Álgebra Superior II: Construcción de los enteros y su suma

Por Ana Ofelia Negrete Fernández

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Más adelante…

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Espacios euclideanos y espacios hermitianos

Por Diego Ligani Rodríguez Trejo

Introducción

Hasta ahora hemos hablado de las formas bilineales, las formas bilineales simétricas, las formas cuadráticas y todos sus análogos complejos. Vimos también cómo podemos representar mediante matrices a estas formas.

Una de las aplicaciones más útiles de estos conceptos es que nos permitirán hablar de espacios vectoriales «con geometría». Este concepto ya lo exploramos en el primer curso de Álgebra Lineal, cuando hablamos de producto interior y de espacios euclideanos.

Por un lado, en esta entrada haremos un breve recordatorio de estos temas. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

Un acuerdo sobre el mundo real y complejo

Como hemos visto anteriormente, los resultados relacionados con formas bilineales tienen frecuentemente sus análogos en el mundo complejo. A veces hay algunas diferencias importantes, pero la mayoría de los casos son mínimas. Por esta razón, a partir de ahora dejaremos varias de las demostraciones de los casos complejos como ejercicios. En caso de ser necesario, haremos el énfasis pertinente en las diferencias entre el caso real y el complejo.

Formas positivas

Para poder «tener geometría» en un espacio vectorial, es necesario que tenga una forma bilineal un poco más especial que las que hemos estudiado. En el caso real requerimos lo siguiente.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Tomemos una forma bilineal $b: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

En el caso complejo hay que ser un poco más cuidadosos. Si $\varphi$ es una forma sesquilineal, podría suceder que $\varphi(x,x)$ no sea un número real y entonces no pueda establecerse una desigualdad entre $\varphi(x,x)$ y $0$. Sin embargo, bajo la hipótesis adicional de que $\varphi$ sea hermitiana, vimos que $\varphi(x,x)$ sí es real.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$. Tomemos una forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $\varphi$ es positiva si $\varphi(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $\varphi$ es positiva definida si $\varphi(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

Adicionalmente, diremos que una forma cuadrática de un espacio vectorial sobre $\mathbb{R}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida). Y diremos que una forma cuadrática hermitiana de un espacio vectorial sobre $\mathbb{C}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida).

Desigualdades de Cauchy-Schwarz real y compleja

Una de las consecuencias de tener formas positivas es que se cumple una desigualdad entre las evaluaciones de una forma cuadrática (o cuadrática hermitiana) y su forma polar. A continuación enunciamos la versión real que demostramos en el primer curso.

Teorema (desigualdad de Cauchy-Schwarz real). Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática y $b$ su forma polar.

  • Si $b$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
  • Más aún, si $b$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

La versión compleja es casi análoga, pero hay que tener el cuidado de usar la norma al evaluar la forma sesquilineal para obtener un número real que podamos comparar con otro.

Teorema (desigualdad de Cauchy-Schwarz compleja). Sea $\Phi: V \rightarrow \mathbb{R}$ una forma cuadrática hermitiana y $\varphi$ su forma polar.

  • Si $\varphi$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} |\varphi(x,y)|^2 \leq \Phi(x)\Phi(y). \end{align*}
  • Más aún, si $\varphi$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

$\square$

La demostración es muy parecida a la del caso real, y queda como ejercicio.

Espacios euclideanos y hermitianos

La sección anterior da la pista de que hay sutiles diferencias entre tener formas positivas y positivas definidas. La noción de que una forma sea positiva definida es más restrictiva, y por ello deberíamos esperar que un espacio vectorial (real o complejo) con una forma positiva definida tenga más propiedades.

Definición. Un producto interior para un espacio vectorial $V$ sobre los reales es una forma bilineal, simétrica y positiva definida.

Definición. Un producto interior hermitiano para un espacio vectorial $V$ sobre los complejos es una forma sesquilineal, hermitiana y positiva definida.

Típicamente se usa una notación especial para los productos interiores (o interiores hermitianos). En vez de referirnos a ellos con expresiones del estilo $b(x,y)$ (o $\varphi(x,y)$), más bien usamos expresiones del estilo $\langle x, y \rangle$. Cuando no queremos poner los argumentos, usualmente dejamos sólo unos puntos, así: $\langle \cdot, \cdot \rangle$.

Si el espacio vectorial además tiene dimensión finita, entonces estamos en un tipo de espacios muy especiales, en los que podremos probar varios resultados. Estos espacios son tan especiales que tienen su propio nombre.

Definición. Un espacio euclideano es un espacio vectorial sobre $\mathbb{R}$, de dimensión finita, y con un producto interior $\langle \cdot, \cdot \rangle$.

