Archivo de la etiqueta: teoría de conjuntos

Teoría de los Conjuntos I: Pares ordenados y producto cartesiano

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos de pares ordenados. Esto nos llevará a muchas ideas importantes en teoría de conjuntos como el producto cartesiano, las relaciones, las funciones y los órdenes.

En estra entrada comenzaremos definiendo qué es un par ordenado. Estudiaremos cuándo dos pares ordenados son iguales. Veremos algunas definiciones alternativas de par ordenado que tienen la misma propiedad crucial. A partir de la idea de par ordenado, definiremos al producto cartesiano y daremos algunos ejemplos sobre este concepto.

Par ordenado

Anteriormente vimos el concepto de par no ordenado. Dados $a$ y $b$ conjuntos , podíamos construir un conjunto cuyos elementos son solamente $a$ y $b$. Sin embargo, el orden de los elementos no es importante. Si $a,b$ son conjuntos, el par no ordenado $\set{a,b}$ resulta ser igual al par no ordenado $\set{b,a}$ por el axioma de extensión.

Pero en matemáticas muchas veces necesitamos poder distiguir cuándo «$a$ va en la primera posición y $b$ va en la segunda». A continuación daremos una definición que nos permitirá hacer esto.

Definición. Sean $a$ y $b$ conjuntos. Definimos al par ordenado $(a, b)$ como el conjunto:

$(a,b)=\set{\set{a}, \set{a,b}}$.

Esta definición fue dada por Kazimierz Kuratowski en 1921. Lo que permite tener una expresión matemática que nos deja «darle orden» a las parejas. Esto es lo que enuncia de manera más precisa el siguiente resultado.

Teorema. Sean $a, b, c, d$ conjuntos, entonces $(a,b)=(c, d)$ si y sólo si $a=c$ y $b=d$.

Demostración.

$\leftarrow$] Supongamos que $a=c$ y $b=d$. Resulta que $(a,b)=\set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}=(c,d)$.

$\rightarrow$] Supongamos que $(a,b)=(c,d)$. Veamos que $a=c$ y $b=d$.

Caso 1: $a=b$

Si $a=b$, entonces $(a,b)=\set{\set{a}, \set{a,b}}=\set{\set{a},\set{a,a}}=\set{\set{a},\set{a}}=\set{\set{a}}$. Dado que $(a,b)=(c,d)=\set{\set{c},\set{c,d}}$ tenemos que $\set{a}=\set{c}$ y $\set{a}=\set{c,d}$, por lo que $a=c=d$. Por lo tanto, $a=c$ y $b=d$.

Caso 2: $a\not=b$

Como $\set{a}\in \set{\set{a},\set{a,b}}=\set{\set{c},\set{c,d}}$, entonces $\set{a}\in \set{\set{c}, \set{c,d}}$. Así, $\set{a}=\set{c}$ o $\set{a}=\set{c,d}$.

El caso en el que $\set{a}=\set{c, d}$ no puede ocurrir, pues de ser así $c=d=a$, de donde $(c, d)=\set{\set{c}, \set{c,d}}=\set{\set{c}}$. Además, como $(a,b)=\set{\set{a}, \set{a,b}}$ y $a\not=b$, se tiene que $(a,b)$ tiene dos elementos y $(c, d)$ tiene un elemento, por lo que no es posible que $(a,b)=(c,d)$. Así, este caso no puede ocurrir. Por lo tanto, $\set{a}=\set{c}$ y así $a=c$.

Por otro lado, como $\set{a,b}\in \set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}$ entonces $\set{a,b}=\set{c}$ o $\set{a,b}=\set{c,d}$.

No puede ocurrir que $\set{a,b}=\set{c}$, pues de ser así $a=b=c$, pues contradice el hecho de que $a\not =b$. Así, debe ocurrir que $\set{a,b}=\set{c,d}$. Como $a=c$, entonces $b=d$.

$\square$

La definición de Hausdorff de par ordenado

Aunque la definición que dio Kuratowski es la más conocida y es la que usaremos en nuestro curso, no es la única definición de par ordenado que existe, en el sentido de que la teoría de conjuntos nos permite dar otras definiciones que también cumplen con la propiedad crucial que demostramos en el teorema anterior. La siguiente definición fue dada por Felix Hausdorff en su texto Grundzüge der Mengenlehre de1914.

Definición. Sean $a,b$ conjuntos. Definimos

$(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}$.

Ejemplo.

El siguiente ejemplo muestra cómo el orden sí importa.

$(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}=\set{\set{\set{\emptyset,\set{\emptyset}},\emptyset}, \set{\set{\set{\emptyset}},\set{\emptyset}}}$ y $(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}=\set{\set{\set{\set{\emptyset}},\emptyset}, \set{\set{\emptyset,\set{\emptyset}}, \set{\emptyset}}}$.

Se puede observar que los conjuntos $(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}\not=(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}$.

$\square$

Teorema. Se cumple que $(a,b)_{H}=(c,d)_{H}$ si y sólo si $a=c$ y $b=d$.

Demostración.

Supongamos que $(a,b)_{H}=(c,d)_{H}$, esto es $\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$. Luego, $\set{a,\emptyset}\in \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$, por lo que $\set{a,\emptyset}= \set{c,\emptyset}$ o $\set{a,\emptyset}=\set{d,\set{\emptyset}}$.

