Archivo de la etiqueta: transformaciones

Cálculo Diferencial e Integral III: Sistemas de ecuaciones lineales

Por Alejandro Antonio Estrada Franco

Introducción

En esta entrada daremos un repaso a la teoría de sistemas de ecuaciones lineales. En caso de que quieras leer una versión detallada, puedes comenzar con la entrada de Sistemas de ecuaciones lineales y sistemas homogéneos asociados que forma parte del curso Álgebra Lineal I aquí en el blog.

Nuestra motivación para este repaso comienza como sigue. Supongamos que $T:\mathbb{R}^n \rightarrow \mathbb{R}^m$ es una transformación lineal. Tomemos un vector $\bar{w}\in \mathbb{R}^m$. Es muy natural preguntarse qué vectores $\bar{v}$ hay en $\mathbb{R}^n$ tales que $T(\bar{v})=\bar{w}$, en otras palabras, preguntarse cuál es la preimagen de $\bar{w}$.

Sistemas de ecuaciones lineales

Continuando con la situación planteada en la introducción, si $A$ es la representación matricial de $T$ en una cierta base $\beta$, podemos contestar la pregunta planteada resolviendo la ecuación matricial $AX=B$ donde $X$, $B$ son las representaciones de los vectores $\bar{v}$, $\bar{w}$ en la base $\beta$, respectivamente. Una vez llegado a este punto, la ecuación $AX=B$ nos conduce a que se deban cumplir varias igualdades. Veamos cuáles son en términos de las entradas de $A$, $X$ y $Y$. Pensemos que $$A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix}.$$

Pensemos también que $X$ es el vector columna con entradas (incógnitas) $x_1,\ldots,x_n$, y que $B$ es el vector columna con entradas $b_1,\ldots,b_m$.

Al realizar las operaciones, la igualdad $AX=B$ se traduce en que se deban cumplir todas las siguientes ecuaciones simultáneamente:

\begin{equation}\left\{
\begin{matrix} a_{11}x_{1} + & \dots & + a_{1n}x_{n} & = b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m1}x_{1} + & \dots & + a_{mn}x_{n} & = b_{m}
\end{matrix}\right.
\label{eq:sistema}
\end{equation}

Definición. Un sistema de $m$ ecuaciones lineales con $n$ incógnitas es un sistema de ecuaciones de la forma \eqref{eq:sistema}. Como discutimos arriba, al sistema también lo podemos escribir de la forma $AX=B$. A la matriz $A$ le llamamos la matriz de coeficientes. Al vector $X$ le llamamos el vector de incógnitas.

Resolver el sistema \eqref{eq:sistema} se refiere a determinar todos los posibles valores que pueden tomar las incógnitas $x_1,\ldots,x_n$ de manera que se cumplan todas las ecuaciones dadas.

Definición. Diremos que dos sistemas de ecuaciones son equivalentes si tienen las mismas soluciones.

Un resultado importante que relaciona a los sistemas de ecuaciones con las operaciones elementales que discutimos con anterioridad es el siguiente.

Proposición. Sea $A\in M_{m,n}(\mathbb{R})$ y $e$ una operación elemental cualquiera (intercambio de renglones, reescalamiento de renglón, o transvección). Entonces el sistema de ecuaciones $AX=B$ es equivalente al sistema de ecuaciones $e(A)X=e(B)$.

En otras palabras, si comenzamos con un sistema de ecuaciones $AX=B$ y aplicamos la misma operación elemental a $A$ y a $B$, entonces obtenemos un sistema equivalente. Veamos como ejemplo un esbozo de la demostración en el caso del reescalamiento de vectores. Los detalles y las demostraciones para las otras operaciones elementales quedan como ejercicio.

Demostración. Consideremos el rescalamiento $e$ de la $j$-ésima columna de una matriz por un factor $r$. Veremos que $e(A)X=e(B)$. Tomemos

\[ A=\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B= \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}, X=\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \]

Entonces la ecuación matricial $AX=B$ nos produce el siguiente sistema de ecuaciones lineales:
\[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix} \right.\]

Tomemos una solución del sistema: \[ X’= \begin{pmatrix} x_{1}’\\ \vdots \\ x_{n}’ \end{pmatrix} \]

La ecuación matricial $e(A)X=e(B)$ nos produce el siguiente sistema de ecuaciones: \[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ ra_{j1}x_{1}+ & \dots & +ra_{jn}x_{n}=rb_{j} \\ \vdots & \ddots \ & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix}\right. \]

Ahora, de cada una de las $n$ ecuaciones, excepto la $j$-ésima, sabemos que se solucionan al sustituir $x_{1}’, \dots ,x_{m}’$, resta revisar la $j$-ésima ecuación. Lo que sí sabemos de que $X’$ sea solución es que $$a_{j1}x_{1}’+ \dots +a_{jn}x_{n}’=b_{j}.$$ Así, al multiplicar por $r$ de ambos lados $ra_{j1}x_{1}’+ \dots + ra_{jn}x_{n}’=rb_{j}$. Así obtenemos que $X’$ satisface también a $e(A)X=e(B)$. Inversamente si una solución satisface al sistema $e(A)X=e(B)$ también lo hace para $AX=Y$. Te recomendamos revisar los detalles por tu cuenta.

$\square$

Soluciones a sistemas de ecuaciones lineales

La teoría de sistemas de ecuaciones lineales nos dice que tenemos tres posibles situaciones que se pueden presentar cuando estamos resolviendo un sistema de ecuaciones lineales en $\mathbb{R}$: no hay solución, hay una única solución, o tenemos infinidad de soluciones. Por ejemplo, se puede descartar que haya exactamente dos soluciones. En cuanto sucede esto, la cantidad de soluciones se dispara a una infinidad

Haremos una discusión de cuándo se presenta cada caso. De acuerdo con la sección anterior, cualquier operación elemental pasa un sistema de ecuaciones a uno equivalente. Además, de acuerdo con el teorema de reducción gaussiana, cualquier matriz puede ser llevada a la forma escalonada reducida. Así, al aplicar tanto a $A$ como a $B$ las operaciones elementales que llevan $A$ a su forma escalonada reducida $A_{red}$, llegamos a un sistema equivalente $A_{red}X=C$. El comportamiento del conjunto solución de $AX=B$ se puede leer en este otro sistema equivalente como sigue:

  1. Sin solución. El sistema $AX=B$ no tiene solución si en $A_{red}X=C$ hay una igualdad lineal del estilo $0x_{j1}+\dots +0x_{jn}=c_j$, con $c_j\neq 0$. En otras palabras, si en $A_{red}$ hay una fila $j$ de ceros y la entrada $c_j$ es distinta de cero.
  2. Infinidad de soluciones. El sistema $AX=B$ tiene una infinidad de soluciones si tiene solución, y además hay por lo menos una columna $k$ de $A_{red}$ en la que no haya pivote de ninguna fila. Esta columna $k$ corresponde a una variable libre $x_k$ que puede tomar cualquier valor, y el sistema tiene soluciones sin importar el valor que se le de a esta variable.
  3. Solución única. Un sistema de ecuaciones con solución, pero sin variables libres tiene una única solución. Esto se puede leer en la matriz $A_{red}$, pues se necesita que todas las columnas tengan un pivote de alguna fila.

Pensemos un poco a qué se deben los comportamientos anteriores. Pensemos en que ya llegamos a $A_{red}X=C$. Iremos determinando los posibles valores de las entradas de $X$ de abajo hacia arriba, es decir, en el orden $x_n, x_{n-1},\ldots, x_1$. Si $x_k$ es variable libre, pongamos el valor que sea. Si $x_k$ tiene el pivote de, digamos, la fila $j$, entonces la ecuación $j$ nos dice \[0+\dots + 0 + x_{k}+\dots +a_{jn}x_{n}=b_{j}.\] Esto nos diría que \[x_{k}=b_{j}-a_{j(k+1)}x_{k+1}-\dots -a_{jn}x_{n},\] así que hemos logrado expresar a $x_k$ en términos de las variables ya determinadas $x_{k+1},\dots x_{n}$.

Matrices equivalentes por filas

Definición. Consideremos $I\in M_{m}(\mathbb{R})$ la matriz identidad de tamaño $m$. Una matriz elemental será una matriz que se obtenga de la identidad tras aplicar una operación elemental.

Definición. Sean $A, B\in M_{m,n}(\mathbb{R})$. Diremos que $A$ es equivalente por filas a $B$ si $A$ se puede obtener al aplicar una sucesión finita de operaciones elementales a $B$.

Se puede demostrar que «ser equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$. Así mismo, se puede demostrar en general que si $e$ es una operación elemental, entonces $e(A)$ es exactamente la misma matriz que multiplicar la matriz elemental $e(I)$ por la izquierda por $A$, es decir, $e(A)=e(I)A$. Como tarea moral, convéncete de ambas afirmaciones.

