Archivo de la etiqueta: minkowski

Álgebra Lineal II: Espacios euclideanos y espacios hermitianos

Por Diego Ligani Rodríguez Trejo

Introducción

Hasta ahora hemos hablado de las formas bilineales, las formas bilineales simétricas, las formas cuadráticas y todos sus análogos complejos. Vimos también cómo podemos representar mediante matrices a estas formas.

Una de las aplicaciones más últiles de estos conceptos es que nos permitirán hablar de espacios vectoriales «con geometría». Este concepto ya lo exploramos en el primer curso de Álgebra Lineal, cuando hablamos de producto interior y de espacios euclideanos.

Por un lado, en esta entrada haremos un breve recordatorio de estos temas. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

Un acuerdo sobre el mundo real y complejo

Como hemos visto anteriormente, los resultados relacionados con formas bilineales tienen frecuentemente sus análogos en el mundo complejo. A veces hay algunas diferencias importantes, pero la mayoría de los casos son mínimas. Por esta razón, a partir de ahora dejaremos varias de las demostraciones de los casos complejos como ejercicios. En caso de ser necesario, haremos el énfasis pertinente en las diferencias entre el caso real y el complejo.

Formas positivas

Para poder «tener geometría» en un espacio vectorial, es necesario que tenga una forma bilineal un poco más especial que las que hemos estudiado. En el caso real requerimos lo siguiente.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Tomemos una forma bilineal $b: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

En el caso complejo hay que ser un poco más cuidadosos. Si $\varphi$ es una forma sesquilineal, podría suceder que $\varphi(x,x)$ no sea un número real y entonces no pueda establecerse una desigualdad entre $\varphi(x,x)$ y $0$. Sin embargo, bajo la hipótesis adicional de que $\varphi$ sea hermitiana, vimos que $\varphi(x,x)$ sí es real.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$. Tomemos una forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $\varphi$ es positiva si $\varphi(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $\varphi$ es positiva definida si $\varphi(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

Adicionalmente, diremos que una forma cuadrática de un espacio vectorial sobre $\mathbb{R}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida). Y diremos que una forma cuadrática hermitiana de un espacio vectorial sobre $\mathbb{C}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida).

Desigualdades de Cauchy-Schwarz real y compleja

Una de las consecuencias de tener formas positivas es que se cumple una desigualdad entre las evaluaciones de una forma cuadrática (o cuadrática hermitiana) y su forma polar. A continuación enunciamos la versión real que demostramos en el primer curso.

Teorema (desigualdad de Cauchy-Schwarz real). Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática y $b$ su forma polar.

  • Si $b$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
  • Más aún, si $b$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

La versión compleja es casi análoga, pero hay que tener el cuidado de usar la norma al evaluar la forma sesquilineal para obtener un número real que podamos comparar con otro.

Teorema (desigualdad de Cauchy-Schwarz compleja). Sea $\Phi: V \rightarrow \mathbb{R}$ una forma cuadrática hermitiana y $\varphi$ su forma polar.

  • Si $\varphi$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} |\varphi(x,y)|^2 \leq \Phi(x)\Phi(y). \end{align*}
  • Más aún, si $\varphi$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

$\square$

La demostración es muy parecida a la del caso real, y queda como ejercicio.

Espacios euclideanos y hermitianos

La sección anterior da la pista de que hay sutiles diferencias entre tener formas positivas y positivas definidas. La noción de que una forma sea positiva definida es más restrictiva, y por ello deberíamos esperar que un espacio vectorial (real o complejo) con una forma positiva definida tenga más propiedades.

Definición. Un producto interior para un espacio vectorial $V$ sobre los reales es una forma bilineal, simétrica y positiva definida.

Definición. Un producto interior hermitiano para un espacio vectorial $V$ sobre los complejos es una forma sesquilineal, hermitiana y positiva definida.

Típicamente se usa una notación especial para los productos interiores (o interiores hermitianos). En vez de referirnos a ellos con expresiones del estilo $b(x,y)$ (o $\varphi(x,y)$), más bien usamos expresiones del estilo $\langle x, y \rangle$. Cuando no queremos poner los argumentos, usualmente dejamos sólo unos puntos, así: $\langle \cdot, \cdot \rangle$.