Hagamos primero el caso en el que $\{a,\emptyset\}=\{d,\{\emptyset\}\}$. En este caso, $\{b,\{\emptyset\}\}=\{c,\emptyset\}$. Como $\emptyset\neq \{\emptyset\}$, entonces la primera igualdad implica $a=\{\emptyset\}$ y $d=\emptyset$. La segunda igualdad implica $b=\emptyset$ y $c=\{\emptyset\}$. Así, en efecto tenemos $a=c$ y $b=d$.

El otro caso es que $\set{a,\emptyset}= \set{c,\emptyset}$ y $\set{b,\set{\emptyset}}= \set{d,\set{\emptyset}}$. En la primera igualdad, debemos tener entonces $a=c$, y en la segunda $b=d$.

Por lo tanto, en cualquier caso si $(a,b)_{H}=(c,d)_{H}$ entonces $a=c$ y $b=d$.

Por otro lado, si $a=c$ y $b=d$ se cumple que $(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}} =(c,d)_{H}$.

$\square$

La definición de Wiener de par ordenado

Veamos una tercera posible definición. Esta fue dada por Norbert Wiener en 1914, en su texto A simplification of the logic of relations.

Definición. Sean $a$ y $b$ conjuntos. Definimos

$(a,b)_{W}=\set{\set{\set{a},\emptyset},\set{\set{b}}}$.

Ejemplo.

En el siguiente ejemplo mostraremos que el orden de las parejas según la definición de Wiener importa:

$(\emptyset,\set{\emptyset})_{W}=\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$

y $(\set{\emptyset},\emptyset)_{W}=\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$.

Dado que los conjuntos $\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$ y $\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$ son distintos, tenemos que $(\emptyset,\set{\emptyset})_{W}\not=(\set{\emptyset},\emptyset)_{W}$.

$\square$

Como te imaginarás, esta tercera definición también cumple que dos parejas serán iguales si y sólo si son iguales en cada entrada. La verificación de esto queda como uno de los ejercicios.

Producto cartesiano

Si tenemos conjuntos $A$ y $B$, podemos construir muchos pares ordenados $(a,b)$ tomando $a\in A$ y $b\in B$. ¿Qué obtenemos cuando consideramos a todos estos posibles pares?

Definición. Sean $A$ y $B$ conjuntos arbitrarios. Definimos al producto cartesiano de $A$ y $B$, como el conjunto:

$A\times B= \set{(x,y):x\in A\ y\ y\in B}$.

Por supuesto, para que esta definición sea correcta, debemos primero demostrar que en efecto la colección que estamos considerando es un conjunto. Esto está garantizado por la siguiente proposición.

Proposición. Si $A$, $B$ son conjuntos, entonces $A\times B$ es un conjunto.

Demostración.

Sean $A$ y $B$ conjuntos. Se sigue por axioma de la unión que $A\cup B$ es conjunto y por axioma del conjunto potencia tenemos que $\mathcal{P}(A\cup B)$ es conjunto. Y de nuevo, por axioma del conjunto potencia tenemos que $\mathcal{P}(\mathcal{P}(A\cup B))$ es conjunto.

Sean $a\in A$ y $b\in B$ arbitrarios. Veamos que $(a,b)\subseteq \mathcal{P}(\set{a,b})$ y $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$.

En efecto, $(a,b)=\set{\set{a},\set{a,b}}$ y $\mathcal{P}(\set{a,b})=\set{\emptyset, \set{a},\set{b},\set{a,b}}$, por lo que se verifica que $(a,b)\subseteq \mathcal{P}(\set{a,b})$. La contención $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$ se deduce de la propiedad más general de la potencia que dice que si $X\subseteq Y$, entonces $\mathcal{P}(X)\subseteq \mathcal{P}(Y)$.

Así, $(a,b)\subseteq \mathcal{P}(A\cup B)$, o bien $(a, b)\in \mathcal{P}(\mathcal{P}(A\cup B))$.

Luego por el esquema de comprensión, tenemos que

$$\set{x\in \mathcal{P}(\mathcal{P}(A\cup B)): \exists a\in A\exists b\in B (x=(a,b))}$$

es conjunto, pero esto es precisamente la colección $A\times B$.

$\square$

Ejemplo.

Sean $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\set{\emptyset},\set{\set{\emptyset}}}$ conjuntos. Tenemos que:

\begin{align*}
A\times B&=\set{ \emptyset, \set{\emptyset}}\times \set{\set{\emptyset},\set{\set{\emptyset}}}\\
&=\set{(\emptyset,\set{\emptyset}), (\emptyset, \set{\set{\emptyset}}),(\set{\emptyset}, \set{\emptyset}), (\set{\emptyset},\set{\set{\emptyset}}) }.
\end{align*}

$\square$

Tarea moral

  1. Calcula el producto cartesiano de $A\times B$, $B\times A$ y $A\times C$ si $A=\set{\emptyset}$, $B=\set{\emptyset, \set{\emptyset}}$ y $C=\emptyset$.
  2. Justifica por qué para $a$ y $b$ conjuntos se tiene que $(a,b)$, $(a,b)_H$ y $(a,b)_W$ son conjuntos.
  3. Demuestra que $(a,b)_{W}=(c,d)_{W}$ si y sólo si $a=c$ y $b=d$.
  4. Si usáramos las definiciones $(a,b)_H$ y $(a,b)_W$, podríamos de manera análoga a la que creamos $A\times B$, también crear productos cartesianos $A\times_H B$ y $A\times_W B$. Justifica que en este caso también estas colecciones serían conjuntos.