Definición. Un espacio hermitiano es un espacio vectorial sobre $\mathbb{C}$, de dimensión finita, y con un producto interior hermitiano $\langle \cdot, \cdot \rangle$.

Ejemplo. Tomemos $\mathbb{C}^n$ y la función $\langle \cdot, \cdot \rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ dada por $$ \langle x, y\rangle = \sum_{i=1}^n \overline{x_i}y_i.$$

Se puede verificar que $\langle \cdot, \cdot \rangle$ es una forma sesquilineal, hermitiana y positiva definida. De este modo, $\mathbb{C}^n$ con este producto interior hermitiano es un espacio hermitiano.

$\triangle$

Normas, distancias y ángulos

Si tenemos un espacio vectorial con producto interior (o producto interior hermitiano), entonces ahora sí podemos introducir varias nociones geométricas: la de norma, la de distancia y la de ángulos. Además, estas nociones tendrán las propiedades geométricas que esperamos.

En las siguientes definiciones tenemos que $V$ es un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$.

Definición. Para $x\in V$, definimos la norma de $x$ como $$\norm{x}:=\sqrt{\langle x,x \rangle}.$$

Definición. Para $x, y\in V$, definimos la distancia de $x$ a $y$ como $$d(x,y):=\norm{x-y}.$$

Definición. Para $x, y\in V$, definimos el ángulo entre $x$ y $y$ como $$\text{ang}(x,y)=\cos^{-1}\left(\frac{|\langle x,y\rangle|}{\norm{x}\norm{y}}\right).$$

En esta última definición, las barras indican el valor absoluto en el caso real y la norma en el caso complejo. Observa que implícitamente estamos usando la desigualdad de Cauchy-Schwarz para asegurarnos de que el argumento de $\cos^{-1}$ en efecto es un número entre $0$ y $1$.

A continuación tenemos dos proposiciones clave que nos dicen que la norma y la distancia que definimos sí tienen todas las propiedades «que deben tener» una norma y una distancia.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entonces, la función norma $\norm{\cdot}:V\to \mathbb{R}$ cumple lo siguiente:

  • Para todo $x\in V$, se tiene que $\norm{x}$ es un número real, con $\norm{x}\geq 0$ y $\norm{x}=0$ si y sólo si $x=0$.
  • Para todo $x\in V$ y $c$ en $\mathbb{R}$ (o $\mathbb{C}$), se tiene que $\norm{cx}=|c|\norm{x}$.
  • Desigualdad del triángulo. Para cualesquiera $x,y \in V$, se tiene que $$\norm{x+y}\leq \norm{x}+\norm{y}.$$

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entones, la función distancia $d:V\times V \to \mathbb{R}$ cumple lo siguiente:

  • Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)$ es un número real, con $d(x,y)\geq 0$ y $d(x,y)=0$ si y sólo si $x=y$.
  • Simetría. Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)=d(y,x)$.
  • Desigualdad del triángulo. Para cualesquiera $x,y,z \in V$, se tiene que $$d(x,z)\leq d(x,y)+d(y,z).$$

La última proposición puede también resumirse como que $V$ con la función $d$ es un espacio métrico. Una métrica en un conjunto permite establecer una topología. Así, en un espacio con producto interior (o producto interior hermitiano), es posible establecer nociones de continuidad, convergencia, cálculo, etc. Es interesante saber que se pueden tomar estos caminos, pero queda fuera de los alcances de nuestro curso.

Más adelante…

Con esto concluimos nuestro pequeño repaso de producto interior y espacios euclideanos. Así mismo, con esto establecemos las bases de los productos interiores hermitianos y de los espacios hermitianos. Como puedes ver, ambas nociones están muy relacionadas entre sí. Los conceptos de norma y distancia dan pie a un sin fin de teoría muy interesante. Es útil poder llegar a ellos desde un enfoque puramente algebraico, y nos muestra el poder que tiene este campo de estudio.