Para realizar la demostración, quizás quieras auxiliarte de la siguiente observación. Tomemos una matriz $B\in M_{m,n}(\mathbb{R})$ y pensemos en cada columna de $B$ como un vector columna:

\[ B_{1} =\begin{pmatrix} B_{11} \\ \vdots \\ B_{m1} \end{pmatrix} \hspace{1cm} \cdots \hspace{1cm} B_{n} =\begin{pmatrix} B_{1n} \\ \vdots \\ B_{mn} \end{pmatrix}. \]

Tomemos ahora una matriz $A\in M_{p,m}$. Tras realizar las operaciones, se puede verificar que la matriz $AB$ tiene como columnas a los vectores columna $AB_1, AB_2,\ldots,AB_n$.

El siguiente teorema nos da una manera alternativa de saber si dos matrices son equivalentes por filas.

Teorema. Sean $A, B\in M_{m\times n}(\mathbb{R})$. Se tiene que $B$ es equivalente por filas a $A$ si y sólo si $B=PA$, donde $P$ es una matriz en $M_m(\mathbb{R})$ obtenida como producto de matrices elementales.

Demostración. Por la discusión anterior, si $B$ es equivalente por filas a $A$, $A$ resulta de la aplicación de una sucesión finita de operaciones elementales a $B$ o, lo que es lo mismo, resulta de una aplicación finita de productos de matrices elementales por la izquierda. Por otro lado, si $B=PA$, con $P=E_{k}\cdot … \cdot E_{1}$ producto de matrices elementales, tenemos que $E_{1}A$ es equivalente por filas a $A$, que $E_{2}(E_{1}A)$ es equivalente por filas a $E_{1}A$, que $E_{3}(E_2(E_1(A)))$ equivalente por filas a $E_2(E_1(A))$, y así sucesivamente. Usando que ser equivalente por filas es transitivo (por ser relación de equivalencia), concluimos que $B$ es equivalente por filas a $A$.

$\square$

¿Qué sucede con los determinantes y las operaciones elementales? La siguiente proposición lo resume.

Proposición. Sea $A$ una matriz en $M_n(\mathbb{R})$ con determinante $\det(A)$.

  • Si se intercambian dos filas, el determinante se vuelve $-\det(A)$.
  • Si se reescala una fila por un real $r\neq 0$, el determinante se vuelve $r\det(A)$.
  • Si se hace una transvección, el determinante no cambia.

Observa que, en particular, si $\det(A)\neq 0$, entonces sigue siendo distinto de cero al aplicar operaciones elementales.

Matrices invertibles y sistemas de ecuaciones lineales

En muchas ocasiones nos encontramos en cálculo de varias variables con funciones que van de $\mathbb{R}^n$ a sí mismo. Si la función que estamos estudiando es una transformación lineal, entonces corresponde a una matriz cuadrada en $M_n(\mathbb{R})$. En estos casos hay otro concepto fundamental que ayuda, entre otras cosas, para resolver sistemas de ecuaciones lineales: el de matriz invertible. Veremos a continuación que esto interrelaciona a las matrices, las matrices elementales, los sistemas de ecuaciones lineales y a los determinantes.

Definición. Una matriz $A$ cuadrada es invertible por la izquierda (resp. derecha) si existe una matriz $B$ tal que $BA=I$ (resp. $AB=I$). A $B$ le llamamos la inversa izquierda (resp. derecha) de $A$. A una matriz invertible por la derecha y por la izquierda, donde la inversa izquierda sea igual a la derecha, simplemente se le llama invertible.

Se puede demostrar que, cuando existe, la matriz izquierda (o derecha) es única. Esto es sencillo. Se puede demostrar también que si $B$ es inversa izquierda y $B’$ es inversa derecha, entonces $B=B’$, lo cual no es tan sencillo. Además, se cumplen las siguientes propiedades de matrices invertibles.

Proposición. Sean $A, B\in M_n(\mathbb{R})$

  1. Si $A$ es invertible, también lo es $A^{-1}$ y $(A^{-1})^{-1}=A$.
  2. Si $A$ y $B$ son invertibles, también lo es $AB$ y $(AB)^{-1}=B^{-1} A^{-1}$.

Demostración. El inciso 1 es claro; para el inciso 2 tenemos \[ (AB)(B^{-1} A^{-1})=A(BB^{-1})A^{-1}=A(I)A^{-1}=AA^{-1}=I\] \[=B^{-1}(I)B=B^{-1}(A^{-1}A)B=(B^{-1}A^{-1})(AB) \].

$\square$

Veamos ahora cómo se conecta la noción de invertibilidad con la de matrices elementales. Como parte de la tarea moral, cerciórate de que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, piensa en otra operación elemental que aplicada sucesivamente a la primera nos de la matriz original. Con más detalle; si denotamos con $e$ a una operación elemental (puede ser cualquiera) denotamos como $e^{-1}$ a la segunda a la cual llamaremos inversa de $e$; y estas cumplen $e(e^{-1})(A)=A=e^{-1}(e(A))$ para cualquier matriz $A$ a la que se le pueda aplicar $e$.

Proposición. Toda matriz elemental es invertible.

Demostración. Supongamos que $E$ una matriz elemental correspondiente a la operación unitaria $e$. Si $e^{-1}$ es la operación inversa de $e$ y $E_{1}=e^{-1}(I)$ tenemos: \[ EE_{1}=e(E_{1})=e(e^{-1}(I))=I,\] y así mismo tenemos \[E_{1}E=e_{1}(E)=e_{1}(e(I))=I.\] De esta manera $E$ es invertible y su inversa es $E_{1}$.

$\square$

El resultado anterior habla sólo de la invertibilidad de matrices elementales, pero podemos usar a estas para caracterizar a las matrices invertibles.

Teorema. Sea $A\in M_n(\mathbb{R})$, los siguientes enunciados son equivalentes:

  1. $A$ es invertible
  2. $A$ es equivalente por filas a la matriz identidad
  3. $A$ es producto de matrices elementales

Demostración. $1\Rightarrow 2)$. Supongamos que $A$ invertible, y usemos el teorema de reducción Gaussiana para encontrar la forma escalonada reducida $A_{red}$ de $A$ mediante una sucesión de operaciones elementales. Por el teorema de la sección de matrices equivalentes por filas, tenemos que $R=E_{k}\cdots E_{1}A$, donde $E_{k},\dots ,E_{1}$ son matrices elementales. Cada $E_{i}$ es invertible, y $A$ es invertible. Por la proposición anterior, tenemos entonces que $A_{red}$ es invertible. Se puede mostrar que entonces ninguna fila de $A_{red}$ puede consistir de puros ceros (verifícalo de tarea moral), de modo que toda fila de $A$ tiene pivote (que es igual a $1$). Como hay $n$ filas y $n$ columnas, entonces hay exactamente un $1$ en cada fila y en cada columna. A $A_{red}$ no le queda otra opción que ser la matriz identidad.

$2\Rightarrow 3)$. Si $A$ es equivalente por filas a $I$, entonces hay operaciones elementales que la llevan a $I$. Como ser equivalente por filas es relación de equivalencia, existen entonces operaciones elementales que llevan $I$ a $A$. Pero entonces justo $A$ se obtiene de $I$ tras aplicar un producto (por la izquierda) de matrices elementales. Por supuesto, en este producto podemos ignorar a $I$ (o pensarla como un reescalamiento por $1$).

$3\Rightarrow 1)$. Finalmente como cada matriz elemental es invertible y todo producto de matrices invertibles es invertible tenemos que 3 implica 1.

$\square$

Ya que entendemos mejor la invertibilidad, la podemos conectar también con la existencia y unicidad de soluciones en sistemas de ecuaciones lineales.

Teorema. Sea $A\in M_{n}(\mathbb{R})$; las siguientes afirmaciones son equivalentes:

  1. $A$ es invertible.
  2. Para todo $Y$, el sistema $AX=Y$ tiene exactamente una solución $X$.
  3. Para todo $Y$, el sistema $AX=Y$ tiene al menos una solución $X$.

Demostración. $1\Rightarrow 2)$. Supongamos $A$ invertible. Tenemos que $X=A^{-1}Y$ es solución pues $AX=A(A^{-1})Y=IY=Y$. Veamos que la solución es única. Si $X$ y $X’$ son soluciones, tendríamos $AX=Y=AX’$. Multiplicando por $A^{-1}$ por la izquierda en ambos lados de la igualdad obtenemos $X=X’$.

$2\Rightarrow 3)$. Es claro pues la única solución es, en particular, una solución.