Más adelante…

En la siguiente entrada demostraremos algunas de las propiedades del producto cartesiano. Veremos si para el caso de esta nueva operación para conjuntos se da la conmutatividad, la asociatividad y algunas de las propiedades que tratamos para la unión y la intersección.

Entradas relacionadas

Entradas relacionadas:

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Diferencia simétrica

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos acerca de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos. Algunos otros los probaremos con el método de demostración habitual.

Conceptos previos

Definición. Sean $A$ y $B$ conjuntos arbitrarios, definimos la diferencia simétrica de $A$ con $B$, como:

$A\triangle B= (A\setminus B)\cup (B\setminus A)$.

Imagen de diferencia simétrica

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que:

\begin{align*}
A\triangle B&=\set{\emptyset, \set{\emptyset}}\triangle\set{\emptyset,\set{\set{\emptyset}}}\\
&= (\set{\emptyset, \set{\emptyset}}\setminus\set{\emptyset,\set{\set{\emptyset}}})\cup (\set{\emptyset, \set{\set{\emptyset}}}\setminus\set{\emptyset,\set{\emptyset}}\\
&=\set{\set{\emptyset}}\cup\set{\set{\set{\emptyset}}}\\
&=\set{\set{\emptyset}, \set{\set{\emptyset}}}.
\end{align*}

$\square$

Si observamos con detalle el ejemplo anterior podremos notar que el conjunto que nos resulta también es igual a $(A\cup B)\setminus (A\cap B)$. De hecho, no solo ocurre para este caso en particular, sino que ocurre para cualesquiera conjuntos. Vamos a probarlo a continuación:

Proposición. Para cualesquiera $A, B$ conjuntos, se cumple que $A\triangle B=(A\cup B)\setminus (A\cap B)$.

Demostración.

\begin{align*}
A\triangle B&= (A\setminus B)\cup (B\setminus A)\\
&=(A\cap (X\setminus B))\cup (B\cap (X\setminus A))\\
&=(A\cup (B\cap(X\setminus A))\cap ((X\setminus B)\cup (B\cap(X\setminus A)))\\
&=((A\cup B)\cap(A\cup (X\setminus A)))\cap (((X\setminus B)\cup B)\cap ((X\setminus B)\cup(X\setminus A)))\\
&=((A\cup B)\cap X)\cap(X\cap (X\setminus (A\cap B))\\
&=(A\cup B)\cap (X\setminus(A\cap B))\\
&=(A\cup B)\setminus (A\cap B).
\end{align*}

$\square$

Otras equivalencias

Proposición. Sean $A$ y $B$ conjuntos. Sea $X$ un conjunto con respecto al cual tomaremos complementos. Se cumplen las siguientes igualdades de conjuntos:

  1. $A\triangle B= (A\cap B^c)\cup (B\cap A^c)$,
  2. $A\triangle B= (A\cup B)\cap (A\cap B)^c$.

Demostración.


  1. \begin{align*}
    (A\cap B^c)\cup(B\cap A^c)&=(A\cap (X\setminus B))\cup (B\cap (X\setminus A))\\
    &=((A\cap (X\setminus B))\cup B)\cap((A\cap (X\setminus B))\cup (X\setminus A))\\
    &=(A\cap (X\setminus B))\cup B)\cap((A\cup (X\setminus A))\cap ((X\setminus B)\cup (X\setminus A)))\\
    &=(A\cap (X\setminus B))\cup B)\cap(X\cap ((X\setminus B)\cup (X\setminus A)))\\
    &=(A\cap (X\setminus B))\cup B)\cap((X\setminus B)\cup (X\setminus A))\\
    &=(A\cap (X\setminus B))\cup B)\cap(X\setminus (B\cap A))\\
    &=((A\cup B)\cap ((X\setminus B)\cup B))\cap (X\setminus (B\cap A))\\
    &=((A\cup B)\cap X)\cap (X\setminus (B\cap A))\\
    &=(A\cup B)\setminus (A\cap B)\\
    &=A\triangle B.
    \end{align*}

  2. \begin{align*}
    A\triangle B&= (A\cup B)\setminus (A\cap B)\\
    &=(A\cup B)\cap (X\setminus (A\cap B))\\
    &=(A\cup B)\cap (A\cap B)^c.
    \end{align*}

$\square$

Propiedades de la diferencia simétrica

Veamos otras tres propiedades de la diferencia simétrica.

Proposición. Sean $A$ y $B$ conjuntos. Se satisfacen las siguientes propiedades:

  1. $A\triangle \emptyset=A$,
  2. $A\triangle A=\emptyset$,
  3. $A\triangle B= B\triangle A$.

Demostración.