¿Cómo se ven las nociones de positividad y positividad definida en términos de matrices? Esto es algo que estudiaremos en la siguiente entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$ y definamos $q: V \rightarrow \mathbb{R}$ como sigue:
    \begin{align*} q(x,y,z)= x^2+y^2+z^2-xy-yz-xz. \end{align*}
    ¿Es $q$ positiva? ¿Es positiva definida?
  2. Sea $n$ un entero positivo y $V$ el espacio de polinomios con coeficientes reales cuyos grados no excedan $n$. Prueba que
    \begin{align*} \langle P, Q\rangle :=\sum_{i=0}^nP(i)Q(i) \end{align*}
    es un producto interno en $V$. ¿Cómo construirías un producto interno hermitiano análogo en el caso de $W$ el espacio de polinomios con coeficientes complejos cuyos grados no excedan $n$?
  3. Revisa la demostración de la desigualdad de Cauchy-Schwarz en los espacios reales. Usa esto para dar una demostración para la versión análoga compleja. Recuerda también demostrar cuándo se da la igualdad si el producto interno hermitiano es positivo definido.
  4. Con la misma notación del ejercicio anterior, prueba la desigualdad de Minkowski, es decir, para todos $x,y \in V$
    \begin{align*} \sqrt{\Phi(x+y)} \leq \sqrt{\Phi(x)} + \sqrt{\Phi(y)}. \end{align*}
  5. Revisa la demostración de las propiedades de la norma y de la distancia para el caso real. Tomando esto como base, realiza la demostración para el caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Problemas de isometrías y grupo ortogonal

Por Ayax Calderón

Introducción

Un ejemplo importante de transformaciones ortogonales

Una clase importante de transformaciones ortogonales es la de las simetrías ortogonales. Sea $V$ un espacio euclidiano y $W$ un subespacio de $V$. Entonces $V=W\oplus W^\bot$, por lo que podemos definir la simetría $s_W$ sobre $W^\bot$ con respecto a $W$. Recuerda que cualquier $v\in V$ se puede escribir como $v=w+w^\bot$, con $(w,w^\bot)\in W\times W^\bot$, entonces $$s_W(v)=w-w^\bot,$$ de manera que $s_W$ fija puntualmente a $W$ y $-s_W$ fija puntualmente a $W^\bot$.

Para garantizar que $s_W$ es una transformación ortogonal, bastará con verificar que $||s_W(v)||=||v||$ para todo $v\in V$, o equivalentemente
$$||w-w^\bot||=||w+w^\bot|| \hspace{1.5mm}\forall (w,w^\bot)\in W\times W^\bot.$$ Pero por el teorema de Pitágoras se tiene que si elevemos ambos lados a cuadrado se obtiene $||w||^2+||w^\bot||^2$ y se sigue el resultado deseado.

Las simetrías ortogonales se pueden distinguir fácilmente entre las transformaciones ortogonales, pues estas son precisamente las transformaciones ortogonales auto-adjuntas.

Caracterización sobre bases ortonormales

Problema. Sea $V$ un espacio euclidiano y $T:V\to V$ una tranformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal.
  2. Para cualquier base ortonormal $e_1,\dots ,e_n$ de $V$, los vectores $T(e_1),\dots ,T(e_n)$ forman una base ortonormal de $V$.
  3. Existe una base ortonormal de $e_1,\dots ,e_n$ de $V$ tal que $T(e_1),\dots ,T(e_n)$ es una base ortonormal de $V$.

Solución. Supongamos que 1. es cierto y sea $e_1,\dots ,e_n$ una base ortonormal de $V$. Entonces para cada $i,j\in[1,n]$ tenemos
$$\langle T(e_i),T(e_j) \rangle =\langle e_i,e_j \rangle.$$
Se sigue que $T(e_1),\dots ,T(e_n)$ es una familia ortonormal, y como $dim V=n$, entonces es una base ortonormal de $V$. Entonces 1. implica 2. y claramente 2. implica 3.
Supongamos que 3. es cierto. Sea $x\in V$ y escribamos $x=x_1e_1+x_2e_2+\dots +x_ne_n$. Como $e_1,\dots ,e_n$ y $T(e_1),\dots ,T(e_n)$ son bases ortonormales de $V$, tenemos
$$||T(x)||^2=||x_1T(e_1)+\dots +x_nT(e_n)||^2=x_1^2+\dots +x_n^2=||x||^2.$$
Por lo tanto $||T(x)||=||x||$ para todo $x\in V$ y $T$ es ortogonal.

$\square$

El grupo de transformaciones ortogonales en el plano

Definición. Diremos que una isometría $T$ es una isometría positiva si $\det T=1$. Por otro lado, diremos que $T$ es una isometría negativa si $\det T=-1$ En términos geométricos, las isometrías positivas preservan la orientación del espacio, mientras que las isometrías negativas la invierten.

Definición. Sea $B=\{e_1,\dots,e_n\}$ una base ortonormal de un espacio euclidiano $V$. Si $B’=\{f_1,\dots,f_n\}$ es otra base ortonormal de $V$, entonces la matriz de cambio de base de $B$ a $B’$ es ortogonal y por lo tanto $\det P\in\{-1,1\}$. Diremos que $B’$ está orientada positivamente con respecto a $B$ si $\det P=1$ y conversamente diremos que $B’$ está orientada negativamente con respecto a $B$ si $\det P=-1$.