$3\Rightarrow 1)$. Tomemos los vectores canónicos $\hat{e}_1,\hat{e}_2,\ldots,\hat{e}_n$ de $\mathbb{R}^n$. Por $(3)$ tenemos que todos los sistemas $AX=\hat{e}_1, \ldots, AX=\hat{e}_n$ tienen solución. Tomemos soluciones $B_1,\ldots,B_n$ para cada uno de ellos y tomemos $B$ como la matriz con columnas $B_1,\ldots, B_n$. Por el truco de hacer el producto de matrices por columnas, se tiene que las columnas de $AB$ son $AB_1=\hat{e}_1,\ldots, AB_n=\hat{e}_n$, es decir, $AB$ es la matriz identidad.

$\square$

En la demostración anterior falta un detalle importante. ¿Puedes encontrar cuál es? Está en la demostración $3\Rightarrow 1)$. Si quieres saber cuál es y cómo arreglarlo, puedes consultar la entrada Mariposa de 7 equivalencias de matrices invertibles.

Terminamos la teoría de esta entrada con un resultado que conecta invertibilidad y determinantes.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. $A$ es invertible, si y sólo si, $det(A)\neq 0$.

Demostración. Si $A$ es invertible, entonces se cumple la ecuación $I=AA^{-1}$. Aplicando determinante de ambos lados y usando que es multiplicativo: $$1=det(I)=det(AA^{-1})=det(A)det(A^{-1}).$$ Como al lado izquierdo tenemos un $1$, entonces $\det(A)\neq 0$.

Si $det(A)\neq 0$, llevemos $A$ a su forma escalonada reducida $A_{red}$. Por la observación hecha al final de la sección de matrices elementales, se tiene que $\det(A_{red})\neq 0$. Así, en cada fila tenemos por lo menos un elemento no cero. Como argumentamos anteriormente, esto implica $A_{red}=I$. Como $A$ es equivalente por filas a $I$, entonces es invertible.

$\square$

Mas adelante…

Continuaremos estableciendo herramientas de Álgebra lineal que usaremos en el desarrollo de los temas subsiguientes. En la siguiente entrada hablaremos de eigenvalores y eigenvectores. Con ellos, expondremos un método que proporciona una representación matricial sencilla simple para cierto tipos de transformaciones lineales.

Tarea moral

  1. Demuestra que la relación «es equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$.
  2. Sea $A\in M_{m,n}\mathbb{R}$. Verifica que para cualquier operación elemental $e$ de cualquiera de los tres tipos se cumple que $e(A)X=e(B)$ es equivalente a $AX=B$. Deberás ver que cualquier solución de uno es solución del otro y viceversa.
  3. Demuestra que si $A$ es invertible, también lo es $A^{-1}$ y que $(A^{-1})^{-1}=A$. Verifica la invertibilidad izquierda y derecha.
  4. Demuestra que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, hay otra que al aplicarla sucesivamente nos regresa a la matriz original.
  5. Prueba que una matriz invertible tiene por lo menos un elemento distinto de cero en cada fila, y por lo menos un elemento distinto de cero en cada columna.

Entradas relacionadas

Geometría Analítica I: Introducción a resultados de clasificación

Por Leonardo Ignacio Martínez Sandoval

Introducción

En tu formación matemática muchas veces te encontrarás con resultados de clasificación. Pero, ¿qué es clasificar en este contexto? A grandes rasgos, consiste en poder decir de manera sencilla cómo son todos los objetos matemáticos que se estén estudiando en un contexto dado.

En esta entrada hablaremos un poco más del problema de clasificar ciertos objetos matemáticos. Iniciaremos con un ejemplo «de juguete» muy básico. Luego, hablaremos de cómo en las clasificaciones geométricas podemos usar transformaciones. Finalmente, daremos un ejemplo sencillo de cómo usar estas ideas en la clasificación de los segmentos del plano.

Ejemplo básico de clasificación

Cuando queremos hacer una clasificación, en el sentido matemático, lo que queremos hacer es tomar algunos objetos matemáticos y decir, bajo algún criterio cómo son todos los «tipos posibles» que existen para esos objetos. Esto puede ser respondido de muchas formas, así que es fundamental acordar dos cosas con precisión:

  1. ¿Cuáles son los objetos que queremos clasificar?
  2. ¿Bajo qué criterio diremos que dos de esos objetos son «del mismo tipo»?

Al final del proceso, nos gustaría tener una lista relativamente fácil de escribir de todas las posibilidades. Esto puede ayudar posteriormente a resolver otros problemas matemáticos o bien a desarrollar más teoría.

Comencemos con un ejemplo «de juguete». Será muy sencillo, pero nos permitirá hablar de algunas de las sutilezas que nos encontraremos en contextos más abstractos. Considera la siguiente figura en la que hay varias figuras geométricas.

Imagina que nos piden «clasificar todas las figuras que están aquí». Lo que nos gustaría obtener al final es una lista con la clasificación, es decir con «todas las posibilidades» de figuras que hay. Si sólo nos dan esta instrucción, entonces estaríamos en problemas: hay muchas formas de clasificar estos objetos.

Una posible clasificación es por forma. Si consideramos equivalentes a dos de estas figuras cuando tienen la misma forma, entonces nuestra lista de posibilidades se reduce a tres: triángulos, cuadrados y círculos. Nuestro teorema de clasificación se vería así:

Teorema. Cualquier figura de la imagen tiene alguna de las siguientes formas:

  1. Triángulo
  2. Cuadrado
  3. Círculo

Este teorema de clasificación está padre. Pero puede ser inútil en algunos contextos. Por ejemplo, imagina que las figuras son muestras que está regalando una tienda de pinturas para que puedas llevarlas a tu casa y usarlas para ver si te gustaría pintar una pared con el color dado. Para estos fines es (prácticamente) lo mismo que te den un cuadrado azul o un triángulo azul. Lo único que importa es el color.

Pensar de esta manera nos da otra manera de clasificar a las figuras: por color. Si usamos esta noción de equivalencia, entonces nuestro resultado de clasificación sería muy distinto.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes colores:

  1. Rojo
  2. Naranja
  3. Amarillo
  4. Verde
  5. Azul

Pero podríamos querer ser mucho más estrictos y querer clasificar considerando ambos criterios: tanto la forma como el color. Quizás uno podría pensar que como hay tres figuras y cinco colores, entonces hay $3\cdot 5=15$ posibilidades en esta clasificación. Obtendríamos el siguiente resultado.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 15 tipos: triángulo rojo, triángulo naranja, triángulo amarillo, triángulo verde, triángulo azul, cuadrado rojo, cuadrado naranja, cuadrado amarillo, cuadrado verde, cuadrado azul, círculo rojo, círculo naranja, círculo amarillo, círculo verde, círculo azul.

Estrictamente hablando, este resultado es correcto: cualquier figura es de alguno de esos tipos. Pero el teorema tiene algo incómodo: nos está dando posibilidades que no suceden. Por ejemplo, no hay cuadrados amarillos, ni círculos azules.

Una clasificación con forma y color que nos dejaría más satisfecho sería la siguiente:

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 11 tipos:

  1. Triángulo rojo
  2. Triángulo naranja
  3. Triángulo amarillo
  4. Triángulo azul
  5. Cuadrado rojo
  6. Cuadrado naranja
  7. Cuadrado azul
  8. Círculo rojo
  9. Círculo naranja
  10. Círculo amarillo
  11. Círculo verde

Más aún, cualquiera de estas posibilidades sucede.

Este resultado se siente mucho más satisfactorio. Por un lado, no está agregando a la lista «opciones de más». Por otro lado, a partir de él podemos demostrar proposiciones sin tener que volver a ver la figura. Algunos ejemplos son los siguientes:

  • Ningún círculo de nuestra figuras es azul.
  • Todas las figuras verdes son círculos.
  • Ninguna figura amarilla es un cuadrado.

Para mostrar cualquiera de estas, basta ver nuestra clasificación.

¿Podemos dar una clasificación mucho más estricta? Sí, por supuesto. Por ejemplo, podemos considerar dos figuras iguales sólo cuando tienen exactamente la misma figura, color y posición. En este caso nuestro teorema de clasificación tendría un tipo por cada una de las 19 figuras. Esta clasificación también se siente un poco insatisfactoria pues en realidad no estamos «agrupando» figuras, sino simplemente «poniendo a cada una en su propio grupo». Pero bueno, es una clasificación válida también.

Uso de relaciones de equivalencia y particiones

Una manera de formalizar una clasificación es a partir de relaciones de equivalencia y particiones. Recordemos las siguientes dos definiciones:

Definición. Una relación de equivalencia en un conjunto $X$ es una colección de parejas $(x,y)$ en $X\times X$ tales que:

  • (Reflexividad) Para cualquier $x$ en $X$ la pareja $(x,x)$ está en la colección.
  • (Simetría) Si para algunos $x,y$ en $X$ se cumple que la pareja $(x,y)$ está en la colección, entonces la pareja $(y,x)$ también está en la colección.
  • (Transitividad) Si para algunos $x,y,z$ en $X$ se cumple que tanto las parejas $(x,y)$ como $(y,z)$ están en la colección, entonces la pareja $(x,z)$ también está.