  1. \begin{align*}
    A\triangle \emptyset&= (A\setminus\emptyset)\cup (\emptyset\setminus A)\\
    &=A\cup \emptyset=A.
    \end{align*}

  2. \begin{align*}
    A\triangle A&= (A\setminus A)\cup (A\setminus A)\\
    &=\emptyset\cup \emptyset\\
    &=\emptyset.
    \end{align*}

  3. \begin{align*}
    A\triangle B&= (A\setminus B)\cup (B\setminus A)\\
    &=(B\setminus A)\cup (A\setminus B)\\
    &=B\triangle A.
    \end{align*}

$\square$

Proposición. $A\triangle B=\emptyset$ si y sólo si $A=B$.

Demostración.

Supongamos primero que $A=B$, entonces $A\triangle B= (A\setminus B)\cup (B\setminus A)= (A\setminus A)\cup (A\setminus A)=\emptyset\cup \emptyset=\emptyset$.

Por otro lado, si $A\triangle B=\emptyset$, tenemos que $(A\setminus B)\cup (B\setminus A)= \emptyset$. Esto implica que $A\setminus B=\emptyset=B\setminus A$ pues de otra forma la unión de estos conjuntos no resultaría ser el conjunto vacío.
Por un lado, $A\setminus B=\emptyset$ implica que $A\subseteq B$ y $B\setminus A=\emptyset$ implica que $B\subseteq A$. Por lo tanto, $A=B$.

$\square$

Tarea moral

Para $A$, $B$ y $C$ conjuntos, demuestra que se satisfacen las siguientes propiedades:

  1. $A\cap (B\triangle C)=(A\cap B)\triangle (A\cap C)$.
  2. Si $A\triangle B= A\triangle C$, entonces $B=C$.
  3. $A\triangle (B\triangle C)=(A\triangle B)\triangle C$.

Más adelante…

En la siguiente entrada introduciremos nuevos conceptos: definiremos qué es un par ordenado y a partir de éste concepto definiremos al producto cartesiano. Será necesario que recuerdes el concepto de par no ordenado. (Ver Teoría de los Conjuntos I: Axioma de unión y axioma de par).

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Álgebra de conjuntos

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. Veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

Algunos recordatorios

En el álgebra de conjuntos lo que se hace es primero probar algunas propiedades fundamentales de las operaciones de conjuntos, y usar estas propiedades repetidamente para demostrar otras, aprovechando que la igualdad de conjuntos es transitiva. Es por ello que nos conviene recopilar varias propiedades de las operaciones que tenemos hasta ahora.

Sean $A$, $B$, $C$ y $X$ conjuntos tales que $A, B,C\subseteq X$. Entonces:

  1. $A\cup \emptyset=A$,
  2. $A\cup A=A$,
  3. $A\cup B=B\cup A$,
  4. $(A\cup B)\cup C = A \cup (B\cup C)$,
  5. $A\cap \emptyset =\emptyset$,
  6. $A\cap A=A$,
  7. $A\cap B = B\cap A$,
  8. $(A\cap B)\cap C =A \cap (B\cap C)$,
  9. $A\cap (B\cup C)= (A\cap B)\cup (A\cap C)$,
  10. $A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$,
  11. $A\setminus \emptyset=A$,
  12. $A\setminus A=\emptyset$,
  13. $A\setminus B= A\cap (X\setminus B)$,
  14. $A\cap (X\setminus A)=\emptyset$,
  15. $A\cup (X\setminus A)=X$,
  16. $X\setminus (A\cap B)= (X\setminus A)\cup (X\setminus B)$,
  17. $X\setminus (A\cup B)= (X\setminus A)\cap (X\setminus B)$,
  18. $X\setminus (X\setminus A)= A$,
  19. Si $A\subseteq B$, entonces $A\cap B=A$.

Hay otras propiedades que ya hemos demostrado, pero no las pusimos aquí. Podríamos ponerlas para ir recopilando más cosas que sabemos que son válidas.

Demostraciones con álgebra de conjuntos

Ahora veremos algunos ejemplos de cómo se trabaja con álgebra de conjuntos. En varias de las siguientes proposiciones enunciamos resultados para cuando $A$ y $B$ son subconjuntos de un conjunto en común $X$. Toma en cuenta que para $A$ y $B$ arbitrarios, siempre podemos tomar $X=A\cup B$.

Proposición. Sean $A, B\subseteq X$ conjuntos. Prueba que $A\setminus B= A\setminus (A\cap B)$.

Demostración.

\begin{align*}
A\setminus (A\cap B)&= A\cap (X\setminus (A\cap B)) \tag{usando 13}\\
&=A\cap((X\setminus A)\cup(X\setminus B)) \tag{usando 16} \\
&=(A\cap (X\setminus A))\cup (A\cap (X\setminus B)) \tag{usando 9} \\
&=\emptyset\cup (A\cap (X\setminus B)) \tag{usando 14} \\
&=A\cap (X\setminus B) \tag{usando 1 y 3} \\
&=A\setminus B \tag{usando 13}.
\end{align*}

$\square$

Proposición. Sean $A$, $B\subseteq X$ son conjuntos, entonces $A\setminus B= (A\cup B)\setminus B$.