Si el espacio vectorial además tiene dimensión finita, entonces estamos en un tipo de espacios muy especiales, en los que podremos probar varios resultados. Estos espacios son tan especiales que tienen su propio nombre.

Definición. Un espacio euclideano es un espacio vectorial sobre $\mathbb{R}$, de dimensión finita, y con un producto interior $\langle \cdot, \cdot \rangle$.

Definición. Un espacio hermitiano es un espacio vectorial sobre $\mathbb{C}$, de dimensión finita, y con un producto interior hermitiano $\langle \cdot, \cdot \rangle$.

Ejemplo. Tomemos $\mathbb{C}^n$ y la función $\langle \cdot, \cdot \rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ dada por $$ \langle x, y\rangle = \sum_{i=1}^n \overline{x_i}y_i.$$

Se puede verificar que $\langle \cdot, \cdot \rangle$ es una forma sesquilineal, hermitiana y positiva definida. De este modo, $\mathbb{C}^n$ con este producto interior hermitiano es un espacio hermitiano.

$\square$

Normas, distancias y ángulos

Si tenemos un espacio vectorial con producto interior (o producto interior hermitiano), entonces ahora sí podemos introducir varias nociones geométricas: la de norma, la de distancia y la de ángulos. Además, estas nociones tendrán las propiedades geométricas que esperamos.

En las siguientes definiciones tenemos que $V$ es un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$.

Definición. Para $x\in V$, definimos la norma de $x$ como $$\norm{x}:=\sqrt{\langle x,x \rangle}.$$

Definición. Para $x, y\in V$, definimos la distancia de $x$ a $y$ como $$d(x,y):=\norm{x-y}.$$

Definición. Para $x, y\in V$, definimos el ángulo entre $x$ y $y$ como $$\text{ang}(x,y)=\cos^{-1}\left(\frac{|\langle x,y\rangle|}{\norm{x}\norm{y}}\right).$$

En esta última definición, las barras indican el valor absoluto en el caso real y la norma en el caso complejo. Observa que implícitamente estamos usando la desigualdad de Cauchy-Schwarz para asegurarnos de que el argumento de $\cos^{-1}$ en efecto es un número entre $0$ y $1$.

A continuación tenemos dos proposiciones clave que nos dicen que la norma y la distancia que definimos sí tienen todas las propiedades «que deben tener» una norma y una distancia.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entonces, la función norma $\norm{\cdot}:V\to \mathbb{R}$ cumple lo siguiente:

  • Para todo $x\in V$, se tiene que $\norm{x}$ es un número real, con $\norm{x}\geq 0$ y $\norm{x}=0$ si y sólo si $x=0$.
  • Para todo $x\in V$ y $c$ en $\mathbb{R}$ (o $\mathbb{C}$), se tiene que $\norm{cx}=|c|\norm{x}$.
  • Desigualdad del triángulo. Para cualesquiera $x,y \in V$, se tiene que $$\norm{x+y}\leq \norm{x}+\norm{y}.$$

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entones, la función distancia $d:V\times V \to \mathbb{R}$ cumple lo siguiente:

  • Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)$ es un número real, con $d(x,y)\geq 0$ y $d(x,y)=0$ si y sólo si $x=y$.
  • Simetría. Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)=d(y,x)$.
  • Desigualdad del triángulo. Para cualesquiera $x,y,z \in V$, se tiene que $$d(x,z)\leq d(x,y)+d(y,z).$$

La última proposición puede también resumirse como que $V$ con la función $d$ es un espacio métrico. Una métrica en un conjunto permite establecer una topología. Así, en un espacio con producto interior (o producto interior hermitiano), es posible establecer nociones de continuidad, convergencia, cálculo, etc. Es interesante saber que se pueden tomar estos caminos, pero queda fuera de los alcances de nuestro curso.