Si $V=\mathbb{R}^n$ está equipado con el producto interior usual, entonces siempre tomamos como $B$ a la base canónica y sólo decimos que una base ortonormal es positiva o negativa.

Observación. El polinomio característo de la matriz
$$\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix}$$
es
$$(x-1)^p(x+1)^q\cdot\displaystyle\prod_{i=1}^k (x^2-2\cos\theta_i x+1).$$
Las raíces complejas del polinomio $x^2-2\cos\theta_i x+1$ son $e^{i\theta}$ y $e^{-i\theta}$, y tienen modulo $1$. Por lo tanto, todos los eigenvalores complejos de una matriz ortogonal tienen módulo $1$.

Estudiando el grupo ortogonal en dimensiones pequeñas

Empezamos analizando el caso de dimensión $2$. Sea $A\in M_2(\mathbb{R})$ una matriz dada por
$$A=\begin{pmatrix}
a & b\\
c & d\end{pmatrix}$$ que satisface $A^tA=I_2$. Sabemos que $\det A\in\{-1,1\}$, así que consideramos ambos casos.

Si $\det A=1$, entonces la inversa de $A$ simplemente es
$$A^{-1}=\begin{pmatrix}
d & -b\\
-c & a\end{pmatrix}$$
y como $A$ es ortogonal, entonces $A^{-1}=\hspace{.5mm}^tA$, por lo que $a=d$ y $b=-c$, lo que nos dice que $A$ es de la forma
$$A=\begin{pmatrix}
a & -c\\
c & a\end{pmatrix}.$$
Más aún, tenemos que $a^2+c^2=1$, por lo que existe un único $\theta\in(-\pi,\pi]$ tal que $A=\cos\theta$ y $c=\sin\theta$. Por lo tanto
$$A=R_{\theta}=\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta \end{pmatrix}.$$
La transformación lineal correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (\cos\theta x – \sin\theta y, \sin\theta x+ \cos\theta y)
\end{align*}
y geométricamente corresponde a una rotación de ángulo $\theta$. Además
\begin{equation}\label{rot}
R_{\theta_1}\cdot R_{\theta_2}=R_{\theta_1+\theta_2}=R_{\theta_2}\cdot R_{\theta_1}.
\end{equation}
Una consecuencia importante es que la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ aún es $R_\theta$, pues la matriz de cambio de base de la base canónica a la nueva base ortonormal positiva sigue siendo una rotación. Análogamente, si en el argumento anterior tomamos una base ortonormal negativa, entonces la matriz asociada a $T$ es $R_{-\theta}$. La relación \eqref{rot} también muestra que para calcular el ángulo de la composición de dos rotaciones basta con tomar la suma de los ángulos y restar un múltiplo adecuado de $2\pi$ tal que el ángulo obtenido quede en el intervalo $(-\pi,\pi]$.

Si $\det A=-1$. Entonces
$$A^{-1}=\begin{pmatrix}
-d & b\\
c & -a\end{pmatrix}$$ y como $A$ es ortogonal, entonces $d=-a$ y $b=c$. También tenemos que $a^2+b^2=1$, por lo que existe un único número real $\theta\in(-\pi,\pi]$ tal que $a=\cos\theta$ y $b=\sin\theta$. Entonces
$$A=S_\theta:=\begin{pmatrix}
\cos\theta & \sin\theta\\
\sin\theta & -\cos\theta \end{pmatrix}.$$
Notemos que $S_\theta$ es simétrica y ortogonal, por lo tanto $S_\theta^2=I_2$ y que la transformación correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (cos\theta x+\sin\theta y, \sin \theta x-\cos\theta y)
\end{align*}
es una simetría ortogonal. Para encontrar la recta con respecto a la cual $T$ es una simetría ortogonal, bastará con resolver el sistema $AX=X$. El sistema es equivalente a
$$\sin\left(\frac{\theta}{2}\right)\cdot x=\cos \left(\frac{\theta}{2}\right)\cdot y$$ y por lo tanto la recta $AX=X$ está generada por el vector
$$e_1=\left( \cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \right)$$ y la correspondiente recta ortogonal está generada por el vector
$$e_2=\left(-\sin\left(\frac{\theta}{2}\right),\cos\left(\frac{\theta}{2}\right)\right),$$
y los vectores $e_1,e_2$ forman una base ortonormal de $\mathbb{R}^2$ para la cual la matriz asociada a $T$ es
$$\begin{pmatrix}
1 & 0\\
0 & -1\end{pmatrix}$$
y además $$S_{\theta_1}\cdot S_{\theta_2}=R_{\theta_1-\theta_2}$$
lo que significa que la composición de dos simetrías ortogonales es una rotación. Similarmente tenemos que
$$S_{\theta_1}R_{\theta_2}\hspace{3mm} R_{\theta_1}S_{\theta_2}=S_{\theta_1+\theta_2},$$
por lo que la composición de una rotación y una simetría ortogonal es una simetría ortogonal.