Demostración.

\begin{align*}
(A\cup B)\setminus B &= (A\cup B)\cap (X\setminus B) \tag{usando 13}\\
&= (A\cap (X\setminus B))\cup (B\cap (X\setminus B)) \tag{usando 9}\\
&= (A\cap (X\setminus B))\cup \emptyset \tag{usando 14}\\
&=A\cap (X\setminus B) \tag{usando 1}\\
&=A\setminus B \tag{usando 13}.
\end{align*}

$\square$

Proposición. Para $A$, $B$, $X$ conjuntos tales que $A, B\subseteq X$, $(A\cap B)\cup (A\setminus B)= A$.

Demostración.

\begin{align*}
(A\cap B)\cup (A\setminus B)&= (A\cap B)\cup (A\cap (X\setminus B)) \tag{usando 13}\\
&=A\cap (B\cup (X\setminus B)) \tag{usando 9}\\
&=A\cap X \tag{usando 15}\\
&=A \tag{usando 14}.
\end{align*}

$\square$

Proposición. $A\cap (B\setminus C)=(A\cap B)\setminus C$.

Demostración.

\begin{align*}
(A\cap B)\setminus C &=(A\cap B)\cap (X\setminus C) \tag{usando 13}\\
&=A\cap (B\cap X\setminus C) \tag{usando 8}\\
&= A\cap (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\cap B)\setminus C=(A\setminus C)\cap (B\setminus C)$.

Demostración.

\begin{align*}
(A\cap B)\setminus C&= (A\cap B)\cap (X\setminus C) \tag{usando 13}\\
&=(A\cap X\setminus C)\cap (B\cap X\setminus C) \tag{usando 6 ,7 y 8}\\
&= (A\setminus C)\cap (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\cup B)\setminus C=(A\setminus C)\cup (B\setminus C)$.

Demostración.

\begin{align*}
(A\cup B)\setminus C&= (A\cup B)\cap (X\setminus C) \tag{usando 13}\\
&=(A\cap X\setminus C)\cup (B\cap X\setminus C) \tag{usando 9}\\
&= (A\setminus C)\cup (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\setminus B)\setminus C=(A\setminus C)\setminus (B\setminus C)$.

Demostración.

\begin{align*}
(A\setminus C)\setminus (B\setminus C)&= (A\setminus C)\cap (X\setminus (B\setminus C)) \tag{usando 13}\\
&=(A\setminus C)\cap (X\setminus (B\cap (X\setminus C)) \tag{usando 13}\\
&=(A\setminus C)\cap ((X\setminus B)\cup (X\setminus (X\setminus C))) \tag{usando 16}\\
&=(A\setminus C)\cap ((X\setminus B)\cup C) \tag{usando 18}\\
&=(A\setminus C\cap (X\setminus B))\cup ((A\setminus C)\cap C) \tag{usando 9}\\
&=((A\cap(X\setminus C))\cap (X\setminus B))\cup ((A\cap(X\setminus C))\cap C) \tag{usando 13}\\
&=((A\cap(X\setminus B))\cap (X\setminus C))\cup (A\cap((X\setminus C)\cap C)) \tag{usando 8}\\
&=((A\cap(X\setminus B))\cap (X\setminus C))\cup (A\cap\emptyset) \tag{usando 14}\\
&=((A\setminus B)\setminus C)\cup \emptyset \tag{usando 13 y 5}\\
&=(A\setminus B)\setminus C \tag{usando 1}.
\end{align*}

$\square$

Proposición. Sean $A$, $B$, $C$ subconjuntos de $X$. Tenemos que $A\setminus (B\setminus C)=(A\setminus B)\cup (A\cap C)$.

Demostración.

\begin{align*}
A\setminus (B\setminus C)&= A\cap (X\setminus (B\setminus C)) \tag{usando 13}\\
&=A\cap (X\setminus (B\cap (X\setminus C))) \tag{usando 13}\\
&=A\cap((X\setminus B)\cup (X\setminus(X\setminus C))) \tag{usando 16}\\
&=A\cap((X\setminus B)\cup C) \tag{usando 18}\\
&=(A\cap (X\setminus B))\cup (A\cap C) \tag{usando 9}\\
&=(A\setminus B)\cup (A\cap C) \tag{usando 13}.
\end{align*}

$\square$

Tras realizar estas demostraciones es importante notar que muchas veces hacer el uso del álgebra nos ayuda a ahorrar tiempo. Sin embargo, para poder lograr esto es necesario utilizar muchas de las propiedades que sí hemos demostrado previamente por doble contención.

Tarea moral

Realiza las siguientes demostraciones haciendo uso del álgebra de conjuntos:

  • Prueba que para $A, B, C, X$ conjuntos tales que $A, B, C\subseteq X$ se cumple que: $(A\setminus B)\setminus (A\setminus C)= (A\cap C)\setminus B$.
  • Prueba que $(A\setminus B)\setminus (A\setminus C)=A\cap (C\setminus B)$.
  • Si $A, B\subseteq X$, entonces $(X\setminus A)\setminus (X\setminus B)=B\setminus A$.
  • Sean $A$ y $B$ conjuntos. Entonces $A\setminus (B\cap C)=(A\setminus B)\cap (A\setminus C)$.