Más adelante…

Con esto concluimos nuestro pequeño repaso de producto interior y espacios euclideanos. Así mismo, con esto establecemos las bases de los productos interiores hermitianos y de los espacios hermitianos. Como puedes ver, ambas nociones están muy relacionadas entre sí. Los conceptos de norma y distancia dan pie a un sin fin de teoría muy interesante. Es útil poder llegar a ellos desde un enfoque puramente algebraico, y nos muestra el poder que tiene este campo de estudio.

¿Cómo se ven las nociones de positividad y positividad definida en términos de matrices? Esto es algo que estudiaremos en la siguiente entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$ y definamos $q: V \rightarrow \mathbb{R}$ como sigue:
    \begin{align*} q(x,y,z)= x^2+y^2+z^2-xy-yz-xz. \end{align*}
    ¿Es $q$ positiva? ¿Es positiva definida?
  2. Sea $n$ un entero positivo y $V$ el espacio de polinomios con coeficientes reales cuyos grados no excedan $n$. Prueba que
    \begin{align*} \langle P, Q\rangle :=\sum_{i=0}^nP(i)Q(i) \end{align*}
    es un producto interno en $V$. ¿Cómo construirías un producto interno hermitiano análogo en el caso de $W$ el espacio de polinomios con coeficientes complejos cuyos grados no excedan $n$?
  3. Revisa la demostración de la desigualdad de Cauchy-Schwarz en los espacios reales. Usa esto para dar una demostración para la versión análoga compleja. Recuerda también demostrar cuándo se da la igualdad si el producto interno hermitiano es positivo definido.
  4. Con la misma notación del ejercicio anterior, prueba la desigualdad de Minkowski, es decir, para todos $x,y \in V$
    \begin{align*} \sqrt{\Phi(x+y)} \leq \sqrt{\Phi(x)} + \sqrt{\Phi(y)}. \end{align*}
  5. Revisa la demostración de las propiedades de la norma y de la distancia para el caso real. Tomando esto como base, realiza la demostración para el caso complejo.

Entradas relacionadas

Álgebra Lineal I: Problemas de desigualdades vectoriales

Por Ayax Calderón

Introducción

En esta entrada practicaremos las dos desigualdades vectoriales que hemos visto anteriormente: la desigualdad de Cauchy – Schwarz y con la desigualdad de Minkowski. Veremos que de ellas se obtiene información valiosa sobre los espacios con producto interior.

Como ya se menciono en otras entradas del blog, estos espacios son muy importantes más allá del álgebra lineal, pues también aparecen en otros áreas como el análisis matemático, variable compleja, probabilidad, etc. Así mismo, los espacios vectoriales con producto interior tienen muchas aplicaciones en el mundo real. Por esta razón es muy importante aprender a detectar cuándo podemos usar desigualdades vectoriales.

Problemas resueltos

Comencemos con algunos problemas de desigualdades vectoriales que usan la desigualdad de Cauchy-Schwarz.

Problema. Demuestra que si $f:[a,b]\longrightarrow \mathbb{R}$ es una función continua, entonces

$$\left(\int_a ^b f(t)dt\right)^2 \leq (b-a)\int_a ^b f(t)^2 dt.$$

Demostración. Sea $V=\mathcal{C}([a,b],\mathbb{R})$ el espacio de las funciones continuas de $[a,b]$ en los reales.

Veamos que $\langle \cdot , \cdot \rangle: V\times V \longrightarrow \mathbb{R}$ definido por $$\langle f,g \rangle = \int_a^b f(t)g(t) \, dt$$ es una forma bilineal simétrica.

Sea $f\in V$ fija. Veamos que $g\mapsto \langle f,g \rangle$ es lineal.

Sean $g,h \in V$ y $k\in F$, entonces

\begin{align*}
\langle f,g+hk \rangle &= \int_a ^b f(t)(g(t)+kh(t))dt\\
&=\int_a ^b (f(t)g(t)+kf(t)h(t)) dt\\
&=\int_a ^b f(t)g(t)dt +k \int_a ^b f(t)h(t)dt\\
&=\langle f,g \rangle + k \langle f,h \rangle .
\end{align*}

Análogamente se ve que si $g\in V$ fija, entonces $f\mapsto \langle f,g \rangle$ es lineal.