Gracias a todo lo anterior, estamos listos para enunciar el siguiente teorema:

Teorema. Sea $A\in M_2(\mathbb{R})$ una matriz ortogonal.

  1. Si $\det A=1$, entonces
    $$A=R_\theta=\begin{pmatrix}
    \cos\theta & -\sin\theta\\
    \sin\theta &\cos\theta\end{pmatrix}$$
    para único número real $\theta\in(-\pi,\pi]$, y la correspondiente transformación lineal $T$ sobre $\mathbb{R}^2$ es una rotación de ángulo $\theta$. Cualesquiera dos matrices de esa forma conmutan y la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ es $R_\theta$.
  2. Si $\det A=-1$, entonces
    $$A=S_\theta=\begin{pmatrix}
    \cos\theta & \sin\theta\\
    \sin\theta &-\cos\theta\end{pmatrix}$$
    para un único número real $\theta\in(-\pi,\pi]$. La matriz $A$ es simétrica y la correspondiente transformación lineal sobre $\mathbb{R}^2$ es la simetría ortogonal con respecto a la recta generada por el vector $\left(\cos\left(\frac{\theta}{2}\right),\sin\left(\frac{\theta}{2}\right)\right)$.

El grupo de transformaciones ortogonales en el espacio

En la entrada anterior estudiamos el grupo de transformaciones ortogonales en dimensión $2$.

Ahora estudiaremos el caso $\dim V=3$, para esto haremos uso del teorema de clasificación de la entrada anterior, así como el estudio que hicimos para el caso de dimensión $2$. Siguendo la misma idea que desarrollamos en el teorema de clasificiación, consideramos enteros $p,q,k$ tales que $$p+q+2k=3,$$ por lo que necesariamente $p\neq 0$ o $q\neq 0$. También podemos probar esto de manera máss directa, observando que el polinomio caracterísitico de $T$ es de grado $3$, por lo que debe tener una raíz real, y por ende un eigenvalor real, el cual será igual a $1$ o $-1$, pues tiene módulo $1$.

Intercambiando $T$ con $-T$ se tiene que simplemente se intercambian los papeles de $p$ y $q$. Supongamos que $p\geq 1$, esto significa que $T$ tiene al menos un punto fijo $v$. Entonces $T$ fija la recta $D=span (v)$ e induce una isometría sobre el plano ortogonal a $D$. Esta isometría se puede clasificar con el último teorema de la entrada anterior. Por lor tanto, hemos reducido el caso de dimensión $3$ al caso de dimensión $2$. Podemos ser más explicitos si consideramos los siguientes casos.

