Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Lineal I: Determinantes de vectores e independencia lineal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$ y $x_1,\ldots,x_n$ vectores de $V$. Cada uno de los $x_i$ se puede escribir como $$x_i=\sum_{j=1}^n a_{ji}b_j.$$

El determinante de $x_1,\ldots,x_n$ con respecto a $(b_1,\ldots,b_n)$ es $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ y lo denotamos por $\det_{(b_1,\ldots,b_n)} (x_1,\ldots,x_n)$.

Observa que estamos sumando tantos términos como elementos en $S_n$. Como existen $n!$ permutaciones de un conjunto de $n$ elementos, entonces la suma de la derecha tiene $n!$ sumandos.

Ejemplo. Consideremos la base $b_1=1$, $b_2=1+x$ y $b_3=1+x+x^2$ del espacio vectorial $\mathbb{R}_2[x]$ de polinomios con coeficientes reales y grado a lo más $2$. Tomemos los polinomios $v_1=1$, $v_2=2x$ y $v_3=3x^2$. Vamos a calcular el determinante de $v_1, v_2, v_3$ con respecto a la base $(b_1,b_2,b_3)$.

Para hacer eso, lo primero que tenemos que hacer es expresar a $v_1, v_2, v_3$ en términos de la base. Hacemos esto a continuación:
\begin{align*}
v_1&= 1\cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3\\
v_2&= -2\cdot b_1 + 2 \cdot b_2 + 0 \cdot b_3\\
v_3&= 0 \cdot b_1 – 3 \cdot b_2 +3 b_3.
\end{align*}

De aquí, obtenemos
\begin{align*}
a_{11}&=1, a_{21}=0, a_{31}=0,\\
a_{12}&=-2, a_{22}=2, a_{32}=0,\\
a_{13}&=0, a_{23}=-3, a_{33}=3.
\end{align*}

Si queremos calcular el determinante, tenemos que considerar las $3!=3\cdot 2 \cdot 1 = 6$ permutaciones en $S_3$. Estas permutaciones son

\begin{align*}
\sigma_1 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 2 & 3\end{pmatrix}\\
\sigma_2 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 3 & 2\end{pmatrix}\\
\sigma_3 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 1 & 3\end{pmatrix}\\
\sigma_4 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{pmatrix}\\
\sigma_5 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 2 & 1\end{pmatrix}\\
\sigma_6 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 1 & 2\end{pmatrix}.
\end{align*}

Los signos de $\sigma_1,\ldots,\sigma_6$ son, como puedes verificar, $1$, $-1$, $-1$, $1$, $-1$ y $1$, respectivamente.

El sumando correspondiente a $\sigma_1$ es
\begin{align}
\text{sign}(\sigma_1) &a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)}\\
&= 1 \cdot a_{11}a_{22}a_{33}\\
&=1\cdot 1\cdot 2 \cdot 3 = 6.
\end{align}

El sumando correspondiente a $\sigma_2$ es
\begin{align}
\text{sign}(\sigma_2) &a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)}\\
&= (-1) \cdot a_{11}a_{23}a_{32}\\
&=(-1) \cdot 1\cdot (-3) \cdot 0 = 0.
\end{align}

Continuando de esta manera, se puede ver que los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son $$+6,-0,-0,+0,-0,+0,$$ respectivamente de modo que el determinante es $6$.

$\triangle$

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$. El determinante de $B$ con respecto a sí mismo es $1$.

Demostración. Cuando escribimos a $b_i$ en términos de la base $b$, tenemos que $$b_i=\sum_{j=1}^n a_{ji} b_j.$$ Como la expresión en una base es única, debemos tener $a_{ii}=1$ y $a_{ji}=0$ si $j\neq i$. Ahora, veamos qué le sucede al determinante $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si $\sigma$ es una permutación tal que $\sigma(i)\neq i$ para alguna $i$, entonces en el producto del sumando correspondiente a $\sigma$ aparece $a_{i\sigma(i)}=0$, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando $\sigma$ es la permutación identidad.

Como el signo de la identidad es $1$ y cada $a_{ii}$ es $1$, tenemos que el determinante es
\begin{align*}
\sum_{\sigma \in S_n} \text{sign}&(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)} \\
&=a_{11}\cdot\ldots\cdot a_{nn}\\
&= 1\cdot\ldots\cdot 1 \\
& = 1.
\end{align*}