Más adelante…

En la siguiente entrada definiremos una nueva operación entre conjuntos: la diferencia simétrica. Retomaremos los resultados que hemos visto hasta ahora y seguiremos haciendo uso del álgebra de conjuntos para demostrar algunas propiedades de esta nueva operación.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Axiomas débiles

Por Gabriela Hernández Aguilar

Introducción

A continuación hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Veremos que a partir de dichos axiomas y el esquema de comprensión, podemos deducir a los axiomas de existencia, del par, de unión y de conjunto potencia. Esto resulta ser de interés pues en los sistemas axiomáticos a veces tiene ventajas considerar los axiomas más debiles que siguen dando una teoría equivalente.

Axiomas débiles

Veamos qué nos dicen los axiomas débiles de la teoría de conjuntos:

  • Axioma débil de existencia. Existe un conjunto.
  • Axioma débil del par. Para cualesquiera $a,b$ existe un conjunto $c$ tal que $a\in c$ y $b\in c$.
  • Axioma débil de unión. Para cualquier conjunto $s$ existe un conjunto $U$ tal que si $x\in a$ y $a\in s$, entonces $x\in U$.
  • Axioma débil del conjunto potencia. Para cualquier conjunto $a$ existe un conjunto $p$ tal que si $x\subseteq a$ entonces $x\in p$.

Diferencias entre axiomas débiles y los axiomas

Notemos que hay ligeras diferencias con los axiomas que hemos visto hasta ahora, sin embargo, esto hace que no sean iguales.

El axioma débil de existencia nos asegura que existe al menos un conjunto, sin embargo, no necesariamente será el conjunto vacío.

Por su parte, para $a$ y $b$ conjuntos el axioma débil del par nos otorga un conjunto cuyos elementos serán $a$ y $b$, pero no necesariamente serán sus únicos elementos como en el caso del axioma del par.

Ejemplo.
Sean $a$ y $b$ conjuntos distintos y no vacíos. El axioma débil del par podría garantizarnos la existencia de, digamos, $c=\set{a, b, \emptyset}$. Tenemos que en efecto $a\in c$ y $b\in c$, sin embargo, $\emptyset\in c$. Por lo que, el conjunto que nos otorga el axioma débil del par no necesariamente resultar ser un par no ordenado que tiene exactamente a $a$ y $b$.

$\square$

El axioma débil de unión nos asegura que para cualquier conjunto $s$ existe un conjunto $U$ cuyos elementos serán los elementos de los elementos de $s$, sin embargo, $U$ puede tener elementos $x$ que no cumplan que $x\in a$ y $a\in s$.

Ejemplo.

Si $s=\set{\emptyset, \set{\emptyset}}$, el axioma débil del par podría garantizarnos la existencia de, digamos, $U=\set{\emptyset, b}$ con $b\not=\emptyset$. Pero esto no es lo mismo que la unión como la platicamos. Por un lado, $\emptyset\in \set{\emptyset}$ y $\set{\emptyset}\in s$, lo cual coincide con lo que hemos platicado, pero también $b\in s$, que podría darnos un elemento adicional que no teníamos.

$\square$

Finalmente, para el axioma débil del conjunto potencia pasa algo parecido. Si $a$ es un conjunto, el axioma nos otorga un conjunto $p$ cuyos elementos son aquellos que están contenidos en $a$, pero no necesariamente serán los únicos elementos del conjunto $p$.

Ejemplo.

Sea $a=\set{\emptyset}$. Quizás el conjunto garantizado por el axioma débil del conjunto potencia es $p=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Notemos que $\emptyset\subseteq a=\set{\emptyset}$ y $\set{\emptyset}\subseteq a=\set{\emptyset}$. Sin embargo, $\set{\set{\emptyset}}\not\subseteq a$ pues $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin \set{\emptyset}$.

$\square$

Axioma débil de existencia y esquema de comprensión implican axioma de existencia.

Demostración.

Sea $A$ el conjunto que existe por axioma débil de existencia. Luego, por el esquema de comprensión tenemos que

$\set{x\in A: x\not=x}$

es conjunto.

Veamos que $\set{x\in A: x\not=x}$ no tiene elementos. Supongamos por contradicción que $\set{x\in A:x\not=x}$ tiene al menos un elemento, denotado como $y$. Entonces $y\in A$ y $y\not=y$, lo que es un absurdo pues para cualquier conjunto $z$, $z=z$. Así, $\set{x\in A:x\not=x}$ no tiene elementos, es decir, es el conjunto vacío.

$\square$

Axioma débil del par y esquema de comprensión implican axioma del par.

Demostración.

Sean $a$ y $b$ conjuntos. Sea $c$ el conjunto que existe por axioma débil del par. Luego, por el esquema de comprensión tenemos que

$\set{x\in c: x=a\vee x=b}$

es conjunto. Resulta que los únicos elementos de $\set{x\in c:x=a\vee x=b}$ son $a$ y $b$, pues si $z\in \set{x\in c:x=a\vee x=b}$, $z$ es tal que $z\in c$ y $z=a$ o $z=b$.

Observa que al añadir la propiedad de que $x=a$ o $x=b$, eliminamos todos aquellos conjuntos en $c$ que no son $a$ y no son $b$, de esta forma a partir del axioma débil del par obtenemos al conjunto que solo tiene a $a$ y $b$.

$\square$

Axioma débil de unión y esquema de comprensión implican axioma de unión.