  • $id\in\{T,-T\}$.
  • Tenemos que $\dim \ker (T-id)=2$. Si $e_2,e_1$ es una base ortonormal del plano $\ker (T-id)=2$ y completamos a una base ortonormal de $V$ $\{e_1,e_2,e_3\}$, entonces $T$ fija puntualmente al subespacio generado por $e_2,e_3$ y deja invariante a la recta generada por $e_1$. Por lo tanto la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    t & 0 & 0\\
    0 & 1 & 0\\
    0 & 0 & 1
    \end{pmatrix}$$
    para algun número real $t$, el cual forzosamente es $-1$, pues sabemos que debe ser $1$ o $-1$, pero si fuera $1$, entonces $T$ sería la indentidad. Por lo tanto $T$ es una simetría ortogonal con respecto al plano $\ker (T-id)$. Además, $\det T=-1$, por lo que $T$ es una isometría negativa.
  • Tenemos que $\dim\ker (T-id)$ es la recta generado por algún vector $e_1$ de norma $1$. Completamos $e_1$ a una base ortonormal $\{e_1,e_2,e_3\}$ . Entonces la isometría $T$ inducida sobre es subespacio generado por $\{e_2,e_3\}$ no tiene puntos fijos, ya que todos los puntos fijos de $T$ están sobre $span(e_1)$, por lo tanto $T$ es una rotación de ángulo $\theta$, para un único $\theta\in(-\pi,\pi]$. Además, la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}.$$
    Diremos que $T$ es la rotación de ángulo $\theta$ alrededor del eje $\mathbb{R}e_1$. Notemos que $\det T=1$, por lo que $T$ es una isometría positiva. Además, el ángulo $\theta$ satisface $$1+2\cos\theta=Tr(A),$$,aunque, al ser el coseno una función par, $-\theta$ también satisface la ecuación anterior. Para encontrar a $\theta$ necesitamos hallar a $\sin\theta$. Para ello verificamos que
    $$\det_{(e_1,e_2,e_3)}(e_1,e_2,T(e_2))=\begin{vmatrix}
    1 & 0 & 0\\
    0 & 1 & \cos\theta\\
    0 & 0 & \sin\theta
    \end{vmatrix}=\sin\theta.$$
  • Supongamos que $\ker(T-id)=\{0\}$. Una posibilidad es que $T=-id$. Supongamos que $T\neq id $. Como $T$ o $-T$ tienen un punto fijo y $T$ tiene puntos fijos, entonces necesariamente $-T$ tiene un punto fijo. Sea $e_1$ un vector de norma $1$ fijado por $-T$, por lo tanto $T(e_1)=-e_1$. Completando $e_1$ a una base ortonormal de $V$ dando un argumento similar al del caso anterior, obtenemos que la matriz asociada a $T$ con respecto a la base ortonormal es
    $$\begin{pmatrix}1- & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}=R_\theta \cdot \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}$$
    para algún $\theta \in (-\pi,\pi]$. Por lo tanto $T$ es la composición de una rotación de ángulo $\theta$ y una simetría ortogonal con respecto al eje de rotación. También notemos que $\det T=-1$, por lo que $T$ es una isometría negativa.
    También podemos mirarlo desde el punto de vista de las matrices. Consideremos una matriz ortogonal $A\in M_3(\mathbb{R})$ y la transformación lineal asociada
    \begin{align*}
    T:V&\to V\\
    X&\mapsto AX
    \end{align*}, donde $V=\mathbb{R}^3$ está equipado con el producto interior usual. Excluiremos los casos triviales $A=\pm I_3$. Para estudiar la isometría $T$, primero revisamos si esta es positiva o negativa, calculando el determinante.
    Supongamos que $T$ es positiva. Ahora veremos si $A$ es simétrica. Para ellos consideremos los siguentes dos casos:
  • Si $A$ es simétrica, entonces $A^2=I_3$ (pues $A$ es ortogonal y simétrica) y por lo tanto $T$ es una simetría ortogonal. Afirmamos que $T$ es una simetría ortogonal con respecto a una recta. En efecto, como $A^2=I_3$, todos los eigenvalores de $A$ son $1$ o $-1$. Más aún, los eigenvalores no son iguales, ya que estamos excluendo los casos $A=\pm I_3$, y el producto de ellos es 1, pues $\det A=1$. Por lo tanto, un eigenvalor es igual a $1$ y los otros dos son iguales a $-1$. Se sigue que la matriz asociada a $T$ con respecto a la base ortonormal $\{e_1,e_2,e_3\}$ es
    $$\begin{pmatrix}
    1 & 0 & 0\\
    0 & -1 & 0\\
    0 & 0 & -1
    \end{pmatrix}$$ y $T$ es la simetría ortogonal con respecto a la recta generado por $e_1$. Para encontrar esta recta de manera explícita, necesitamos calcular $\ker(A-I_3)$ resolviendo el sistema $AX=X$.
  • Si $A$ no es simétrica, entonces $A$ es una rotación de ángulo $\theta$ ara un único $\theta\in(-\pi,\pi]$. Podemos encontrar el eje de rotación resolviendo el sistema $AX=X$: si $Ae_1=e_1$ para algún vector $e_1$, entonces el eje de rotación está generado por $e_1$. Para encontrar el ángulo de rotación usamos la siguiente ecuación
    \begin{equation}\label{angulo}
    1+2\cos\theta=Tr(A),
    \end{equation}
    la cual determina a $\theta$ en valor absoluto (pues $\theta$ y $-\theta$ son soluciones por la paridad del coseno). Ahora escogemos un vector $e_2$ ortogonal a $e_1$ y de norma $1$ y definimos $e_3=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1)$, donde $e_1=(u_1,u_2,u_3)$ y $e_2=(v_1,v_2,v_3)$. Entonces $e_1,e_2,e_3$ es una base ortonormal positiva de $\mathbb{R}^3$ y $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$ nos da el valor de $\sin\theta$, con lo cual podremos determinar a $\theta$ de manera única. En la práctica bastará con encontrar el signo de $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$, ya que esto nos dará el signo de $\sin\theta$, lo cual determina $\theta$ de manera única gracias a la ecuación \eqref{angulo}.

Finalmente, si se supone que $T$ es negativa, entoces $-T$ es positiva y por lo tanto todo el estudio que acabamos de hacer se puede aplicar a $-T$.

Para finalizar, veremos un ejemplo concreto.