$\square$

El determinante es una forma $n$-lineal alternante

La razón por la cual hablamos de transformaciones $n$-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ sobre $F$. Entonces la transformación $\det_{(b_1,\ldots,b_n)}:V^n \to F$ es una forma $n$-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que $\det_{(b_1,\ldots,b_n)}$ se puede reescribir en términos de la base dual $b_1^\ast, \ldots, b_n^\ast$. En efecto, recuerda que $b_i^\ast$ es la forma lineal que «lee» la coordenada de un vector $v$ escrito en la base $B$. De esta forma,

\begin{align*}
\det_{(b_1,\ldots,b_n)}&(v_1,\ldots,v_n)\\
&=\sum_{\sigma\in S_n}\left(\text{sign}(\sigma) \prod_{j=1}^n b_j^\ast(v_{\sigma(j)})\right)\\
\end{align*}

Para cada permutación $\sigma$, el sumando correspondiente es una forma $n$-lineal, pues es producto de $n$ formas lineales evaluadas en los distintos vectores. Así que $\det_{(b_1,\ldots,b_n)}$ es suma de formas $n$-lineales y por lo tanto es forma $n$-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a $0$ cuando algún par de sus entradas son iguales. Supongamos que $i\neq j$ y que $v_i=v_j$. Tomemos $\tau$ a la transposición que intercambia a $i$ y a $j$. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación $\sigma$, tenemos que $\sigma\tau$ tiene signo diferente.

Además, para cualquier $\sigma$ tenemos que $$a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}$$ y $$a_{1\sigma\tau(1)}\cdot\ldots\cdot a_{n\sigma\tau(n)}$$ son iguales, pues $v_i=v_j$. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es $0$.

$\square$

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma $n$-lineal $\det_{(b_1,\ldots,b_n)}$ es antisimétrica.

Los determinantes de vectores son las «únicas» formas $n$-lineales alternantes

Ya vimos que el determinante es una forma $n$-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma $n$-lineal alternante varía de $\det_{(b_1,\ldots,b_n)}$ únicamente por un factor multiplicativo.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$. Si $f:V^n \to F$ es cualquier forma $n$-lineal y alternante, entonces $$f=f(b_1,\ldots,b_n)\det_{(b_1,\ldots,b_n)}.$$

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores $x_1,\ldots,x_n$. Escribamos a cada $x_i$ en términos de la base $B$: $$x_i=\sum_{j=1}^n a_{ij}b_j.$$

Usando la $n$-linealidad de $f$ en cada una de las entradas, tenemos que
\begin{align*}
f(x_1,\ldots,x_n)&=\sum_{i=1}^n a_{1i} f(b_i,x_2,\ldots,x_n)\\
&=\sum_{i,j=1}^n a_{1i}a_{2i} f(b_i,b_j,x_3,\ldots,x_n)\\
&=\ldots\\
&=\sum_{i_1,\ldots,i_n = 1}^n a_{1i_1}\ldots a_{ni_n} f(b_{i_1},\ldots,b_{i_n}).
\end{align*}

Aquí hay muchos términos, pero la mayoría de ellos son $0$. En efecto, si $b_{i_k}=b_{i_l}$, como $f$ es alternante tendríamos que ese sumando es $0$. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe $\sigma$ en $S_n$ tal que para $i_k=\sigma(k)$.

Por lo tanto, podemos simplificar la expresión anterior a
$$f(x_1,\ldots,x_n)=\sum_{\sigma \in S_n}a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_{\sigma(1)},\ldots,b_{\sigma(n)}).$$

Como $f$ es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como
\begin{align*}
&=\sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_1,\ldots,b_n)\\
&=f(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots, x_n).
\end{align*}

Esto es justo lo que queríamos probar.

$\square$

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial $V$ de dimensión $n$ son equivalentes las siguientes tres afirmaciones para vectores $x_1,\ldots,x_n$ de $V$:

  1. El determinante de $x_1,\ldots,x_n$ con respecto a toda base es distinto de $0$.
  2. El determinante de $x_1,\ldots,x_n$ con respecto a alguna base es distinto de $0$.
  3. $x_1,\ldots,x_n$ es una base de $V$.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como $x_1,\ldots,x_n$ son $n$ vectores y $n$ es la dimensión de $V$, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a $0$. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en $x_1,\ldots, x_n$, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos $B=(b_1,\ldots,b_n)$ otra base de $V$. Como $\det_{(x_1,\ldots,x_n)}$ es una forma $n$-lineal, podemos aplicar el teorema anterior y evaluar en $x_1,\ldots,x_n$ para concluir que
\begin{align*}
\det_{(x_1,\ldots,x_n)}&(x_1,\ldots,x_n)&\\
&=\det_{(x_1,\ldots,x_n)}(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots,x_n).
\end{align*}

El término de la izquierda es igual a $1$, de modo que ambos factores a la derecha deben ser distintos de $0$.