Luego,
\begin{align*}
\langle f,g \rangle &= \int_a ^b f(t)g(t)\, dt\\
&= \int_a ^b g(t)f(t)\, dt\\
&= \langle g,f \rangle.
\end{align*}
Por lo tanto $\langle \cdot, \cdot \rangle$ es una forma bilineal simétrica.

Ahora observemos que $\langle \cdot ,\cdot \rangle$ es positiva.
$$\langle f,f \rangle = \int_a ^b f(t)^2 dt \geq 0$$ pues $f^2 (t)\geq 0$. Aunque no lo necesitaremos, mostremos además que que $\langle \cdot, \cdot \rangle$ es positiva definida. Si $f$ tiene algún valor $c$ en el interior de $[a,b]$ en la que $f(c)\neq 0$, como es continua, hay un $\epsilon>0$ tal que en todo el intervalo $(c-\epsilon,c+\epsilon)$ se cumple que $|f|$ es mayor que $|f(c)|/2$, de modo que
\begin{align*}
\langle f, f \rangle &= \int_a^b f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon} f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon}\frac{f(c)^2}{4} \, dt\\
&=\frac{\epsilon f(c)^2}{2}>0.
\end{align*}

Así, para que $\langle f, f \rangle$ sea $0$, es necesario que $f$ sea $0$ en todo el intervalo $(a,b)$ y por continuidad, que sea cero en todo $[a,b]$.

Sea $q$ la forma cuadrática asociada a $\langle \cdot, \cdot \rangle$.
En vista de todo lo anterior, podemos aplicar la desigualdad de Cauchy -Schwarz tomando $g$ la función constante $1$, es decir, tal que $g(x)=1$ para todo $x$ en $[a,b]$, la cual claramente es continua.

Entonces, $$\langle f,g \rangle &\leq q(f)q(g),$$ que substituyendo las definiciones es
\begin{align*}
\left( \int_a ^b f(t)\, dt\right)^2 &\leq \left(\int_a ^b f(t)^2 \, dt\right)\left(\int_a ^b 1^2\, dt\right)\\
&= (b-a)\int_a ^b f(t)^2 \, dt
\end{align*}

$\square$

Problema. a) Sean $x_1, \dots, x_n \in \mathbb{R}$. Demuestra que
$$ (x_1^2+\dots +x_n^2)\left(\frac{1}{x_1^2} + \dots + \frac{1}{x_n^2}\right) \geq n^2.$$
b) Demuestra que si $f:[a,b]\longrightarrow (0,\infty)$ es una función continua, entonces $$\left ( \int_a^b f(t)dt \right) \left (\int_a^b \frac{1}{f(t)}dt \right) \geq (b-a)^2$$

Demostración. a) Considera $\mathbb{R}^n$ con el producto interior usual. Sean $a,b\in\mathbb{R}^n$ dados por
\begin{align*}
a&=(x_1,\dots,x_n)\\
b&=\left( \frac{1}{x_1},\dots, \frac{1}{x_n}\right ).
\end{align*}

La desigualdad de Cauchy-Schwarz afirma que $\lvert \langle a,b \rangle \rvert \leq \norm{a} \norm{b}$. Se tiene que

\begin{align*}
\langle a,b \rangle &= (x_1,\ldots,x_n)\cdot \left(\frac{1}{x_1},\ldots,\frac{1}{x_n}\right)\\
&=1+1+\ldots+1\\
&=n,
\end{align*}

de modo que
\begin{align*}
|n|&\leq \norm{a} \norm{b}\\
&=\sqrt{(x_1^2+\dots +x_n^2)}\sqrt{\left(\frac{1}{x_1^2}+\dots + \frac{1}{x_n^2}\right )}.
\end{align*}

Si elevamos al cuadrado ambos extremos de esta igualdad, obtenemos la desigualdad deseada.

$\square$

b) En el problema 1 de esta entrada vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t) dt$$ es un producto interior para el espacio de funciones continuas en $[a,b]$, y el espacio de este problema es un subespacio del de funciones continuas, así que también define un producto interior aquí.