Las relaciones de equivalencia nos ayudan a decir cuándo dos objetos de $X$ «son iguales» o «son el mismo» bajo algún criterio usualmente más relajado que la igualdad.

Definición. Una partición de un conjunto $X$ es una colección de conjuntos $(A_i)_{i \in I}$ para algún conjunto de índices $I$ tal que ninguno de los $A_i$ es vacío, cualesquiera dos de ellos tienen intersección vacía y $X=\cup_{i\in I}A_i$.

Un resultado clásico de teoría de conjuntos dice que «una relación de equivalencia da una partición, y viceversa». Formalmente, dada una relación de equivalencia $R$ en un conjunto $X$, podemos crear la clase de equivalencia de un elemento $x$ en $X$ como sigue: $$\overline(x):=\{y \in X: (x,y)\in R\}.$$ El conjunto $\{\overline{x}:x\in X\}$ da una colección de conjuntos que es una partición de $X$. Y viceversa, si tenemos una partición $(A_i)_{i \in I}$, entonces podemos considerar las parejas $(x,y)$ de elementos tales que $x$ y $y$ están en un mismo $A_i$, de donde obtenemos una relación de equivalencia.

Regresando a la idea de clasificar, podemos realizar una clasificación a través de una relación de equivalencia o de una partición. Las clases de equivalencia son los «tipos» de objetos que tenemos. Podemos dar un representante «sencillo» dentro de cada clase de equivalencia para hacer nuestra lista de los posibles «tipos» que existen.

Ejemplo. En los números enteros podemos decir que dos enteros $x$ y $y$ están relacionados cuando $x-y$ es un número par. Es fácil mostrar que esto da una relación de equivalencia y que las clases de equivalencia en este caso son los conjuntos:

\begin{align*}
P&=\{\ldots,-4,-2,0,2,4,\ldots\},
Q&=\{\ldots,-3,-1,1,3,\ldots\}.
\end{align*}

Tenemos que $P$ y $Q$ forman una partición del conjunto $\mathbb{Z}$ de números enteros. Así, esta relación clasifica a los enteros en dos tipos: los pares y los impares. Otra forma de dar esta clasificación es diciendo que «Cualquier entero es equivalente al $0$ o al $1$», o más explícitamente, «Para cualquier entero $z$ se tiene que o bien $z$ es par, o bien $z-1$ es par».

$\triangle$

Clasificación de segmentos del plano con transformaciones

Hacia donde queremos ir es hacia una clasificación relacionada con la geometría. Por esta razón, las relaciones de equivalencia, particiones o «tipos» de objetos que obtendremos estarán relacionados con nociones geométricas. Una manera de hacer esto es mediante las transformaciones que estuvimos estudiando en la unidad anterior: transformaciones afines, traslaciones, isometrías, transformaciones ortogonales, etc.

Por ejemplo, pensemos en que estamos hablando de los segmentos cerrados y acotados en el plano cartesiano. Es decir, de acuerdo a lo que estudiamos en la primera unidad, para cualesquiera dos puntos distintos $P$ y $Q$ en el plano estamos considerando el conjunto $$\overline{PQ}=\{pP+qQ:0\leq p \leq 1, 0 \leq q \leq 1, p+q=1\}.$$ En la siguiente figura puedes ver algunos de los (muchos) segmentos que hay en el plano:

Familia de segmentos

¿Cómo podemos clasificar a todos los segmentos que hay en el plano? Antes de cualquier cosa, tenemos que ponernos de acuerdo en la clasificación. Una manera de hacer esto es mediante transformaciones del plano. Veamos un par de ejemplos.

Ejemplo. Una primer opción es que digamos que dos segmentos son del mismo tipo cuando podamos trasladar uno de ellos al otro. Si hacemos esto, casi todos los segmentos de la siguiente figura serían del mismo tipo.

Familia de segmentos

El único que no es del mismo tipo que los demás sería el segmento punteado que, aunque lo dibujamos intencionalmente de la misma longitud que los demás, no resulta ser equivalente pues es imposible trasladarlo a alguno de los otros segmentos. Con esta noción de segmentos equivalentes, ¿qué posibilidades tendríamos? Es más o menos fácil convencerse de que para que dos segmentos sean del mismo tipo con esta clasificación necesitamos que a) sean paralelos y b) tengan la misma longitud. Por ello mismo, no es tampoco difícil convencerse del siguiente teorema de clasificación.

Teorema. Cualquier segmento del plano es equivalente bajo traslaciones a un segmento tal que uno de sus extremos es el origen.

$\square$

Veamos otra manera de clasificar los segmentos del plano.

Ejemplo. Diremos que dos segmentos son del mismo tipo si podemos llevar uno al otro a través de una isometría. Si hacemos esto entonces ahora sí todos los segmentos de la siguiente figura son equivalentes (pensando en que el segmento punteado tiene la misma longitud que los otros).

De hecho, por lo que sabemos de las isometrías podemos afirmar que bajo este criterio dos segmentos son del mismo tipo si y sólo si tienen la misma longitud. Esto nos llevaría a un teorema de clasificación un poco distinto.

Teorema. Cualquier segmento se puede mediante isometrías a un segmento que sale del origen y termina en un punto del la forma $(x,0)$ con $x>0$. Más aún, todos estos segmentos son de distinto tipo.

$\square$

En los dos ejemplos anteriores hemos sido un poco informales, pues dejamos varias cosas sin demostrar. Seguramente podrás detectarlas e intentar completar los argumentos que faltan. Algunas de estas cosas faltantes están en los ejercicios.

Más adelante…

En esta entrada hablamos de la noción de «clasificar» de manera muy general, con el fin de entenderla y ver algunas de las sutilezas que nos encontraremos más adelante. A partir de ahora nos enfocaremos en probar resultados de clasificación muy específicos, relacionados con las cónicas.

Sin embargo, queremos ser muy precisos con respecto a la clasificación que daremos. Por esta razón, en las siguientes dos entradas hablaremos de los objetos específicos que queremos clasificar y de las nociones de equivalencia que permitiremos.

Tarea moral

  1. Verifica que en nuestro ejemplo de juguete la relación «tener el mismo color» es una relación de equivalencia.
  2. Para cada una de las clasificaciones que dimos en nuestro ejemplo de juguete encuentra cuántas de las figuras originales hay en cada una de las clases.
  3. Demuestra que la relación en $\mathbb{Z}$ en la cual tenemos a $(x,y)$ si y sólo si $x-y$ es un número par es una relación de equivalencia. Muestra que en este caso la partición consiste en el conjunto de los números pares, y el conjunto de los números impares.
  4. Sea $S$ el conjunto de segmentos en el plano. Diremos un elemento $s_1$ de $S$ es traslacionalmente equivalente a otro elemento $s_2$ de $S$ si existe una traslación $T$ de $\mathbb{R}^2$ tal que $T(s_1)=s_2$. Demuestra que «ser traslacionalmente equivalente a» es una relación de equivalencia en $S$.
  5. Da teoremas de clasificación de las rectas en $\mathbb{R}$ usando transformaciones para cada una de las siguientes posibilidades:
    1. Dos rectas son del mismo tipo si se puede llevar una a otra mediante una traslación.
    2. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una rotación.
    3. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una isometría.

Entradas relacionadas

Probabilidad I: Transformaciones de Variables Aleatorias

Por Octavio Daniel Ríos García

Introducción

En la entrada pasada vimos el último tipo importante de v.a. que veremos, por ahora: las v.a.’s mixtas. En particular, vimos una manera de construir v.a.’s mixtas siguiendo un método muy sencillo: evaluando el $\max$ y el $\min$ en alguna v.a. continua. Esto puede pensarse como «transformar» la v.a. continua dada mediante las funciones $\max$ y $\min$. No sólamente la transformación fue posible, sino que además la función resultante es una v.a., y obtuvimos su función de distribución. Este proceso puede generalizarse para obtener la distribución de muchas más funciones de v.a.’s continuas.