$\square$

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de $1$, $2x$ y $3x^2$ con respecto a la base $1$, $1+x$ y $1+x+x^2$ es igual a $6$. De acuerdo al teorema anterior, esto implica que $1$, $2x$ y $3x^2$ es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base $B$ de $\mathbb{R}_2[x]$ tomemos, el determinante de $1$, $2x$ y $3x^2$ con respecto a $B$ también será distinto de $0$.

$\triangle$

Más adelante…

A lo largo de esta entrada estudiamos la definición de determinantes para un conjunto de vectores y enunciamos sus principales propiedades. En las siguientes entradas vamos a hablar cómo se define el determinante para matrices y para transformaciones lineales. Después de las definiciones, pasaremos a estudiar cómo se calculan los determinantes y veremos cómo se aplican a diferentes problemas de álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuántos sumandos tendrá el determinante de $5$ vectores en un espacio vectorial de dimensión $5$ con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son los que se enuncian.
  • Encuentra el determinante de los vectores $(3,1)$ y $(2,4)$ con respecto a la base $((5,1), (2,3))$ de $\mathbb{R}^2$.
  • Muestra que los vectores $(1,4,5,2)$, $(0,3,2,1)$, $(0,0,-1,4)$ y $(0,0,0,1)$ son linealmente independientes calculando por definición su determinante con respecto a la base canónica de $\mathbb{R}^4$.
  • Usa un argumento de determinantes para mostrar que los vectores $(1,4,3)$, $(2,-2,9)$, $(7,8,27)$ de $\mathbb{R}^3$ no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Series geométricas

Por Fabian Ferrari

Introducción

En esta entrada y en otras subsecuentes, trataremos el tema de series aplicado a la resolución de problemas matemáticos. Recordemos que en entradas anteriores ya se estudiaron los conceptos de sucesiones. Para esta entrada aprovecharemos lo que hemos aprendido de sucesiones geométricas.

Series geométricas

Si consideramos una sucesión geométrica $\{a_i\}_{i\in\mathbb{N}}$, recordemos que se cumple que existe una razón $r$ de tal manera que $a_n=ra_{n-1}$, expresado en el primer término, tenemos que $a_n=r^{n}a_0$. Ahora bien, nos interesará saber o conocer las suma de los elementos de una sucesión geométrica. A esta suma se le conoce como serie geométrica y puede realizarse considerando una cantidad finita de elementos de la sucesión, así como una cantidad infinita de elementos de la sucesión.

Si queremos obtener la serie geométrica de los primeros $n+1$ elementos de la sucesión $\{a_i\}_{i\in\mathbb{N}}$, tenemos lo siguiente

\begin{equation*}
\sum_{i=0}^n a_i=a_0+a_1+a_2 +a_3+\ldots+a_n.
\end{equation*}

Al multiplicar ambos lados de la igualdad por la razón de la sucesión tenemos que

\begin{align}
\sum_{i=0}^n a_i&=a_0+a_1+a_2 +a_3+\ldots+a_n\\
r\sum_{i=0}^n a_i&=ra_0+ra_1+ra_2 +ra_3+\ldots+ra_n\\
&=a_1+a_2+\ldots+a_{n+1}
\end{align*}

Y si calculamos $r\sum_{i=0}^n a_i-\sum_{i=0}^n a_i$, se cancelan todos los términos excepto el último de la primer suma, y el primero de la segunda. Obtenemos entonces:

\begin{align*}
r\sum_{i=0}^n a_i-\sum_{i=0}^n a_i&=a_{n+1}-a_0.
\end{align*}

Así,
\begin{equation*}
\sum_{i=0}^na_i=\frac{a_{n+1}-a_0}{r-1}=a_0\frac{r^{n+1}-1}{r-1}.
\end{equation*}

Ahora bien, si tenemos la sucesión geométrica $\{a_i\}_{i\in\mathbb{N}}$ y queremos calcular la serie infinita de todos sus elementos basta con que calculemos el límite cuando $n\to \infty$ tiende a infinito de $$\sum_{i=0}^na_i=a_0\frac{r^{n+1}-1}{r-1}.$$

Supogamos que $a_0\neq 0$, pues en otro caso la suma de los términos es igual a $0$. Si $|r|>1$, el numerador diverge y por lo tanto la serie también. Cuando $r=1$, la serie diverge pues cada sumando es igual a $a_0\neq 0$. Cuando $r=-1$, tenemos una serie de términos alternante que no converge, pues es, iteradamente, $a_0,0,a_0,0,\ldots$.

Por otro lado, si $|r|<1$, entonces $r^{n+1}\to 0$. En este caso, la serie converge a $\frac{a_0}{1-r}$.

Aplicación de series geométricas a áreas

Si consideramos la sucesión $\{x^i\}_{i\in\mathbb{N}}$ tenemos que dicha sucesión está dada por $\left\{1, x, x^2, x^3,\ldots\right\}$ la sucesión es geométrica, dado que la razón es $r=x$.