Para la función $f$ dada, definamos $\phi (t)=\sqrt{f(t)}$ y $\psi (t)=\frac{1}{\sqrt{f(t)}}$.
Notemos que $\phi$ y $\psi$ son continuas, y además como $\forall t\in [a,b]$ se tiene $f(t)\in(0,\infty)$, también tenemos que $\psi (t), \phi (t)\in (0,\infty)$.

Aplicando la desigualdad de Cauchy-Schwarz $$\langle \phi, \psi \rangle^2 \leq \langle \phi , \phi \rangle \langle \psi , \psi \rangle.$$

Entonces
$$ \left(\int_a^b \phi (t) \psi (t) dt\right)^2 \leq \left(\int_a^b \phi(t)^2 dt \right)\left( \int_a^b\psi (t)^2 dt \right).$$

Luego, substituyendo los valores de $\phi$ y $\psi$:
$$ \left( \int_a^b \sqrt{f(t)}\cdot \frac{1}{\sqrt{f(t)}}dt\right )^2 \leq \left(\int_a^b f(t) dt \right)\left ( \int_a^b\frac{1}{f(t)}dt \right).$$

Finalmente, haciendo la integral a la izquierda:
$$(b-a)^2\leq \left(\int_a^b f(t) dt \right)\left (\int_a^b \frac{1}{f(t)}dt \right).$$

$\square$

Hay algunos problemas de desigualdades en los reales que necesitan que usemos herramientas de desigualdades vectoriales.

Problema. Sean $x,y,z$ números mayores que 1, tales que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}=2$. Muestre que
$$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$


Demostración. Considera $\mathbb{R}^3$ con el producto interior usual y $u,v\in \mathbb{R}^3$ con
\begin{align*}
u&=\left(\sqrt{\frac{x-1}{x}}, \sqrt{\frac{y-1}{y}},\sqrt{\frac{z-1}{z}}\right),\\
v&=(\sqrt{x},\sqrt{y},\sqrt{z}).
\end{align*}

Aplicamos la desigualdad de Cauchy-Schwarz a $u$ y $v$:

\begin{align*}
\sqrt{x-1} +& \sqrt{y-1} + \sqrt{z-1}\\
&\leq \sqrt{\frac{x-1}{x}+\frac{y-1}{y}+\frac{z-1}{z}}\sqrt{x+y+z}\\
&=\sqrt{(1+1+1)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\sqrt{x+y+z}\\
&=\sqrt{3-2} \cdot \sqrt{x+y+z}\\
&=\sqrt{x+y+z}.
\end{align*}

Por lo tanto, $$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

$\square$

Problema. Sea $f:[a,b]\longrightarrow (0,\infty)$ una función continua.
Demuestre que $$\int_a^b f(t)dt \leq \left ( (b-a)\int_a^b f(t)^2dt\right)^\frac{1}{2}.$$

Demostración. Ya vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t)dt$$ es un producto interior para el espacio de funciones continuas.
Considera $g$ la función constante $1$.

Aplicando la desigualdad de Minkowski se tiene que
$$\sqrt{\langle f+g,f+g \rangle}\leq \sqrt{\langle f,f \rangle} + \sqrt{\langle g,g \rangle}$$

Tenemos entonces que:

$$\left ( \int_a^b (f(t)+1)^2 dt \right)^\frac{1}{2} \leq \left( \int_a^b f(t)^2 dt \right)^\frac{1}{2} + \left ( \int_a^b dt\right )^\frac{1}{2}.$$

Desarrollando el cuadrado en el lado izquierdo,
$$\left (\int_a^b f(t)^2 dt +2\int_a^b f(t)dt +(b-a) \right )^\frac{1}{2} \leq \left(\int_a^bf(t)^2dt \right)^\frac{1}{2} + (b-a)^\frac{1}{2}$$

Luego, elevando ambos lados de la ecuación al cuadrado
$$\int_a^b f(t)^2 dt + 2\int_a^b f(t) dt +(b-a)$$
$$\leq \int_a^b f(t)^2 dt +2\sqrt{b-a}\left( \int_a^b f(t)^2 dt\right)^\frac{1}{2} +(b-a)$$

Finalmente, cancelando términos igual en ambos lados, obtenemos la desigualdad deseada

$$\int_a^b f(t) dt \leq \left((b-a) \int_a^b f(t)^2 dt\right)^\frac{1}{2}.$$

$\square$

Tarea Moral

  • Resuelve el problema 2.b usando la desigualdad de Minkowski.