Composición de funciones y variables aleatorias

Una de las cosas que hicimos en la entrada pasada fue ver que, dada una v.a. continua $X$, podíamos obtener v.a.’s mixtas a partir de $X$. Vamos a refinar un poco lo que hicimos en la entrada pasada. Sea $c\in\RR$, y sea $\mathrm{max}_{c}\colon\RR\to\RR$ la función dada por

\begin{align*} \mathrm{max}_{c}(x) &= \max{\left\lbrace x, c \right\rbrace}, & \text{para cada $x\in\RR$.} \end{align*}

De este modo, definimos una v.a. nueva $U$ como $U = \mathrm{max}_{c}(X)$. Sin embargo, ¿qué es exactamente «$\mathrm{max}_{c}(X)$»? Sabemos que $X$ es una «variable aleatoria», lo que significa que $U$ es como «evaluar» una función en una variable aleatoria. No obstante, esto no es otra cosa que… ¡una composición de funciones! Como recordatorio de Álgebra Superior I, dadas funciones $f\colon A\to B$, $g\colon B\to C$, la composición $g \circ f \colon A \to C$, llamada $f$ seguida de $g$, se define como

\begin{align*} g \circ f (x) &= g(f(x)), & \text{para cada $x\in A$.} \end{align*}

Recordando la definición de variable aleatoria, cuando tenemos un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ sabemos que una función $X\colon\Omega\to\RR$ es una variable aleatoria si satisface una condición de «medibilidad», que dimos hace unas entradas. De momento, lo que más nos importa es que una v.a. es una función. En consecuencia, la v.a. $U$ que definimos no es otra cosa que $\mathrm{max}_{c} \circ X\colon\Omega\to\RR$, dada por

\begin{align*} \mathrm{max}_{c} \circ X (\omega) &= \max{\{ X(\omega), c \}}, & \text{para cada $x \in \Omega$}, \end{align*}

que es justamente como la definimos en la entrada anterior a esta. Ahora bien, dadas una v.a. $X\colon\Omega\to\RR$ y una función $g\colon\RR\to\RR$, hay que tener cuidado con $g$ para que $g \circ X$ sea una v.a., pues puede pasar que la función resultante no es una variable aleatoria, de acuerdo con la definición. Nosotros nos abstendremos de presentar casos degenerados de ese estilo, pero expondremos las condiciones que se necesitan para que una transformación de una v.a. sea nuevamente una v.a.

¿Cuáles funciones sí dan como resultado variables aleatorias?

Comenzaremos con una definición general del tipo de funciones que nos serán útiles.


Definición. Si $g\colon\RR\to\RR$ es una función, diremos que $g$ es una función Borel-medible si para cada $B \in \mathscr{B}(\RR)$ se cumple que $g^{-1}(B) \in \mathscr{B}(\RR)$.

Es decir, $g$ es una función Borel-medible si la imagen inversa de cualquier elemento del σ-álgebra de Borel es también un elemento del σ-álgebra de Borel.


Si recuerdas la definición de variable aleatoria, podrás observar que… ¡Es casi la misma! En realidad, ambas son el mismo concepto en la teoría más general: son funciones medibles. En particular, las funciones Borel-medibles reciben su nombre por el σ-álgebra que preservan: el σ-álgebra de Borel. De hecho, observa que las funciones Borel-medibles son un caso particular de nuestra definición de variable aleatoria, usando $(\RR, \mathscr{B}(\RR), \mathbb{P})$ como espacio de probabilidad. Por ello, todos los resultamos que hemos visto hasta ahora para v.a.’s aplican para funciones Borel-medibles.

Resulta que esta clase de funciones son aquellas que, al componer con una v.a., nos devuelven otra variable aleatoria.


Proposición. Sean $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, $X\colon\Omega\to\RR$ una v.a. y $g\colon\RR\to\RR$ una función Borel-medible. Entonces $g \circ X \colon\Omega\to\RR$ es una variable aleatoria.


Demostración. Queremos demostrar que $g \circ X$ es una variable aleatoria. Es decir, que para cada $A \in \mathscr{B}(\RR)$ se cumple que $(g \circ X)^{-1}[A] \in \mathscr{F}$. Ahora, $(g \circ X)^{-1}[A] = X^{-1}[g^{-1}[A]]$, por propiedades de la imagen inversa. En consecuencia, hay que ver que para cada $A \in \mathscr{B}(\RR)$ se cumple que $X^{-1}[g^{-1}[A]] \in \mathscr{F}$.

Sea $A \in \mathscr{B}(\RR)$. Como $g$ es una función Borel-medible, esto implica que $g^{-1}[A] \in \mathscr{B}(\RR)$. Ahora, como $X$ es una variable aleatoria, $g^{-1}[A] \in \mathscr{B}(\RR)$ implica $X^{-1}[g^{-1}[A]] \in \mathscr{F}$, que es justamente lo que queríamos demostrar.

$\square$

Así, si $g\colon\RR\to\RR$ es una función Borel-medible y $X\colon\Omega\to\RR$ es una variable aleatoria, entonces $g \circ X$ es también una variable aleatoria.

Pero entonces, ¿qué funciones podemos usar?

A pesar de que lo anterior nos da muchas funciones con las cuales transformar v.a.’s, de momento quizás no conozcas ninguna función Borel-medible. No temas, el siguiente teorema nos da una gran cantidad de funciones que son Borel-medibles, y con las cuales seguramente te has encontrado antes.


Proposición. Si $g\colon\RR\to\RR$ es una función continua, entonces es Borel-medible.


Demostración. Sea $g\colon\RR\to\RR$ una función continua. Queremos demostrar que $g$ es Borel-medible. Es decir, que para cada $x \in \RR$, $X^{-1}[(-\infty, x)] \in \mathscr{B}(\RR)$.

Sea $x\in\RR$. Como $(-\infty, x)$ es un intervalo abierto, es un subconjunto abierto (en la topología usual) de $\RR$. En consecuencia, como $g$ es continua, $g^{-1}[(-\infty, x)]$ también es un subconjunto abierto de $\RR$.

Ahora, como $g^{-1}[(-\infty, x)]$ es un abierto, esto implica que existe una familia numerable de intervalos abiertos $\{ I_{n} \}_{n=1}^{\infty}$ tales que

\[ g^{-1}[(-\infty, x)] = \bigcup_{n=1}^{\infty} I_{n}. \]

Nota que como $I_{n}$ es un intervalo abierto, para cada $n \in \mathbb{N}^{+}$, entonces $I_{n} \in \mathscr{B}(\RR)$. Por lo tanto, $\bigcup_{n=1}^{\infty} I_{n} \in \mathscr{B}(\RR)$, que implica $g^{-1}[(-\infty, x)] \in \mathscr{B}(\RR)$, que es justamente lo que queríamos demostrar.

$\square$

Es muy probable que estés cursando Cálculo Diferencial e Integral III al mismo tiempo que esta materia, por lo que quizás no hayas visto algunos detalles de la topología usual de $\RR$ que utilizamos en la demostración anterior. Puedes consultar nuestras notas de Cálculo Diferencial e Integral III sobre el tema si lo consideras necesario.

Con esta última proposición hemos encontrado una gran cantidad de funciones válidas para transformar v.a.’s. Seguramente conoces muchísimas funciones continuas: los polinomios, funciones lineales, algunas funciones trigonométricas (como $\sin$ y $\cos$), etcétera.

Un primer método para obtener la distribución de una transformación

Una vez que conocemos muchas funciones con las cuales podemos transformar v.a.’s, nuestro objetivo es encontrar la distribución de tales transformaciones. Si $g\colon\RR\to\RR$ es una función Borel-medible y $X\colon\Omega\to\RR$ es una v.a. (cuya función de distribución es conocida), queremos encontrar la distribución de $Y = g \circ X$. Para hacerlo, basta con encontrar la probabilidad de los eventos de la forma

\begin{align*} (Y \leq y) = (g \circ X \leq y) = \{ \, \omega \in \Omega \mid g(X(\omega)) \leq y \, \}. \end{align*}

Es común encontrar la notación $g(X) = g \circ X$, y de este modo, se usa $(g(X) \leq y)$ para referirse a los eventos $(g \circ X \leq y)$.

Sin embargo, el caso de las v.a.’s discretas puede ser más sencillo, ya que la función de masa de probabilidad caracteriza el comportamiento de ese tipo de v’a’s. Veamos cómo hacerlo mediante el siguiente ejemplo.

Ejemplo. Sea $Z$ una v.a. con función de masa de probabilidad $p_{Z}\colon\RR\to\RR$ dada por

\begin{align*} p_{Z}(z) = \begin{cases} \dfrac{1}{5} & \text{si $z \in \{-2, -1, 0, 1, 2 \}$}, \\[1em] 0 & \text{en otro caso}. \end{cases}\end{align*}

Figura. Gráfica de la función de masa de probabilidad de $Z$.

Ahora, sea $g\colon\RR\to\RR$ la función dada por

\begin{align*} g(x) &= x^{2} & \text{para cada $x \in \RR$.} \end{align*}

Defínase $Y = g (Z)$, es decir, $Y = Z^{2}$. Primero, el conjunto de posibles valores que puede tomar $Y$ es

\[ \{\, z^2 \mid z \in \textrm{Im}(Z) \,\} = \{ (-2)^{2}, (-1)^{2}, 0^{2}, 1^{2}, 2^{2} \} = \{ 4, 1, 0, 1, 4 \} = \{ 0, 1, 4 \}. \]

Observa que $Y$ puede tomar $3$ valores distintos, mientras que $Z$ puede tomar $5$. Ya desde este momento se nota que las probabilidades de los eventos que involucran a $Y$ van a ser distintas a los de $Z$.