De acuerdo al análisis que hicimos arriba, la serie geométrica finita está dada por

\begin{equation*}
\sum_{i=0}^n x^i=(1)\frac{x^{n+1}-1}{x-1}=\frac{1-x^{n+1}}{1-x}
\end{equation*}

A partir de aquí deducimos que la serie geométrica infinita está dada por

\begin{equation*}
\sum_{i=0}^{\infty} x^i=\lim_{n\to\infty}\frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}
\end{equation*}

solo si $|x|< 1$. En otro caso, la serie diverge.

$\square$

Un problema aplicado a la geometría

Consideremos la siguiente figura, en donde $\triangle ABC$ es un triángulo equilatero y $OA=16$.


Imaginemos que la figura continúa internamente de manera infinita, resultando en una cantidad infinita de triángulos, todos ellos equiláteros. ¿Cuál sería la suma de las áreas de todos los triángulos?

Para ello, primero tendríamos que ver el área de cada triángulo como elemento de una sucesión, la cual parece que será geométrica.

Comencemos calculando el área del $\triangle ABC$. Para ello tenemos que determinar el valor de la altura. Notemos que $CE$ es altura del triángulo, a su vez, $CE=OC+OE$. Como $OC$ es radio de la circunferencia, tenemos que $OC=16$. Sólo falta determinar el valor del segmento $OE$.

Si nos fijamos en $\triangle AOE$, tenemos que es un triángulo rectángulo, además que $AO$ es bisectriz del $\angle A$, así que $\angle OAE=30^o$. Como $\sin30^o=OE/16=1/2$ tenemos entonces que $OE=8$.

Por lo anterior, tenemos que que la altura del $\triangle ABC$ está dada por $h=24$. De una manera similar podemos calcular la base del triángulo, la cual está dada por $b=16\sqrt{3}$. Así, el área del $\triangle ABC$ es $A_0=192\sqrt{3}$.

El área del triángulo inscrito en el $\triangle ABC$ es la cuarta parte de $A_0$, es decir $A_1=\frac{1}{4}A_0$. De manera sucesiva $A_2=\frac{1}{4}A_1$, $A_3=\frac{1}{4}A_2, \ldots$.

Si nos fijamos en la sucesión de las áreas de los triángulos$\{A_i\}_{i\in\mathbb{N}$ tenemos que es geométrica de razón $r=1/4$.

De esta forma, la suma de las áreas de todos los triángulos es una serie geométrica dada por

\begin{align*}
\sum_{i=0}^{\infty} A_i&=\lim_{x\to\infty}(192\sqrt{3})\frac{1-(1/4)^{n+1}}{1-(1/4)}\\
&=(192\sqrt{3})\frac{1}{1-(1/4)}=(192\sqrt{3})(4/3)\\
&=256\sqrt{3}
\end{align*}

$\square$

Aplicación de series geométricas a números perfectos

Un número entero positivo $n$ se dice que es perfecto si la suma de sus divisores sin incluir al mismo $n$ da como resultado $n$. Por ejemplo, el número $6$ es un número perfecto ya que sus divisores sin incluir al mismo $6$ son $1, 2, 3$ y su suma $1+2+3=6$.

Ahora veamos un problema que relaciona a los números perfectos y a las series geométricas.

Problema: Sea $n=2^{p-1}(2^p-1)$, donde $2^p-1$ es primo. Prueba que $n$ es un número perfecto.

Solución: Tenemos que todos los divisores de $n$ sin contar al mismo $n$ están conformados por la unión de las siguientes dos sucesiones finitas.

\begin{align*}
&\{2^i\}_{i=0}^{p-1}=1, 2, 2^2,…,2^{p-1}\\
&\{(2^p-1)2^i\}_{i=0}^{p-2}=(2^p-1), 2^2(2^p-1), 2^3(2^p-1),…, 2^{p-2}(2^p-1)
\end{align*}

Si consideramos la suma de los elementos de cada sucesión

\begin{align*}
&\sum_{i=0}^{p-1}2^i=\frac{2^p-1}{2-1}=2^p-1\\
&\sum_{i=0}^{p-2}2^i(2^p-1)=(2^p-1)\frac{2^p-1}{2-1}=(2^p-1)(2^{p-1}-1)
\end{align*}

Así la suma de todos los divisores de $n$ sin incluir al propio $n$ es

\begin{align*}
(2^p-1)+(2^p-1)(2^{p-1}-1)&=(2^p-1)(1+2^{p-1}-1)\\
&=2^{p-1}(2^p-1)\\
&=n.
\end{align*}

Por lo tanto, tenemos que $n$ es un número perfecto.