Ejemplo. Demuestra que a matriz
$$A=\frac{1}{3}\begin{pmatrix}
2 & 2 & 1\\
-2 & 1 & 2\\
1 & -2 & 2
\end{pmatrix}$$ es ortogonal y estudia su isometría correspondiente en $\mathbb{R}^3$.

Solución. El cálculo para verificar que $A$ es ortogonal es muy sencillo y se deja como tarea moral. Luego vemos que $\det A=1$, por lo que la isometría asociada es positiva. Como $A$ no es simétrica, se sigue que $T$ es una rotación. Para encontrar el eje necesitamos resolver el sistema $AX=X$, el cual es equivalente a
\begin{align*}
\begin{cases}
2x+2y+z &= 3x\\
-2x+y+2z &=3y\\
x-2y+2z &=3z
\end{cases}
\end{align*} y entonces $x=z$ y $y=0$. Por lo tanto, el eje de rotación está generado por el vector $(1,0,1)$. Normalizandolo obtenemos el vector
$$e_1=\frac{1}{\sqrt{2}}(1,0,1),$$ que genera al eje de $T$.
sea $\theta$ el ángulo de rotación, tal que
$$1+2\cos\theta=Tr(A)=\frac{5}{3},$$ y por lo tanto
$$cos\theta=\frac{1}{3}.$$
Falta determinar el signo de $\sin \theta$. Para ello, escogemos un vector ortogonal a $e_1$, digamos $$e_2=(0,1,0)$$ y calculamos el signo de
$$\det (e_1,e_2,Ae_2)=\frac{1}{3\sqrt{2}}\begin{vmatrix}
1 & 0 & 2\\
0 & 1 & 0\\
1 & 0 & -2
\end{vmatrix}=-\frac{4}{3\sqrt{2}}<0,$$ por lo que $\sin\theta<0$ y finalmente $\theta=-\arccos\frac{1}{3}$.

$\square$

Más adelante…

Tarea moral

  1. Verifica que la matriz $A$ del ejemplo anterior es ortogonal.
  2. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto a la recta generada por el vector $(1,2,3)$.
  3. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto al plano generad por los vectores $(1,1,1)$ y $(0,1,0)$.
  4. Sea $V=\mathbb{R}^3$.¿En qué casos una rotación sobre $V$ conmuta con una simetríai ortogonal?

Entradas relacionadas

Probabilidad I-Videos: Teorema de probabilidad total

Por Aurora Martínez Rivas

Introducción

Anteriormente vimos la definición de probabilidad condicional, de dicha definición podemos derivar una fórmula muy útil para determinar probabilidades que llamaremos el Teorema de probabilidad total.

Teorema de probabilidad total

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Si $A_1,A_2,\ldots,A_n\ $ es una partición de $\Omega$ con $P\left(A_i\right)>0$ para $i=1, 2, …, n$, entonces para eventos $C$ y $D$ con $P\left(CA_i\right)>0$ para $i=1, 2, …, n$ demuestra que $P\left(C\middle|\ D\right)=\displaystyle\sum_{i=1}^{n}{P\left(A\middle|\ CA_i\right)P(A_i|C})$.
  • Un mago tiene dos monedas: una es justa; y la otra tiene una probabilidad de $\frac{3}{4}$ de dar como resultado Cara. Toma una moneda al azar y la lanza obteniendo una cara en el primer lanzamiento, determina la probabilidad de que la moneda sea justa.
  • Usa los dos ejercicios anteriores para encontrar la probabilidad de obtener una Cara en el segundo lanzamiento dado que hay una Cara en el primer lanzamiento.
  • En una urna hay $m$ canicas rojas y $n$ canicas azules. Se seleccionan al azar a $r$ canicas, una por una y sin reemplazo. Suponga que $r\le\ m,\ n$. Encuentra la probabilidad de que la última canica escogida sea roja.
  • Una persona lanza un dado equilibrado una vez, obteniendo el resultado $k$. Después lanza nuevamente el dado tantas veces como indicó el resultado del primer lanzamiento sumando los resultados de estos últimos lanzamientos y obteniendo un total de $m$. Calcule la probabilidad de que los números $k$ y $m$ coincidan.