Entradas relacionadas

Álgebra Lineal I: Ángulos, norma, distancia y desigualdad de Minkowski

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para hablar de varias nociones geométricas como ángulo, norma, distancia y de la desigualdad de Minkowski. Antes de hacer eso, hagamos un breve repaso de qué hemos hecho en estas últimas entradas.

Primero, hablamos de formas bilineales y de su formas cuadráticas asociadas. Segundo, vimos cómo a través de la identidad de polarización podemos asignar una única forma bilineal simétrica a una forma cuadrática. Finalmente, en la última entrada nos enfocamos en las formas bilineales simétricas que cumplían cierta condición de positividad.

En esa misma entrada definimos producto interior, que simplemente es una forma bilineal simétrica y positiva definida. También definimos la norma de un vector en un espacio con producto interior $\langle \cdot, \cdot \rangle$, que era $$\Vert x \Vert = \sqrt{\langle x, x \rangle}.$$

Finalmente, en la entrada anterior probamos la siguiente versión general de la desigualdad de Cauchy-Schwarz:

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se da la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Ángulos

Fijemos $V$ un espacio vectorial sobre los reales con producto interior. En la entrada anterior vimos que la desigualdad de Cauchy-Schwarz implica que para cualesquiera vectores $x$ y $y$ en $V$ tenemos que $$|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert.$$

Si $x$ y $y$ son vectores distintos de cero, podemos reescribir la desigualdad anterior como $$-1\leq \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}\leq 1.$$ Esto justifica la siguiente definición.

Definición. Sean $x$ y $y$ vectores no nulos. Definimos al ángulo entre $x$ y $y$ como el único ángulo $\theta$ en el intervalo $[0,\pi]$ tal que $$\cos \theta = \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}.$$

Observa que $\theta=\frac{\pi}{2}$ si y sólo si $\frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}=0$. Esto ocurre si y sólo si $\langle x, y \rangle=0$. Este caso es particularmente importante, y por ello recibe una definición especial.

Definición. Decimos que $x$ y $y$ son ortogonales si $\langle x, y \rangle=0$.

Para empezar, veamos un ejemplo sencillo de ortogonalidad.

Ejemplo. Tomemos $\mathbb{R}^5$ con el producto interior canónico, es decir, el producto punto. Los vectores $u=(1,0,-4,0,5)$ y $v=(0,3,0,-2,0)$ tienen producto punto $$\langle u, v \rangle=1\cdot 0 + 0\cdot 3 + (-4)\cdot 0 + 0 \cdot (-2) + 5 \cdot 0=0,$$ así que son ortogonales.

$\square$

Ahora, veamos un ejemplo un poco más elaborado, del cálculo de un ángulo en un espacio vectorial de funciones.

Ejemplo. Anteriormente vimos que $\mathcal{C}[0,1]$ tiene un producto interior $$\langle f, g \rangle=\int_0^1 f(x)g(x)\, dx.$$ Calculemos el ángulo entre $f(x)=x^2$ y $g(x)=x^3$ con este producto interior. Primero, calculamos $\Vert f \Vert$ y $\Vert g \Vert$ como sigue
\begin{align*}
\Vert f \Vert^2 &= \int_0^1 x^4 \,dx = \frac{1}{5}\\
\Vert g \Vert^2 &= \int_0^1 x^6 \,dx = \frac{1}{7},
\end{align*}

de donde $\Vert f \Vert = \frac{1}{\sqrt{5}}$ y $\Vert g \Vert = \frac{1}{\sqrt{7}}$.