$\square$

Otro problema interesante

Problema: Una sucesión está definida por $a_1=2$ y $a_n=3a_{n-1}+1$, encuentra el valor de la suma $$a_1+a_2+a_3+\ldots+a_n.$$

Solución: Notemos que la sucesión que nos dan no es geométrica, dado que no es posible encontrar un número $r$ que funcione como razón. Así que busquemos un patrón que aparezca al realizar las primeras sumas.

\begin{align*}
a_1&=2\\
a_2&=3a_1+1\\
&=3(2)+1\\
a_3&=3a_2+1\\
&=3(3(2)+1)+1\\
&=3^2(2)+3+1\\
a_4&=3a_3+1\\
&=3(3^2(2)+3+1)+1\\
&=3^3(2)+3^2+3+1\\
a_5&=3a_4+1\\
&=3(3^3(2)+3^2+3+1)\\
&=3^4(2)+3^3+3^2+3+1.
\end{align*}

De manera sucesiva, podemos conjeturar y mostrar por inducción que
\begin{align*}
a_n&=3^{n-1}(2)+3^{n-2}+\ldots+3+1\\
&=3^{n-1}(2)+\frac{3^{n-1}-1}{2}\\
&=\frac{5\cdot 3^{n-1}-1}{2}.
\end{align*}

Así que

\begin{align*}
\sum_{i=1}^na_i&=\sum_{i=1}^n \frac{5\cdot 3^{i-1}-1}{2}\\
&=\frac{1}{2}\sum_{i=1}^n 5\cdot 3^{i-1}-1\\
&=\frac{1}{2}\left(5\cdot \frac{3^n-1}{2} – n\right).
\end{align*}

$\square$

Más problemas

Puedes encontrar más problemas de series geométricas en la sección 5.2 del libro Problem Solving through Problems de Loren Larson.

Álgebra Superior II: Problemas de operaciones con polinomios

Por Claudia Silva

Introducción

En una entrada anterior ya construimos el anillo de polinomios con coeficientes reales. Para hacer esto, tomamos las sucesiones que consisten casi de puros ceros, después les definimos las operaciones de suma y producto. Ahora practicaremos estos nuevos conceptos, resolviendo algunos problemas de operaciones con polinomios.

Problema de suma de polinomios

Comenzamos con un ejemplo de suma de polinomios del libro de Álgebra Superior de Bravo, Rincón y Rincón.

Ejercicio 399. Haz la suma de los siguientes polinomios:
\begin{align*}
p(x)&=(-85,0,-37,-35, 97, 50, \overline{0})\\
q(x)&=(56,49,0,57,\overline{0}).
\end{align*}

En el video se hace la suma de dos formas distintas. Primero, se hace la suma directamente de la definición, es decir, sumando los polinomios entrada a entrada como sucesiones. Después, se hace la suma en la notación de $x$ y potencias, que tal vez conozcas mejor.

Es importante entender que la notación de sucesiones sirve para establecer los fundamentos de los polinomios, pero no es práctica para hacer operaciones con polinomios concretas. Dependiendo del tipo de problema que se quiere resolver, a veces hay que usar una notación u otra.

Suma de polinomios

Problemas de producto de polinomios

A continuación se resuelven dos ejercicios de producto de polinomios.

Ejercicio. Multiplicar los polinomios $(2,0,3,\overline{0})$ y $(0,1,\overline{0})$.

En el vídeo se hace la multiplicación usando directamente la definición, paso a paso. Sin embargo, los pasos para realizar la multiplicación se pueden realizar en una tabla, como la que usamos en entradas anteriores. Después del vídeo ponemos la tabla correspondiente a la multiplicación.

Para hacer la multiplicación con una tabla, ponemos a las entradas del primer polinomio en la primer fila de una tabla, y a las del segundo polinomio en la primer columna de la tabla. Luego, hacemos las multiplicaciones «en cada casilla» como sigue:

$2$$0$$3$
$0$$0$$0$$0$
$1$$2$$0$$3$

De aquí, se puede leer el producto «por diagonales». La primer diagonal es $0$, la segunda $2+0=2$, la tercera $0+0=0$ y la cuarta $3$. Concluimos que el polinomio es $$(0,2,0,3,\overline{0}).$$

Veamos un ejemplo más, usando la notación de $x$ y sus potencias.

Ejercicio. Encuentra el producto de polinomios $(1+3x)(1-2x+3x^2)$.

Problema de división de polinomios

Finalmente, hacemos un ejemplo de división de polinomios. La técnica que se hace en el vídeo es la de «dividir con casita», que es una forma visual de representar el algoritmo de la división para polinomios. Hablaremos un poco más adelante de este algoritmo, y de por qué siempre nos da un residuo cero o de grado menor.