Más adelante…

Existen problemas para los que no es evidente la forma de encontrar la probabilidad de cierto evento, pero condicionando adecuadamente, en ocasiones se puede encontrar de manera más fácil la probabilidad buscada. Siguiendo con esta línea de ideas en el siguiente video hablaremos sobre el Teorema de Bayes.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Introducción a las bifurcaciones

Por Eduardo Vera Rosales

Introducción

En la entrada anterior demostramos el teorema de existencia y unicidad de Picard. Antes de finalizar con el estudio a las ecuaciones diferenciales de primer orden vamos a regresar un momento a la teoría cualitativa de ecuaciones de primer orden, en específico, al estudio de soluciones de ecuaciones autónomas de la forma $$\frac{dy}{dt}=f(y).$$

En muchas ocasiones las ecuaciones diferenciales involucran constantes. Si hacemos variar esta constante obtendremos una familia de ecuaciones diferenciales que dependen de este nuevo parámetro que llamaremos $\lambda$. A esta familia de ecuaciones la denotaremos por $$\frac{dy}{dt}=f_{\lambda}(y).$$

Estudiaremos entonces a esta familia de ecuaciones, y el cambio cualitativo de las soluciones conforme varía el parámetro. Nos interesará conocer el comportamiento de las soluciones de equilibrio, y los cambios que estas tienen dependiendo del valor de $\lambda$. En particular, estudiaremos el cambio en el número de soluciones de equilibrio bajo pequeñas perturbaciones del parámetro $\lambda$. A este tipo de problemas los llamaremos bifurcaciones. Definiremos el concepto de valor de bifurcación, y mostraremos cómo encontrar este valor, tanto de manera gráfica mediante un diagrama, como de manera analítica.

Bifurcaciones y valor de bifurcación

En este video damos una pequeña introducción al concepto de bifurcación, definimos la familia uniparamétrica de ecuaciones autónomas y el valor de bifurcación, todo mediante un ejemplo sencillo.

Diagrama de bifurcaciones

Mostramos un diagrama geométrico para hallar los valores de bifurcación de una familia uniparamétrica de ecuaciones autónomas, y para conocer el comportamiento de las soluciones a las ecuaciones de la familia, sin dibujarlas explícitamente. A este diagrama lo llamamos diagrama de bifurcaciones.

Determinación de los valores de bifurcación

En el último video de esta entrada hallamos los valores bifurcación mediante un análisis a las gráficas de las funciones $f_{\lambda}(y)$ y con ayuda también de la derivada de dichas funciones en determinados puntos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que para toda $\lambda <0$ la ecuación $$\frac{dy}{dt}=y^{2}+\lambda$$ tiene dos soluciones de equilibrio, y para toda $\lambda>0$, la ecuación $$\frac{dy}{dt}=y^{2}+\lambda$$ no tiene soluciones de equilibrio.
  • Prueba que $\lambda=0$ es el único valor de bifurcación para la familia $$\frac{dy}{dt}=y^{2}+\lambda.$$
  • Muestra, según la definición, que $\lambda=-1$ es valor de bifurcación para la familia de ecuaciones $$\frac{dy}{dt}=\sin{y}+\lambda.$$
Bifurcaciones
Gráficas de la familia $sen (y)+\lambda$. Elaboración propia.
  • Considera la familia uniparamétrica $$\frac{dy}{dt}=\lambda y-y^{3}.$$ Encuentra las soluciones de equilibrio para todos los valores de $\lambda$, y esboza el diagrama de bifurcaciones.
  • Encuentra los valores de bifurcación para la familia uniparamétrica $$\frac{dy}{dt}=y^{4}+\lambda y^{2}$$ con ayuda de la derivada y las gráficas de $f_{\lambda}(y)$. Dibuja el diagrama de bifurcaciones.
Bifurcaciones
Gráficas de la familia $y^{4}+\lambda y^{2}$. Elaboración propia.

Para encontrar los valores de bifurcación, buscamos valores de $\lambda_{0}$ y $y_{0}$ tales que $$f_{\lambda_{0}}(y_{0})=0 ; \,\,\,\,\,\,\,\, \frac{df_{\lambda_{0}}}{dy}(y_{0})=0. $$ Sin embargo existen casos donde esto último ocurre pero $\lambda_{0}$ no es un valor de bifurcación.

Prueba que las siguientes familias de ecuaciones no tienen valores de bifurcación y dibuja algunas gráficas de estas familias:

  • $\frac{dy}{dt}=y^{3}+\lambda$
  • $\frac{dy}{dt}=(y+\lambda)^{2}$

Así, en los dos casos, ocurre que $$f_{0}(0)=0 ; \,\,\,\,\,\,\,\, \frac{df_{0}}{dy}(0)=0$$ pero $0$ no es valor de bifurcación.

Más adelante

Con este tema damos por terminado la primera unidad del curso. En la siguiente entrada comenzamos la segunda unidad que tratará de las ecuaciones diferenciales de segundo orden.

En particular, en la siguiente entrada comenzamos con el análisis a las ecuaciones lineales homogéneas de segundo orden con coeficientes constantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»