Sea $y \in \RR$. Para obtener la función de masa de probabilidad de $Y$ tenemos que obtener la probabilidad de los eventos de la forma $(Y = y)$. Este evento es

\[ (Y = y) = \{\,\omega\in\Omega\mid Y(\omega) = y \,\}, \]

Es decir, $\omega\in (Y=y) \iff Y(\omega) = y$. Usando la definición de $Y$, se tiene que

\begin{align*} \omega\in (Y = y) &\iff Y(\omega) = y \\[1em] &\iff (g \circ Z)(\omega) = y \\[1em] &\iff g(Z(\omega)) = y \\[1em] &\iff (Z(\omega))^{2} = y \\[1em] &\iff {\left|Z(\omega)\right|} = \sqrt{y} \\[1em] &\iff (Z(\omega) = \sqrt{y} \lor Z(\omega) = -\sqrt{y}), \end{align*}

esto es, $\omega$ es un elemento de $(Y=y)$ si y sólamente si $Z(\omega) = \sqrt{y}$ o $Z(\omega) = -\sqrt{y}$. Esto es equivalente a que $\omega \in (Z = \sqrt{y}) \cup (Z = -\sqrt{y})$, por lo que podemos concluir que

\[ (Y = y) = (Z = \sqrt{y}) \cup (Z = -\sqrt{y}). \]

En consecuencia, $\Prob{Y = y} = \Prob{(Z = \sqrt{y}) \cup (Z = -\sqrt{y})}$, y así:

\[ \Prob{Y = y} = \Prob{Z = \sqrt{y}} + \Prob{Z = -\sqrt{y}}. \]

Para $y < 0$, observa que

\[ (Z = \sqrt{y}) = \{\,\omega\in\Omega\mid Z(\omega) = \sqrt{y} \,\} = \emptyset, \]

pues $Z$ toma valores en los reales, no en los complejos. Del mismo modo, cuando $y < 0$, $(Z = -\sqrt{y}) = \emptyset$; y así,

\begin{align*} \Prob{Y = y} &= \Prob{Z = \sqrt{y}} + \Prob{Z = -\sqrt{y}} = 0, & \text{para $y < 0$.} \end{align*}

Por otro lado, para $y \geq 0$, sólamente hay $3$ valores que importan: $0$, $1$ y $4$, como acordamos previamente. Para el caso de $y = 0$, observa que $(Z = \sqrt{0}) \cup (Z = -\sqrt{0}) = (Z = 0)$, pues

\begin{align*} \omega \in (Z = \sqrt{0}) \cup (Z = -\sqrt{0}) &\iff (Z(\omega) = \sqrt{0} \lor Z(\omega) = -\sqrt{0}) \\[1em] &\iff (Z(\omega) = 0 \lor Z(\omega) = 0) \\[1em] &\iff Z(\omega) = 0 \\[1em] &\iff \omega \in (Z = 0). \end{align*}

Por lo tanto, se tiene que

\begin{align*}
\Prob{Y = 0} &= \Prob{Z = 0} = \frac{1}{5}.
\end{align*}

Para $y = 1$ y $y = 4$ sí podemos aplicar la fórmula que obtuvimos:

\begin{align*} \Prob{Y = 1} &= \Prob{Z = \sqrt{1}} + \Prob{Z = -\sqrt{1}} = \Prob{Z = 1} + \Prob{Z = -1} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}, \\[1em] \Prob{Y = 4} &= \Prob{Z = \sqrt{4}} + \Prob{Z = -\sqrt{4}} = \Prob{Z = 2} + \Prob{Z = -2} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}. \end{align*}

En conclusión, la función de masa de probabilidad de $Y$ es la función $p_{Y}\colon\RR\to\RR$ dada por

\begin{align*} p_{Y}(y) &= \begin{cases} \dfrac{1}{5} & \text{si $y = 0$,} \\[1em] \dfrac{2}{5} & \text{si $y = 1$ o $y = 4$,} \\[1em] 0 &\text{en otro caso.} \end{cases} \end{align*}

Figura. Función de masa de probabilidad de $Y$.

El ejemplo anterior ilustra lo que se debe de hacer para obtener las probabilidades de la transformación de una v.a. discreta. Sea $X\colon\Omega\to\RR$ una v.a. y sea $g\colon\RR\to\RR$ una función Borel-medible. Para cada $A \in \mathscr{B}(\RR)$, sabemos que el evento $(X \in A)$ no es otra cosa que $X^{-1}[A]$. Definimos la v.a. $Y$ como $Y = g(X)$. Ahora, sabemos que para cada $\omega\in\Omega$ se cumple que

\[ \omega \in X^{-1}[A] \iff X(\omega) \in A, \]

por la definición de imagen inversa. En consecuencia, para $(Y \in A)$ tenemos que

\begin{align*} \omega \in (Y \in A) &\iff \omega \in (g(X) \in A) \\[1em] &\iff g(X(\omega)) \in A \\[1em] &\iff X(\omega) \in g^{-1}[A] \\[1em] &\iff \omega \in (X \in g^{-1}[A]). \end{align*}

Por lo que $(Y \in A) = (X \in g^{-1}[A])$. Por ello, $\Prob{Y \in A} = \Prob{X \in g^{-1}[A]}$. Esto tiene sentido: como $Y = g(X)$, entonces la probabilidad de que $g(X)$ tome algún valor en $A$ es la misma que la probabilidad de que $X$ tome algún valor en $g^{-1}[A]$, pues todos los elementos de $g^{-1}[A]$ son mandados a $A$ cuando se les aplica $g$.

Finalmente, utilizando que $X$ es una v.a. discreta, tendremos que

\begin{align}\label{transf:1} \Prob{Y \in A} = \sum_{x \in g^{-1}[A]} \Prob{X = x}. \end{align}

En el caso particular en el que existe $y \in \RR$ tal que $A = \{ y \}$, tendremos que

\begin{align}\label{transf:2} \Prob{Y = y} = \sum_{x \in g^{-1}[\{ y\}]} \Prob{X = x}, \end{align}

justamente como hicimos en el ejemplo anterior. A continuación presentamos otro ejemplo siguiendo la misma metodología.

Ejemplo. Sea $V$ una v.a. con función de masa de probabilidad $p_{V}\colon\RR\to\RR$ dada por

\begin{align*} p_{V}(v) = \begin{cases} \dfrac{1}{2^{|v|+1}} & \text{si $v \in \{-3,-2,-1,1,2,3\}$}, \\[1em] \dfrac{1}{16} & \text{si $v = 0$}, \\[1em] 0 & \text{en otro caso}. \end{cases} \end{align*}

Figura. Gráfica de la función de masa de probabilidad de $V$.

Nuevamente, considera la transformación $g\colon\RR\to\RR$ dada por $g(x) = x^{2}$ para cada $x \in \RR$. De este modo, defínase la v.a. $T$ como $T = g(V)$. Antes que nada, el conjunto de valores que puede tomar $T$ es el resultado de transformar el conjunto de los valores que puede tomar $V$. Si $\mathrm{Supp}(V) = \{-3,-2,-1,0,1,2,3\}$ es el conjunto de valores que puede tomar $V$, entonces el conjunto de valores que puede tomar $T$ es

\[ g{\left( \mathrm{Supp}(V) \right)} = \{ \, t \in \RR \mid \exists v \in \mathrm{Supp}(V)\colon g(v) = t \, \} = \{0, 1, 4, 9 \}. \]

Como $g$ es la misma transformación que en el ejemplo anterior, hay algunas cosas que ya sabemos. Primero,

\begin{align*} \Prob{T = t} &= 0, & \text{para cada $t < 0$},\end{align*}

mientras que para $t = 0$, se tiene que $\Prob{T = 0} = \Prob{V = 0} = \frac{1}{8}$. Para $t > 0$, vimos previamente que $g^{-1}[\{t\}] = \{ \sqrt{t}, -\sqrt{t} \}$. Así, tendremos que

\begin{align*} \Prob{T = t} = \sum_{v \in g^{-1}[\{ t \}]} \Prob{V = v} = \Prob{V = \sqrt{t}} + \Prob{V = -\sqrt{t}}. \end{align*}

En particular, la v.a. $V$ sólamente toma probabilidades mayores a $0$ en $\{-3, -2, -1, 0, 1, 2, 3 \}$, por lo que $\Prob{T = t} > 0$ para $t \in \{0, 1, 4, 9 \}$, y $\Prob{T = t} = 0$ en otro caso. Así, tenemos que

\begin{align*} \Prob{T = 1} &= \Prob{V = \sqrt{1}} + \Prob{V = -\sqrt{1}} = \frac{1}{2^{|1| + 1}} + \frac{1}{2^{|-1|+1}} = \frac{1}{2^2} + \frac{1}{2^{2}} = \frac{2}{4} = \frac{1}{2}, \\[1em] \Prob{T = 4} &= \Prob{V = \sqrt{4}} + \Prob{V = -\sqrt{4}} = \frac{1}{2^{|2| + 1}} + \frac{1}{2^{|-2|+1}} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}, \\[1em] \Prob{T = 9} &= \Prob{V = \sqrt{9}} + \Prob{V = -\sqrt{9}} = \frac{1}{2^{|3| + 1}} + \frac{1}{2^{|-3|+1}} = \frac{1}{16} + \frac{1}{16} = \frac{1}{8}. \end{align*}