Cuando se hace la «división con casita», hay que recordar dejar los espacios correspondientes a los términos que tengan coeficiente $0$.

Ejercicio. Divide el polinomio $x^5+x^3+3x$ entre el polinomio $x^2-x+1$.

División de polinomios

Más adelante…

Aunque esta entrada la dedicamos para que pudieras practicar tus habilidades operando polinomios, te recomendamos seguir practicando, ya que estas operaciones serán la base de la teoría. A partir de aquí veremos los teoremas importantes sobre los polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Realiza la suma $(-10,0,3,-4,1,\overline{0})+(14,0,0,0,-5,0,3,\overline{0})$.
  2. Realiza el producto $(-1,1,\overline{0})(1,1,1,1,\overline{0})$.
  3. Realiza el producto $(x^3+4x^2-3)(2x^2+x-3)$.
  4. Realiza la división $(x^5+3x^4+x^3+5x^2-5x+1)/(x^2+3x-1)$.
  5. Realiza la división $(x^4+2x^3+2x^2+11x)/(x^2+3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo 1. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\triangle$

Ejemplo 2. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\triangle$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo 3. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\triangle$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\triangle$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo 1. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\triangle$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo 2. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\triangle$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo 1. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\triangle$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo 2. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\triangle$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Transformaciones multilineales antisimétricas y alternantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos de la importancia que tiene poder diagonalizar una matriz: nos ayuda a elevarla a potencias y a encontrar varias de sus propiedades fácilmente. En esa entrada discutimos a grandes rasgos el caso de matrices en $M_2(\mathbb{R})$. Dijimos que para dimensiones más altas, lo primero que tenemos que hacer es generalizar la noción de determinante de una manera que nos permita probar varias de sus propiedades fácilmente. Es por eso que introdujimos a las funciones multilineales y dimos una introducción a permutaciones. Tras definir las clases de transformaciones multilineales alternantes y antisimétricas, podremos finalmente hablar de determinantes.

Antes de entrar con el tema, haremos un pequeño recordatorio. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales sobre un mismo campo, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$, es decir, una tal que al fijar cualesquiera $d-1$ coordenadas, la función que queda en la entrada restante es lineal.

Con $[n]$ nos referimos al conjunto $\{1,2,\ldots,n\}$. Una permutación en $S_n$ es una función biyectiva $\sigma:[n]\to [n]$. Una permutación invierte a la pareja $i<j$ si $\sigma(i)>\sigma(j)$. Si una permutación $\sigma$ invierte una cantidad impar de parejas, decimos que es impar y que tiene signo $\text{sign}(\sigma)=-1$. Si invierte a una cantidad par de parejas (tal vez cero), entonces es par y tiene signo $\text{sign}(\sigma)=1$.

Transformaciones $n$-lineales antisimétricas y alternantes

Tomemos $d$ un entero positivo, $V$, $W$ espacios vectoriales sobre el mismo campo y $\sigma$ una permutación en $S_d$. Si $T:V^d\to W$ es una transformación $d$-lineal, entonces la función $(\sigma T):V^d\to W$ dada por $$(\sigma T)(v_1,\ldots,v_d)=T(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(d)})$$ también lo es. Esto es ya que sólo se cambia el lugar al que se lleva cada vector. Como $T$ es lineal en cualquier entrada (al fijar las demás), entonces $\sigma T$ también.

Definición. Decimos que $T$ es antisimétrica si $\sigma T = \text{sign}(\sigma) T$ para cualquier permutación $\sigma$ en $S_d$. En otras palabras, $T$ es antisimétrica si $\sigma T=T$ para las permutaciones pares y $\sigma T = -T$ para las permutaciones impares.

Definición. Decimos que $T$ es alternante si $T(v_1,\ldots,v_d)=0$ cuando hay dos $v_i$ que sean iguales.

Ejemplo. Consideremos la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc.$$ Afirmamos que ésta es una transformación $2$-lineal alternante y antisimétrica. La parte de mostrar que es $2$-lineal es sencilla y se queda como tarea moral.

Veamos primero que es una función alternante. Tenemos que mostrar que si $(a,b)=(c,d)$, entonces $T((a,b),(c,d))=0$. Para ello, basta usar la definición: $$T((a,b),(a,b))=ab-ab=0.$$

Ahora veamos que es una función antisimétrica. Afortunadamente, sólo hay dos permutaciones en $S_2$, la identidad $\text{id}$ y la permutación $\sigma$ que intercambia a $1$ y $2$. La primera tiene signo $1$ y la segunda signo $-1$.

Para la identidad, tenemos $(\text{id}T)((a,b),(c,d))=\sigma((a,b),(c,d))$, así que $(\text{id}T)=T=\text{sign}(\text{id})T$, como queremos.