Luego, calculamos
\begin{align*}
\langle f,g \rangle &=\int_0^1 f(x)g(x) \, dx\\
&=\int_0^1 x^5 \, dx\\
&=\frac{1}{6}.
\end{align*}

Como esperaríamos por la desigualdad de Cauchy-Schwarz, tenemos la siguiente desigualdad:
\begin{align*}
\langle f,g \rangle &= \frac{1}{6}\leq \frac{1}{\sqrt{35}}=\Vert f \Vert \Vert g \Vert.
\end{align*}

El ángulo entre $f$ y $g$ es entonces
\begin{align*}
\theta &= \arccos\left(\frac{\langle f, g \rangle}{\Vert f \Vert \cdot \Vert g \Vert}\right)\\
&=\arccos\left(\frac{1/6}{1/\sqrt{35}}\right)\\
&=\arccos\left(\frac{\sqrt{35}}{6}\right).
\end{align*}

$\square$

Desigualdad de Minkowski

Hay una forma un poco distinta de escribir la desigualdad de Cauchy-Schwarz. La enunciamos a continuación.

Teorema (desigualdad de Minkowski). Sean $x$ y $y$ vectores de un espacio vectorial $V$ con una forma cuadrática positiva $q$. Entonces $$\sqrt{q(x)}+\sqrt{q(y)}\geq \sqrt{q(x+y)}.$$

Demostración. Sea $b$ la forma polar de $q$. Recordemos que $$q(x+y)=q(x)+2b(x,y)+q(y).$$

Como $q$ es forma cuadrática positiva, la desigualdad que queremos mostrar es equivalente a la siguiente desigualdad obtenida de elevar ambos lados al cuadrado:

\begin{align*}
q(x)+2\sqrt{q(x)q(y)}+q(y)&\geq q(x+y)\\
&=q(x)+2b(x,y)+q(y).
\end{align*}

Cancelando $q(x)+q(y)$ de ambos lados y dividiendo entre $2$, obtenemos la desigualdad equivalente
\begin{align*}
\sqrt{q(x)q(y)}\geq b(x,y).
\end{align*}

Si $b(x,y)<0$, esta desigualdad es claramente cierta. Si $b(x,y)\geq 0$, esta desigualdad es equivalente a la obtenida de elevarla al cuadrado, es decir, $$q(x)q(y)\geq b(x,y)^2,$$ que es precisamente la desigualdad de Cauchy-Schwarz.

$\square$

De producto interior a norma

Estamos listos para mostrar algunas propiedades importantes de la noción de norma que definimos para espacios vectoriales reales con producto interior.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior con norma asociada $\Vert \cdot \Vert$. Se cumple que

  1. $\Vert v \Vert \geq 0$ para todo $v$ en $V$, con igualdad si y sólo si $v=0$.
  2. $\Vert cv \Vert =|c|\Vert v \Vert$ para todo $v$ en $V$ y real $c$.
  3. (Desigualdad del triángulo) $\Vert v \Vert + \Vert w \Vert \geq \Vert v+w \Vert$ para todo par de vectores $v$ y $w$ en $V$.

Demostración. Sea $b$ el producto interior de $V$. El punto 1 se sigue de que $b$ es positiva definida. El punto 2 se sigue de que $b$ es bilineal, pues $b(cv,cv)=c^2b(v,v)$, de modo que $$\Vert cv \Vert = \sqrt{c^2} \Vert v \Vert =|c| \Vert v \Vert.$$ El punto 3 es la desigualdad de Minkowski.

$\square$

En general, si tenemos un espacio vectorial $V$ sobre los reales y una función $\Vert \cdot \Vert:V \to \mathbb{R}$ que satisface los puntos 1 a 3 de la proposición anterior, decimos que $\Vert \cdot \Vert$ es una norma para $V$. Hay algunas normas que no se pueden obtener a través de un producto interior.