Alternativamente, podemos obtener una fórmula cerrada para cada $t \in \{1, 4, 9 \}$, que queda así:

\begin{align*} \Prob{T = t} = \Prob{V = \sqrt{t}} + \Prob{V = -\sqrt{t}} &= \frac{1}{2^{{\left|\sqrt{t}\right|} + 1}} + \frac{1}{2^{{\left|-\sqrt{t}\right|} + 1}} \\[1em] &= \frac{1}{2^{\sqrt{t} + 1}} + \frac{1}{2^{\sqrt{t} + 1}} \\[1em] &= \frac{2}{2^{\sqrt{t} + 1}} \\[1em] &= \frac{1}{2^{\sqrt{t}}}.\end{align*}

Y así obtenemos una expresión para la función de masa de probabilidad de $T$:

\begin{align*} p_{T}(t) = \begin{cases} \dfrac{1}{2^{\sqrt{t}}} & \text{si $t \in \{1,4,9\}$}, \\[1em] \dfrac{1}{8} & \text{si $t = 0$}, \\[1em] 0 & \text{en otro caso}. \end{cases} \end{align*}

Figura. Gráfica de la función de masa de probabilidad de $T$.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Verifica que la función de masa de probabilidad de la v.a. $Z$ del primer ejemplo satisface las propiedades de una función de masa de probabilidad.
  2. Haz lo mismo para la función de masa de probabilidad de la v.a. $V$ del segundo ejemplo.
  3. Retomando los dos ejemplos vistos en esta entrada y las v.a.’s $Z$ y $V$ de cada ejemplo, y tomando la transformación $f\colon\RR\to\RR$ dada por $f(x) = x^{3} − x^{2} − 4x + 4$:
    1. Encuentra la función de masa de probabilidad de $f(Z)$.
    2. Encuentra la función de masa de probabilidad de $f(V)$.

Más adelante…

El método expuesto en esta entrada funciona para cualquier variable aleatoria discreta. No hay fórmulas «cerradas» para la f.m.p. (función de masa de probabilidad) de la transformación de una v.a. discreta. Sin embargo, las fórmulas \eqref{transf:1} y \eqref{transf:2} son suficientes para encontrar las probabilidades de eventos que involucran a la transformación de la v.a. discreta conocida. No obstante, estas fórmulas sólamente funcionan para v.a.’s discretas. Por ello, en la siguiente entrada centraremos nuestra atención en el caso de las v.a.’s continuas.

Entradas relacionadas

Geometría Analítica I: Homotecias y semejanzas

Por Paola Lizeth Rojas Salazar

Introducción

En esta ocasión, vamos a estudiar dos transformaciones importantes en las matemáticas, que ya hemos mencionado en entradas anteriores, pero que no hemos definido. Estas transformaciones son las semejanzas y las homotecias.

Homotecias

Las homotecias son las transformaciones que hacen que una figura aumente o disminuya de tamaño (como si aplicáramos un «zoom» a la figura). El cuánto aumenta o disminuye esta figura, es lo que llamaremos «factor de expansión», que tendrá un centro que se va a mantener mientras la figura aumenta o disminuye de tamaño, a este centro lo llamaremos «centro de expansión».

Cuando el centro de expansión es el origen, tenemos una transformación lineal con la siguiente matriz asociada:

\begin{equation}kI=\begin{pmatrix} k & 0 \\ 0 & k\end{pmatrix}\end{equation}

Con $k>0$.

Si $k>1$, tenemos un aumento y, si $k<1$, tenemos una disminución.

Si ahora componemos esta matriz con una traslación por $b \in \mathbb R^2$, obtenemos una homotecia de factor $k$ con centro de expansión $c$ que es el punto fijo que se obtiene resolviendo la siguiente ecuación:

\begin{equation}kx+b=x \end{equation}

Semejanzas

Las semejanzas son transformaciones que preservan ángulos.

Observa que las homotecias y las isometrías son semejanzas. Lo anterior muestra que las tres transformaciones están relacionadas, a continuación hablaremos más a fondo de esta relación.

Teorema 3.25: Si $f:\mathbb R^2 \to \mathbb R^2$ es una semejanza, entonces existen $k>0$, $A\in O(2)$ y $b \in \mathbb R^2$ tales que:

\begin{equation} f(x)=kAx+b \end{equation}

Demostración

Considera la transformación lineal $g(x)=f(x)-b$, con $b:=f(0)$. Esta transformación es una traslación, por lo que preserva ángulos.

También considera a $B=(u,v)$, la matriz asociada a $g$, donde $u$ y $v$ son ortogonales con la misma norma $(*)$.

Finalmente, sean $k=|u|=|v|$ y $A=\frac{B}{k}$.

Observa que $A\in O(2)$ porque sus columnas son ortonormales y que, además:

\begin{equation} f(x)=g(x)+b=Bx+b=k Ax+b\end{equation}

Lo que concluye la demostración.

Tarea moral

  1. Demuestra, en $(*)$, que $u$ y $v$ son ortogonales con la misma norma.
  2. Encuentra la expresión de la homotecia de factor de expansión $k$ y centro $c$.
  3. Demuestra que una transformación $f:\mathbb R^2 \to \mathbb R^2$ es una semejanza si y solo si, existe $k>0$ tal que $d(f(x),f(y))=kd(x,y)$ para todo $x,y \in \mathbb R^2$.

Más adelante…

No te pierdas la siguiente entrada en la que hablaremos de un nuevo tema, la clasificación.

Geometría Analítica I: Grupos de transformaciones

Por Paola Berenice García Ramírez

Introducción

En la primera entrada de esta unidad [1a entrada] indicamos que serán muy importantes tanto las propiedades de los vectores como los lugares geométricos vistos en las primeras dos unidades, pues serán de vital apoyo para comprender los tipos de transformaciones que estaremos viendo.

En la entrada anterior [2a entrada] contemplamos los conceptos necesarios de las funciones que nos ayudaron a definir formalmente a una transformación. En ésta entrada vamos a comenzar por dos conjuntos: $\Delta_{2}$ y $\Delta_{3}$, las propiedades que cumplen y que nos ayudarán a comprender la definición de un grupo. Ambos conjuntos son los ejemplos más representativos de los grupos de transformaciones: los grupos simétricos de orden n. Pretendemos dar a conocer el tema en éste primer curso de Geometría Analítica de forma introductoria; pero puede profundizarse en asignaturas más avanzadas de la carrera universitaria, una de ellas es Álgebra Moderna en la Teoría de Grupos.

El conjunto $\Delta_{2}$

Antes que nada nos pondremos de acuerdo en la notación que vamos a usar: $x \mapsto y$ nos indicará que al elemento $x$ le corresponde el elemento $y$ bajo la función correspondiente.

El primero conjunto que conoceremos tiene dos elementos $\{ 0,1 \}$, a quien identificaremos por $\Delta_{2}$ y se lee «delta-dos». ¿Cuáles son las funciones de $\Delta_{2}$ en sí mismas? Primero tenemos a

\begin{align*}
0 & \xmapsto{id} 0\\
1 & \mapsto 1\\
\end{align*}

a quien llamaremos por $id$ (identidad de $\Delta_{2}$); porque al elemento $0$ le corresponde él mismo y al elemento $1$ le corresponde él mismo. La siguiente función es

\begin{align*}
0 & \xmapsto{\rho} 1\\
1 & \mapsto 0\\
\end{align*}

que denotamos por $\rho$. ¿Qué ocurre si recurrimos a la función composición $\rho \circ \rho$? Si comenzamos con $0$ sabemos bajo $\rho$ que $\rho (0) = 1$, por ello

\begin{align*}
(\rho \circ \rho)(0) &= \rho [\rho (0)]\\
& = \rho (1) = 0.\\
\end{align*}

Y si comenzamos con $\rho (1)$, en forma análoga obtendremos $(\rho \circ \rho)(1) = 1$. Podemos darnos cuenta que $\rho$ es su propio inverso, pues $(\rho \circ \rho = id)$.

Otra forma en que podemos trabajar la composición de funciones es siguiendo los elementos mediante una tablita. Vamos a ver que $\rho \circ \rho = id$ como sigue:

\begin{align*}
0 & \xmapsto{p} 1 \xmapsto{p} 0\\
1 & \mapsto 0 \mapsto 1\\
\end{align*}

donde colocamos la función correspondiente sobre cada flecha entre los elementos y nos damos cuenta que los elementos iniciales coinciden con las imágenes finales bajo la composición. Entonces concluimos que se cumple $\rho \circ \rho = id$.