Para $\sigma$, tenemos que $\sigma T$ es aplicar $T$ pero «con las entradas intercambiadas». De este modo:
\begin{align*}
(\sigma T)((a,b),(c,d))&=T((c,d),(a,b))\\
&=cb-da\\
&=-(ad-bc)\\
&=-T((a,b),(c,d)).
\end{align*}

Esto muestra que $(\sigma T) = -T = \text{sign}(\sigma)T$.

$\square$

Equivalencia entre alternancia y antisimetría

Resulta que ambas definiciones son prácticamente la misma. Las transformaciones alternantes siempre son antisimétricas. Lo único que necesitamos para que las transformaciones antisimétricas sean alternantes es que en el campo $F$ en el que estamos trabajando la ecuación $2x=0$ sólo tenga la solución $x=0$. Esto no pasa, por ejemplo, en $\mathbb{Z}_2$. Pero sí pasa en $\mathbb{Q}$, $\mathbb{R}$ y $\mathbb{C}$.

Proposición. Sean $V$ y $W$ espacios vectoriales sobre un campo donde $2x=0$ sólo tiene la solución $x=0$. Sea $d$ un entero positivo. Una transformación $d$-lineal $T:V^d\to W$ es antisimétrica si y sólo si es alternante.

Demostración. Supongamos primero que $T$ es antisimétrica. Mostremos que es alternante. Para ello, supongamos que para $i\neq j$ tenemos que $x_i=x_j$.

Tomemos la permutación $\sigma:[d]\to [d]$ tal que $\sigma(i)=j$, $\sigma(j)=i$ y $\sigma(k)=k$ para todo $k$ distinto de $i$ y $j$. A esta permutación se le llama la transposición $(i,j)$. Es fácil mostrar (y queda como tarea moral), que cualquier transposición tiene signo $-1$.

Usando la hipótesis de que $T$ es antisimétrica con la transposición $(i,j)$, tenemos que
\begin{align*}
T(x_1,&\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n)\\
&=-T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n),
\end{align*}

en donde en la segunda igualdad estamos usando que $x_i=x_j$. De este modo, $$2T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0,$$ y por la hipótesis sobre el campo, tenemos que $$T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0.$$ Así, cuando dos entradas son iguales, la imagen es $0$, de modo que la transformación es alternante.

Hagamos el otro lado de la demostración. Observa que este otro lado no usará la hipótesis del campo. Supongamos que $T$ es alternante.

Como toda permutación es producto de transposiciones y el signo de un producto de permutaciones es el producto de los signos de los factores, basta con mostrar la afirmación para transposiciones. Tomemos entonces $\sigma$ la transposición $(i,j)$. Tenemos que mostrar que $\sigma T = \text{sign}(\sigma) T = -T$.

Usemos que $T$ es alternante. Pondremos en las entradas $i$ y $j$ a la suma de vectores $x_i+x_j$, de modo que $$T(x_1,\ldots,x_i+x_j,\ldots,x_i+x_j,\ldots,x_n)=0.$$ Usando la $n$-linealidad de $T$ en las entradas $i$ y $j$ para abrir el término a la izquierda, tenemos que
\begin{align*}
0=T(x_1&,\ldots,x_i,\ldots,x_i,\ldots,x_n) + \\
&T(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n).
\end{align*}

Usando de nuevo que $T$ es alternante, el primero y último sumando son cero. Así, \begin{align*}
T(x_1&,\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n).
\end{align*}

En otras palabras, al intercambiar las entradas $i$ y $j$ se cambia el signo de $T$, que precisamente quiere decir que $(\sigma T) = \text{sign}(\sigma)T$.

$\square$

Las transformaciones alternantes se anulan en linealmente dependientes

Una propiedad bastante importante de las transformaciones alternantes es que ayudan a detectar a conjuntos de vectores linealmente dependientes.

Teorema. Sea $T:V^d\to W$ una transformación $d$-lineal y alternante. Supongamos que $v_1,\ldots,v_d$ son linealmente dependientes. Entonces $$T(v_1,v_2,\ldots,v_d)=0.$$

Demostración. Como los vectores son linealmente dependientes, hay uno que está generado por los demás. Sin perder generalidad, podemos suponer que es $v_d$ y que tenemos $$v_d=\alpha_1v_1+\ldots+\alpha_{d-1}v_{d-1}$$ para ciertos escalares $\alpha_1,\ldots, \alpha_{d-1}$.

