene que $y^{\prime} = 4x$ y si $x > 0$, entonces $y^{\prime} > 0$, por lo tanto, las trayectorias se mueven en el sentido opuesto a las manecillas del reloj.

El plano fase se muestra a continuación.

Plano fase del sistema.

La función vectorial que define al campo vectorial es

$$F(x, y) = (3x -2y, 4x -y)$$

El campo vectorial y algunas trayectorias se ilustran en la siguiente figura.

Trayectorias y campo vectorial.

El punto de equilibrio $Y_{0} = (0, 0)$ corresponde a un foco inestable.

$\square$

Hemos concluido con esta entrada. Continuemos en la siguiente entrada con el análisis en el caso en el que los valores propios de la matriz $\mathbf{A}$ son iguales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 4 \\ -9 & 0
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -1 \\ 5 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 5 & -3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & -5 \\ 4 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    4 & 5 \\ -2 & 6
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -8 \\ 1 & -3
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Continuando con nuestro estudio cualitativo de los sistemas lineales homogéneos con dos ecuaciones diferenciales, en la siguiente entrada veremos que ocurre en el plano fase cuando los valores propios de la matriz $\mathbf{A}$ son repetidos.

Entradas relacionadas