Ejemplo. Consideremos $V=M_n(\mathbb{R})$. El producto de Frobenius de las matrices $A$ y $B$ está dado por $$\langle A,B\rangle = \text{tr}(^tA B).$$ Se puede mostrar que el producto de Frobenius es un producto interior. La norma de Frobenius es la norma inducida por este producto, es decir, $$\Vert A \Vert = \sqrt{\text{tr}(^tAA)}.$$

Por la desigualdad de Minkowski, tenemos que para cualesquiera dos matrices $A$ y $B$ tenemos que $$\sqrt{\text{tr}(^t(A+B)(A+B))}\leq \sqrt{\text{tr}(^tAA)} + \sqrt{\text{tr}(^tBB)}.$$

En particular, si tomamos a la identidad $I$, tenemos que su norma de Frobenius es $\sqrt{n}$. Esto muestra la siguiente desigualdad, válida para cualquier matriz $A$ en $M_n(\mathbb{R})$:

$$\sqrt{\text{tr}((^tA+I)(A+I))}\leq \sqrt{\text{tr}(^tAA)}+ \sqrt{n}.$$

$\square$

De norma a distancia

Podemos pensar a la norma de un vector $v$ como qué tan lejos está del vector $0$. También nos gustaría poder hablar de qué tan lejos están cualesquiera dos vectores de un espacio vectorial con producto interior. Por esta razón, introducimos la siguiente definición.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior de norma $\Vert \cdot \Vert$. La distancia asociada a este producto interior es la función $d:V\times V\to \mathbb{R}$ tal que $d(x,y)=\Vert x-y\Vert.$ A $d(x,y)$ le llamamos la distancia entre $x$ y $y$.

El siguiente resultado se sigue de las propiedades de la norma de un producto interior. Su demostración queda como tarea moral.

Proposición. Si $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior de distancia $d$, entonces:

  1. $d(x,y)\geq 0$ para todos $x$ y $y$ en $V$ y es igual a $0$ si y sólo si $x=y$.
  2. $d(x,y)=d(y,x)$ para todos $x$ y $y$ en $V$.
  3. $d(x,z)+d(z,y)\geq d(x,y)$ para todos $x$, $y$ y $z$ en $V$.

En general, si tenemos cualquier conjunto $X$ (no hace falta que sea un espacio vectorial), a una función $d$ que satisface los puntos 1 a 3 de la proposición anterior se le conoce como una métrica para $X$. Cualquier norma en un espacio vectorial $V$ (no sólo las de producto interior) induce una métrica en $V$. Sin embargo, hay métricas de espacios vectoriales que no vienen de una norma.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  • Toma $\mathbb{R}^4$ con el producto interior canónico (producto punto). Determina la norma de $(3,4,0,1)$. Encuentra el ángulo entre los vectores $(1,0,2,5)$ y $(4,5,0,-3)$.
  • Muestra que el producto de Frobenius es un producto interior en $M_n(\mathbb{R})$.
  • Demuestra la proposición de propiedades de la distancia

Considera $V=\mathbb{R}_3[x]$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $3$. Definimos $$\langle p,q \rangle = \sum_{j=1}^5 p(j)q(j).$$

  • Muestra que $\langle \cdot, \cdot \rangle$ así definido es un producto interior.
  • Encuentra el ángulo entre los polinomios $1+x^2$ y $2x-3x^3$.
  • Para cada entero positivo $n$, determina la norma del polinomio $1+nx^3$.
  • Determina la distancia entre los polinomios $1$ y $1+x+x^2+x^3$.

Más adelante…

Retomando conceptos ya definidos como la norma de un vector, en esta entrada vimos cómo encontrar el ángulo entre dos vectores no-nulos y se llegó a una forma natural de introducir la ortogonalidad entre dos vectores. Así mismo, se demostraron algunas propiedades de la norma asociada a un producto interior, siendo la última una forma distinta de expresar la desigualdad de Cauchy-Schwarz, usando la desigualdad de Minkowski. Finalmente, se definió el concepto de distancia entre dos vectores.

En entradas posteriores, usaremos estos conceptos para estudiar bases ortogonales, que tienen usos en conceptos matemáticos más avanzados como el análisis de Fourier o la teoría de polinomios ortogonales.

Entradas relacionadas