Usando la $d$-linealidad de $T$, tenemos que
\begin{align*}
T\left(v_1,v_2,\ldots,v_{d-1},v_d\right)&=T\left(v_1,\ldots,v_{d-1},\sum_{i=1}^{d-1} \alpha_i v_i\right)\\
&=\sum_{i=1}^{d-1} \alpha_i T(v_1,\ldots,v_{d-1}, v_i).
\end{align*}

Usando que $T$ es alternante, cada uno de los sumandos del lado derecho es $0$, pues en el $i$-ésimo sumando tenemos que aparece dos veces el vector $v_i$ entre las entradas de $T$. Esto muestra que $$T(v_1,\ldots,v_d)=0,$$ como queríamos mostrar.

$\square$

Introducción a definiciones de determinantes

En la siguiente entrada daremos tres definiciones de determinante. Una es para un conjunto de vectores. Otra es para transformaciones lineales. La última es para matrices. Todas ellas se motivan entre sí, y las propiedades de una nos ayudan a probar propiedades de otras. En esa entrada daremos las definiciones formales. Por ahora sólo hablaremos de ellas de manera intuitiva.

Para definir el determinante para un conjunto de vectores, empezamos con un espacio vectorial $V$ de dimensión $n$ y tomamos una base $B=(b_1,\ldots,b_n)$. Definiremos el determinante con respecto a $B$ de un conjunto de vectores $(v_1,v_2,\ldots,v_n)$ , al cual denotaremos por $\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$de $V$ de la manera siguiente.

A cada vector $v_i$ lo ponemos como combinación lineal de elementos de la base: $$v_i=\sum_{j=1}^n a_{ji}b_j.$$ El determinante $$\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$$ es $$\sum_{\sigma \in S(n)} \text{sign}(\sigma) a_{1\sigma(1)} \cdot a_{2\sigma(1)}\cdot \ldots\cdot a_{n\sigma(n)}.$$

Observa que esta suma tiene tantos sumandos como elementos en $S_n$, es decir, como permutaciones de $[n]$. Hay $n!$ permutaciones, así que esta suma tiene muchos términos incluso si $n$ no es tan grande.

Veremos que para cualquier base $B$, el determinante con respecto a $B$ es una forma $d$-lineal alternante, y que de hecho las únicas formas $d$-lineales alternantes en $V$ «son determinantes», salvo una constante multiplicativa.

Luego, para una transformación $T:V\to V$ definiremos al determinante de $T$ como el determinante $$\det_{(b_1,\ldots,b_n)}(T(b_1),\ldots,T(b_n)),$$ y veremos que esta definición no depende de la elección de base.

Finalmente, para una matriz $A$ en $M_n(F)$, definiremos su determinante como el determinante de la transformación $T_A:F^n\to F^n$ tal que $T_A(X)=AX$. Veremos que se recupera una fórmula parecida a la de determinante para un conjunto de vectores.

Los teoremas que veremos en la siguiente entrada nos ayudarán a mostrar más adelante de manera muy sencilla que el determinante para funciones o para matrices es multiplicativo, es decir, que para $T:V\to V$, $S:V\to V$ y para matrices $A,B$ en $M_n(F)$ se tiene que

\begin{align*}
\det(T\circ S)&=\det(T)\cdot \det(S)\\
\det(AB)&=\det(A)\cdot \det(B).
\end{align*}

También mostraremos que los determinantes nos ayudan a caracterizar conjuntos linealmente independientes, matrices invertibles y transformaciones biyectivas.

Más Adelante…

En esta entrada hemos definido las clases de transformaciones lineales alternantes y antisimétricas; esto con la finalidad de introducir el concepto de determinantes. Además hemos dado una definición intuitiva del concepto de determinante.

En las siguientes entrada estudiaremos diferentes definiciones de determinante: para un conjunto de vectores, para una transformación lineal y finalmente para una matriz. Veremos cómo el uso de determinantes nos ayuda a determinar si un conjunto es linealmente independiente, si una matriz es invertible o si una transformación es biyectiva; además de otras aplicaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc$$ es $2$-lineal. Para esto, tienes que fijar $(a,b)$ y ver que es lineal en la segunda entrada, y luego fijar $(c,d)$ y ver que es lineal en la primera.
  • Muestra que las transposiciones tienen signo $-1$. Ojo: sólo se intercambia el par $(i,j)$, pero puede ser que eso haga que otros pares se inviertan.
  • Muestra que cualquier permutación se puede expresar como producto de transposiciones.
  • Muestra que la suma de dos transformaciones $n$-lineales es una transformación $n$-lineal. Muestra que al multiplicar por un escalar una transformación $n$-lineal, también se obtiene una transformación $n$-lineal.
  • ¿Es cierto que la suma de transformaciones $n$-lineales alternantes es alternante?

Al final del libro Essential Linear Algebra with Applications de Titu Andreescu hay un apéndice en el que se habla de permutaciones. Ahí puedes aprender o repasar este tema.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»