Demostración.

Sea $a$ un conjunto y sea $d$ el conjunto que nos otorga el axioma débil de unión.

Luego, por el esquema de comprensión tenemos que

$U=\set{x\in d: \exists y\in a(x\in y)}$

es conjunto.

Observemos que los elementos de $\set{x\in d: \exists y\in a(x\in y)}$ coinciden con los elementos del conjunto que nos otorga el axioma de unión. Para ello, debemos verificar que se cumple lo siguiente: $x\in U$ si y sólo si existe $y\in a$ tal que $x\in y$. Así pues, si $x\in U$, entonces, $x\in d$ y existe $y\in a$ tal que $x\in y$ y, en consecuencia, podemos concluir que si $x\in U$, existe $y\in a$ tal que $x\in y$. Ahora bien, si tenemos un conjunto $x$ tal que existe $y\in a$ tal que $x\in y$, entonces, $x\in d$ por la propiedad que tiene el conjunto $d$ otorgado por el axioma débil de unión. De esta manera, $x\in U$, ya que $x\in d$ y existe $y\in a$ con $x\in y$.

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a poner en práctica lo que hemos visto en esta sección pues ahora tú tendrás que dar algunos ejemplos distintos a los de esta entrada que nos permitan diferenciar a los axiomas débiles de los axiomas que conocemos de la teoría de los conjuntos:

  • Demuestra que se puede inferir el axioma del conjunto potencia del axioma débil del conjunto potencia y el esquema de comprensión.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil del par y el axioma del par.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil de unión y el axioma de unión.
  • Da otros ejemplos que muestren la diferencia entre el axioma débil del conjunto potencia y el axioma del conjunto potencia.

Más adelante…

En este momento hemos sentado las bases para nuestro curso de teoría de conjuntos. En la siguiente entrada comenzaremos a hablar acerca del complemento de un conjunto. Este nuevo conjunto también se tratará de una operación entre conjuntos. Sus resultados como las leyes de De Morgan, nos serán de gran utilidad para hacer álgebra de conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: El axioma de buena fundación

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del axioma de buena fundación. Este axioma nos permitirá decir cuándo un conjunto esta bien fundado, es decir, bien construido. Además daremos otro argumento para probar que la colección de todos los conjuntos no es un conjunto.

Acerca del axioma

Axioma de buena fundación. Para cualquier conjunto $X$ no vacío, existe $u\in X$ tal que $u\cap X=\emptyset$.

En los siguiente ejemplos no será necesario invocar al axioma de buena fundación pues tendremos a todos sus elementos escritos de manera explícita. Sin embargo, ayudarán a entender qué es lo que el axioma de buena fundación siempre garantiza que existe.

Ejemplos.

  • Sea $A=\set{\emptyset}$, el único elemento que tiene $A$ es $\emptyset$ y en efecto, $A\cap \emptyset=\emptyset$. Esto último ocurre pues no existe ningún conjunto $x$ tal que $x\in \set{\emptyset}$ y $x\in \emptyset$.
  • Consideremos al conjunto $B=\set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}$. Veamos que existe $u\in B$ tal que $u\cap B=\emptyset$. Dado que $B$ es un conjunto pequeño podemos explorar qué ocurre con cada uno de sus elementos:
    – Para $\emptyset\in B$ tenemos que $\emptyset\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\emptyset$.
    – Ahora, para $\set{\emptyset}\in B$ ocurre que $\set{\emptyset}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\emptyset}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    – Si consideramos $\set{\set{\emptyset}}\in B$ ocurre que $\set{\set{\emptyset}}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\set{\emptyset}}$ tampoco funciona.
    Por lo tanto, existe $u=\emptyset\in B$ tal que $u$ y $B$ no tienen elementos en común. Por el análisis de casos, este $u$ es único.
  • Tomemos $C=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$. Haciendo un análisis de los elementos del conjunto $C$ tenemos lo siguiente:
    – Para $\set{\emptyset}\in C$ tenemos que $\set{\emptyset}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}=\emptyset$ pues $\emptyset\in\set{\emptyset}$ pero $\emptyset\notin \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$.
    – Ahora, para $\set{\emptyset,\set{\emptyset}}\in C$ ocurre que $\set{\emptyset,\set{\emptyset}}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}= \set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    Por lo tanto, existe $u=\emptyset\in C$ tal que $u$ y $C$ no tienen elementos en común. Una vez más, este elemento es único.

$\square$

Conjuntos que no existen

El axioma de buena fundación juega un papel importante para decir qué conjuntos no pueden existir. Veamos los siguientes resultados:

Teorema. Para cualquier conjunto $x$, no es cierto que $x\in x$. Es decir, ningún conjunto puede pertenecer a sí mismo.

Demostración.
Supongamos que sí existe un conjunto $x$ tal que $x\in x$. Luego, $\set{x}$ es un conjunto por el axioma de par y es tal que $x\in \set{x}$.
De lo anterior, tenemos que $x\cap \set{x}\not=\emptyset$ pues $x\in x\cap\set{x}$. Esto último contradice al axioma de buena fundación, pues $x$ podría ser el único elemento en $\{x\}$ dado por dicho axioma. Dado que la contradicción vino de suponer que existe $x$ tal que $x\in x$, resulta que no existe un conjunto que haga tal cosa.

$\square$

Teorema. Sean $a$ y $b$ conjuntos no vacíos. No existen ciclos de la forma $a\in b\in a$.

Demostración.
Supongamos que sí existe algún ciclo de la forma $a\in b\in a$. Luego, por el axioma de par podemos considerar al conjunto $\set{a,b}$. Dado que $\set{a,b}$ es un conjunto pequeño podemos analizar qué pasa con cada uno de sus elementos:
– Para $a\in\set{a,b}$ tenemos que $a\cap\set{a,b}\not=\emptyset$ pues $b\in a$ y $b\in \set{a,b}$,
– Si tomamos a $b\in\set{a,b}$ tenemos que $b\cap\set{a,b}\not=\emptyset$ pues $a\in b$ y $a\in \set{a,b}$.

Sin embargo, en todas las posibilidades obtenemos una contradicción al axioma de buena fundación. Así, no existen ciclos de la forma $a\in b\in a$.

$\square$

Diferencias entre la pertencia y contención

Vistos estos teoremas, nos tomaremos el tiempo para establecer las diferencias que hay entre la contención y la pertenencia.

Por un lado, $a\subseteq a$ siempre ocurre para cualquier conjunto $a$, mientras que $a\in a$ ya vimos que es imposible.

Vimos que la contención es transitiva (ver Teoría de los Conjuntos I: Axioma de conjunto potencia), es decir, si $a\subseteq b$ y $b\subseteq c$, entonces $a\subseteq c$. Resulta que si $a\in b$ y $b\in c$, entonces $a\in c$ no siempre ocurre, es decir, la pertenencia no es transitiva.

Ejemplo.

Consideremos $a=\set{\emptyset}$,$b= \set{\set{\emptyset}}$ y $c=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $a\in b$ y $b\in c$, sin embargo, $a\notin c$.

$\square$

La colección de todos los conjuntos

Anteriormente, probamos con ayuda de la paradoja de Rusell que la colección que tiene como elementos a todos los conjuntos no es un conjunto. En esta sección, reforzaremos esta afirmación utilizando el axioma de buena fundación para demostrar una vez más que está colección no es un conjunto.

Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

Demostración.

Supongamos que $\mathcal{P}(x)\subseteq x$, entonces para cualquier $y\in \mathcal{P}(x)$, $y\in x$. Dado que $x\subseteq x$, entonces $x\in \mathcal{P}(x)$. Así, $x\in x$ y lo cual contradice el primer teorema de la sección anterior. Por lo tanto, para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

$\square$

Teorema. La colección de todos los conjuntos no es conjunto.

Demostración.

Supongamos que sí existe. Sea $V$ el conjunto de todos los conjuntos. Por axioma de conjunto potencia tenemos que $\mathcal{P}(V)$ es un conjunto y es tal que $\mathcal{P}(V)\not\subseteq V$. Así, existe $x\in \mathcal{P}(V)$ tal que $x\notin V$ lo que contradice que $V$ tiene a todos los conjuntos.

Por lo tanto, el conjunto de todos los conjuntos no existe.

$\square$

La intersección del conjunto vacío

Así como existen diversas formas de escribir al conjunto vacío, también hay varias formas de escribir a la colección de todos los conjuntos. Resulta que si queremos intersecar al conjunto vacío no obtenemos al vacío, sino que obtenemos a la colección de todos los conjuntos.

Afirmación. $\bigcap \emptyset$ no es un conjunto.

Demostración. Supongamos que $\bigcap\emptyset$ sí es un conjunto. Sea $x\in \bigcap\emptyset$, entonces para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$. Sin embargo, $y\in \emptyset$ es falso para cualquier conjunto $y$ y por lo tanto, para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$ es verdadero. (Ver tabla de verdad del conectivo implicación: Teoría de los Conjuntos I: Repaso sobre lenguaje de la Teoría de los Conjuntos)

Esto significa que cualquier conjunto que demos va a pertenecer a $\bigcap \emptyset$, es decir, este conjunto tiene como elementos a todos los conjuntos. Esto, como vimos arriba, es imposible.

$\square$

Tarea moral

  • Prueba que para $A_0,A_1, A_2,\cdots A_n$ conjuntos, el ciclo $A_0\in A_1\in A_2\in\cdots\in A_n\in A_0$ no existe (Estrictamente hablando, esta demostración requerirá que formalicemos estos «puntos suspensivos». De cualquier forma, intenta dar una demostración inductiva con lo que sabes de este tipo de demostraciones.)
  • Sea $A=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in A$ tal que $u\cap A=\emptyset$.
  • Sea $B=\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in B$ tal que $u\cap B=\emptyset$.
  • Da otro ejemplo de una propiedad que describa a la clase de todos los conjuntos.
  • Prueba que para cualquier conjunto $X$, se tiene que $X\cap \emptyset=\emptyset$.

Más adelante…

En la siguiente entrada hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Así mismo veremos cómo dichos axiomas junto con el esquema de comprensión implican los axiomas que hemos visto hasta ahora. De modo que la siguiente entrada nos servirá para hacer un recordatorio sobre todo lo que hemos visto hasta este momento.

Entradas relacionadas


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»