Tenemos otras dos funciones:

\begin{align*}
0 & \xmapsto{C_{0}} 0 \hspace{0.2cm} & 0 \xmapsto{C_{1}} 1\\
1 & \mapsto 0 \hspace{0.18cm} &1 \mapsto 1\\
\end{align*}

e independientemente del elemento inicial, bajo $C_{0}$ corresponde el elemento $0$ y bajo $C_{1}$ corresponde el elemento $1$. Tanto $C_{0}$ como $C_{1}$ se consideran funciones constantes; mientras que las únicas transformaciones que contemplaremos de $\Delta_{2}$ son $ id $ y $ \rho $.

El conjunto $\Delta_{3}$

Ahora consideremos al conjunto $\Delta_{3} := \{ 0,1,2 \}$ e indicaremos las funciones de $\Delta_{3}$ en sí mismo bajo la notación

\begin{align*}
0 & \mapsto x\\
1 & \mapsto y\\
2 & \mapsto z
\end{align*}

donde $x, y, z \in \Delta_{3}$. Como $x, y, z \in \Delta_{3}$ son imágenes arbitrarias, habrán $3^3 = 27$ funciones, pero sólo 6 serán transformaciones. Vamos a explicar porqué sólo 6 transformaciones: puesto que queremos biyectividad, al elegir a $0$ y corresponderle su imagen, entonces al $1$ le podrán corresponder sólo $2$ opciones y a su vez, cuando llegamos al $2$, ya sólo le podrá corresponder $1$ opción. En resumen, en la primera posición hay $3$ opciones, en la segunda hay $2$ opciones y en la tercera sólo $1$ y el número de transformaciones será de $3 \times 2 \times 1 = 6$.

Las primeras 3 transformaciones que veremos son:

\begin{align*}
&0 \xmapsto{id} 0 &0 \xmapsto{\rho_{1}} 1& \hspace{0.2cm} &0 \xmapsto{\rho_{2}} 2\\
&1 \mapsto 1 &1 \mapsto 2 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 2 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 1
\end{align*}

De hecho a las 6 transformaciones las visualizaremos como las «simetrías» de un triángulo equilátero. Las primeras 3 corresponden a rotaciones (la identidad es quien rota $0$ grados). Diremos que $\rho_{1}$ y $\rho_{2}$ son inversas, pues $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$ (vamos a dejar esta relación como ejercicio de la tarea moral, para practicar). Es decir, con cualquier elemento inicial, la imagen de la composición será el mismo elemento inicial. Esto quiere decir que una rotación rotará $120°$ en una dirección y al aplicar la segunda rotación rota $120°$ pero en dirección contraria. Los triángulos correspondientes son:

También se cumple que $\rho_{1} \circ \rho_{1} = \rho_{2}$, pues

\begin{align*}
0 & \xmapsto{\rho_{1}} 1 \xmapsto{\rho_{1}} 2\\
1 & \mapsto 2 \mapsto 0 \\
2 & \mapsto 0 \mapsto 1
\end{align*}

Entonces decimos que cumple la siguiente definición:

Definición. Sea $f$ cualquier transformación, decimos que

\begin{equation*}
f^{n} = f \circ f \circ \cdots \circ f,
\end{equation*}

es decir, $f^{n}$ es $f$ compuesta consigo misma n veces.

En nuestro ejemplo, escribiremos que se cumple entonces la relación $\rho_{1}^{2} = \rho_{2}$. Por otro lado, para $\Delta_{3}$ tenemos otras 3 transformaciones llamadas transposiciones que geométricamente las visualizamos como reflexiones y son:

\begin{align*}
&0 \xmapsto{\alpha} 0 & 0 \xmapsto{\beta} 2 & \hspace{0.2cm} & 0 \xmapsto{\gamma} 1\\
&1 \mapsto 2 &1 \mapsto 1 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 1 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 2
\end{align*}

El triángulo que representa a estas transformaciones es:

Las direcciones de la flecha dependerán de cada transformación. Ahora vamos a probar una relación que cumple $ \alpha, $ la cual es:

Demostrar que se cumple $\alpha^{2} = id$.

Demostración. En efecto, recordemos que $ \alpha^{2} = \alpha \circ \alpha$, así que desarrollaremos el seguimiento de elementos a través de la composición $\alpha \circ \alpha$ como sigue:

\begin{align*}
0 & \xmapsto{\alpha} 0 \xmapsto{\alpha} 0\\
1 & \mapsto 2 \mapsto 1 \\
2 & \mapsto 1 \mapsto 2
\end{align*}

y observemos que al final de la composición obtuvimos $\alpha^2 (0)=0$, $\alpha^2 (1)=1$, $\alpha^2 (2)=2$ y con ello vemos que $\alpha^{2}=id.$

$\square$

En la sección de tarea moral dejaremos unos ejercicios de práctica sobre más relaciones que cumplen $\alpha$, $\beta$ y $\gamma$; como son $\alpha^2 = \beta^2 = \gamma^2 = id$, $\alpha \circ \beta = \rho_{1}$ y que $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.

A continuación vamos a definir a un conjunto de transformaciones que cumplen ciertas propiedades interesantes y para ejemplificar a dicho conjunto retomaremos uno de los conjuntos vistos en esta entrada.

Grupos de transformaciones

Definición. A un conjunto $G$ de transformaciones de un conjunto $A$ le llamaremos un grupo de transformaciones de $A$ si cumple:

  1. $id_{A} \in G$
  2. $f,g \in G \longrightarrow g \circ f \in G$
  3. $f \in G \longrightarrow f^{-1} \in G$

Como ejemplos, tomemos a $A$ como $A = \Delta_{3}$. Sabemos que tiene 6 elementos, pero un grupo de transformaciones es el de las rotaciones ya que contiene a la identidad $(1)$, es cerrado bajo la composición $(2)$ y es cerrado bajo inversas $(3)$.

Otro grupo de transformaciones de $A=\Delta_{3}$ es el de las transposiciones (o reflexiones) junto con la identidad.

Definición. Dado un conjunto cualquiera de transformaciones de $A$, el grupo que genera es el grupo de transformaciones obtenido de todas las posibles composiciones con elementos de él o sus inversos.

Como ejemplo de un grupo que genera tenemos a $\alpha$ y $\beta$ ya que generan todas las transformaciones de $\Delta_{3}$.

También $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$ ( porque $\rho^{3} = id$, $\rho_{1}$ y $\rho^{2} = \rho_{2}$).

Para terminar con esta entrada daremos un concepto adicional. Si te llamaron la atención los conjuntos $\Delta_{2}$ y $\Delta_{3}$ y quieres saber más de ellos o si hay más conjuntos similares, la respuesta es sí. Pertenecen a un conjunto de transformaciones, el cual definiremos a continuación:

Definición. Al conjunto de todas las transformaciones de un conjunto con $n$ elementos $\Delta_{n} := \{ 0, 1, \cdots, n-1 \}$ se le llama grupo simétrico de orden $n$ y se le denota $S_{n}$. Dicho grupo tiene $n! = n \times (n-1) \times (n-2 ) \cdots \times 2 \times 1$ ($n$ factorial) elementos a los cuales se le llaman permutaciones.

Tarea moral

  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\rho_{1}$ y $\rho_{2}$ que vimos en esta entrada, demostrar que $\rho_{1}$ y $\rho_{2}$ son inversas, es decir:
    1. $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$
  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\alpha$, $\beta$ y $\gamma$ que vimos en esta entrada, demostrar que se cumplen las relaciones siguientes:
    1. $\alpha^2 = \beta^2 = \gamma^2 = id$. [Sugerencia: Hacer cada composición por separado].
    2. $\alpha \circ \beta = \rho_{1}$
    3. $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.
  • Demuestren que $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$. [Sugerencia: Demuestren que se cumplen las relaciones $\rho^{3} = id$, y $\rho^{2} = \rho_{2}$), porque $\rho_{1}$ es un elemento de dicho grupo de rotaciones].

Más adelante

En esta entrada vimos que en el conjunto $\Delta_{3}$ hay dos posibles grupos de transformaciones: el de las rotaciones y el de las transposiciones junto con la identidad. Mediante triángulos pudimos visualizar el comportamiento que hay en los elementos iniciales y sus imágenes; con ello se comprende porque están en cada grupo.

En la siguiente entrada continuaremos con un primer grupo de transformaciones en los \mathbb{R}, que es de las transformaciones afines, que tiene una muy buena relación con un lugar geométrico que ya hemos visto: las rectas. La entrada [Rectas en forma paramétrica] de la Unidad 1 nos podrá ayudar como repaso si lo requerimos.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso: