Álgebra Superior I: Parejas ordenadas y producto cartesiano de conjuntos

Introducción

En la primera unidad revisamos los conceptos básicos de la teoría de conjuntos. Estos nos permitirán a partir de ahora manejar conjuntos con los operadores que vimos y nos permitirán armar nueva teoría a partir de ellos. En esta unidad nos enfocaremos en las relaciones y funciones. Estas son maneras de «agrupar» unos conjuntos con otros y serán útiles no solo en este curso, sino que en muchos otros que se basan en la idea de las funciones entre conjuntos.

Agrupando zapatos

Empecemos considerando una tienda de zapatos muy disfuncional, pues no se preocupa por hacer coincidir sus zapatos derechos con los izquierdos. Describimos al conjunto $D = \{d_1,d_2, \dots, d_n\}$ como los $n$ zapatos derechos que tiene la tienda, y por $I = \{ i_1, i_2, \dots i_m\}$ como los $m$ zapatos izquierdos. Nota que al ser una tienda poco organizada, puede ser que haya distinto número de zapatos derechos que de izquierdos (puede pasar que $m \neq n$). Cuando un cliente llega a la tienda, el mismo cliente tiene la posibilidad de elegir su par de zapatos. El primer cliente llega y elige el zapato derecho $d_3$ con el zapato izquierdo $i_2$, y eso está permitido, pues la tienda deja que los clientes eligan sus pares como quieran. Llamemos a este par de zapatos, el par $(d_3,i_2)$. Esto es lo que nos va a dar una idea intuitiva de lo que llamaremos parejas ordenadas, que en términos simples es considerar elementos de dos conjuntos y agruparlos en una misma expresión. A continuación damos su definición conjuntista.

Definición. Sean $X$ y $Y$ dos conjuntos. Una pareja ordenada de $X$ y $Y$ es una pareja de dos términos $x \in X$ y $y \in Y$ escrita mediante la expresión $(x,y)$. En términos de conjuntos se define como: $$(x,y) = \{ \{ x\}, \{x,y \} \} $$

El nombre de pareja ordenada viene del hecho de que los dos elementos a considerar respetan un orden de conjuntos, esto quiere decir a que si nos referimos a la pareja ordenada $(x,y)$ de $X$ con $Y$, eso significa que $x \in X \land y \in Y$. Por lo que la pareja $(y,x)$ no es la misma, puesto que esta es una pareja de $Y$ con $X$. Además nota que hay un «orden», pues en su expresión conjuntista, el término $x$ aparece en los dos conjuntos que conforman $(x,y)$, mientras que $y$ solo aparece una vez.

Digamos ahora que $n=4$ y $m=2$, de manera que los zapatos derechos son $D = \{ d_1,d_2,d_3,d_4 \}$ y los izquierdos son $I = \{ i_1,i_2 \}$. Entonces los zapatos que se pueden formar de estos conjuntos son:

$$\{ (d_1,i_1), (d_1,i_2), (d_2,i_1), (d_2,i_2), (d_3,i_1), (d_3,i_2), (d_4,i_1), (d_4,i_2) \} $$

Y como posiblemente te habrás imaginado, los distintos zapatos que se pueden formar con esos conjuntos, corresponden a las distintas parejas ordenadas entre $X$ y $Y$.

Igualdad entre parejas ordenadas

Ahora vamos a definir cuándo diremos que dos pares de parejas ordenadas (zapatos) son el mismo. Para esto observa que en la vida cotidiana, diríamos que dos pares son iguales si el zapato derecho de un par es exactamente el mismo que el zapato derecho del otro par, de la misma manera que el izquierdo de uno será el mismo izquierdo del otro. Anotemos eso como una proposición que habrá que demostrar.

Proposición. Sean $X$ y $Y$ dos conjuntos y $(x,y),(x’, y’)$ dos parejas ordenadas de $X$ con $Y$. Entonces las parejas son la misma ($(x,y)=(x’,y’)$) si y solo si $(x=x’) \land (y=y’)$.

Demostración. $\Rightarrow)$ Para demostrar la primera implicación, notemos que por hipótesis $(x,y)=(x’,y’)$. Esto quiere decir que $$\{\{ x\} ,\{x,y \} \} = \{\{ x’\} ,\{x’,y’ \} \} $$. Para $x$ tenemos dos casos:

Caso 1. $x =y$

En este caso, notemos que $\{\{ x\} ,\{x,y \} \} = \{\{x\}\}$. Al tener este conjunto un único elemento, entonces $\{\{ x’\} ,\{x’,y’ \} \}$ también tiene un único elemento, ya que de otra manera no serían el mismo conjunto. Enseguida, se sigue que $\{\{x\}\} = \{\{x’\}\}$. Donde se tiene que $x=x’$. Ahora notemos que al ser $x=y$, entonces $x’=y’$ y puesto que $\{\{x’\}\} = \{\{ x’\} ,\{x’,y’ \} \}$ entonces $x’=y’$.

Caso 2. $x \neq y$

Ahora, si son distintos, tenemos que $$(x,y) = \{ \{x\}, \{ x,y\} \}$$. Notemos ahora que $\{ \{x\}, \{ x,y\} \} = \{ \{x’\}, \{ x’,y’\} \}$ son conjuntos con ambos dos elementos. Al ser estos conjuntos iguales, entonces cada elemento de un conjunto está en el otro, es decir $\{x\} \in \{ \{x’\}, \{ x’,y’\} \}$ y $\{x,y\} \in \{ \{x’\}, \{ x’,y’\} \}$. Ahora, como $\{x\} \in \{ \{x’\}, \{ x’,y’\} \}$ entonces $(\{x\} = \{x’\} ) \lor (\{x\} = \{x’,y’\})$, al ser $\{x’\}$ el único elemento con un elemento, entonces deducimos que $\{x\} = \{x’\}$. De manera análoga $\{x,y\} = \{x’,y’\}$.

Ahora, como $\{x\} = \{x’\}$ entonces $x=x’$. Y después como $\{x,y\} = \{x’,y’\}$, podemos sustituir $x$ por $x’$, pues son el mismo elemento. Así, $\{x’,y\} = \{x’,y’\}$. Y nota que esto significa que $y=y’$, pues tenemos la igualdad de conjuntos. De esta manera $x=x’$ y $y=y’$ como se quería demostrar.

$\Leftarrow)$. Ahora supongamos que $x=x’$ y $y=y’$. Al tener esta igualdad, entonces $\{x\}=\{x’\}$ y además $\{x,y\} = \{ x’,y’\}$ pues tienen los mismos elementos. De esta forma, los siguientes conjuntos son iguales:$$ \{\{ x\} ,\{x,y \} \} = \{\{ x’\} ,\{x’,y’ \} \}.$$ Por lo tanto $(x,y)=(x’,y’)$

$\square$

Algunos ejemplos de parejas ordenadas que sí son la misma:

  • $(1,4) = (1,4) $
  • $(\frac{1}{2}, 0) = (1- \frac{1}{2}, 9 -9) $
  • $(\{x:P(x)\}, \{x: R(x) \land \neg R(x) \}) = (\{x: P(x) \land P(x) \}, \emptyset) $

Algunos ejemplos de parejas ordenadas que no son la misma:

  • $(1,4) \neq (4,1)$
  • $(1,0) \neq (1, \{0\})$
  • $(\{x: P(x)\}, \{x: P(x) \}) \neq (\{x: P(x) \land R(x)\}, \{x: \neg P(x) \})$

Producto Cartesiano

Hemos hablado ya de las parejas ordenadas particulares entre dos conjuntos. Sin embargo, al estar hablando de parejas ordenadas entre dos conjuntos, realmente el término que usaremos de ahora en adelante será el de producto cartesiano.

Definición. Sean $X$ y $Y$ dos conjuntos. El producto cartesiano $X \times Y$ entre $X$ y $Y$ es el conjunto: $$X \times Y = \{(x,y): (x \in X) \land (y \in Y) \}. $$

De esta manera, volviendo al ejemplo de los zapatos, en párrafos anteriores mencionamos un caso particular en donde $D = \{ d_1,d_2,d_3,d_4 \}$ y $I = \{ i_1,i_2 \}$, entonces:

$$D \times I = \{ (d_1,i_1), (d_1,i_2), (d_2,i_1), (d_2,i_2), (d_3,i_1), (d_3,i_2), (d_4,i_1), (d_4,i_2) \}. $$

Otro ejemplo, podríamos considerarlo tomando $X = \{1, \{1,2\} \}, Y = \{\emptyset, \text{perro}, 1\}$. Entonces:

\begin{align*}
&X \times Y = \{ (1,\emptyset), (1,\text{perro}),(1,1),(\{1,2\},\emptyset),(\{1,2\},\text{perro}), (\{1,2\},1)\} \\
&Y \times X = \{ (\emptyset,1), (\text{perro},1),(1,1),(\emptyset,\{1,2\}),(\text{perro},\{1,2\}), (1,\{1,2\}) \} \\
\end{align*}

Como puedes observar, aquí vemos que no es lo mismo $X \times Y$ que $Y \times X$, de hecho no coinciden en casi ningún elemento, salvo uno:

$(X \times Y) \cap (Y \times X) = \{ (1,1)\}.$

Así que hay que tener cuidado en el orden del producto cartesiano, pues como pudiste ver, no conmutan.

Otra cosa que podemos observar es que tampoco es asociativo el producto cartesiano. Esto quiere decir que no es lo mismo por ejemplo $\mathbb{Z} \times (\mathbb{Z} \times \mathbb{Z})$ que $(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}$. Para convencerte de esto, observa cómo son los elementos del primer conjunto y del segundo conjunto. Para empezar, un elemento de $\mathbb{Z} \times (\mathbb{Z} \times \mathbb{Z})$ es $(1,(1,1))$ mientras que un elemento del segundo es $((1,1),1)$, que no son el mismo elemento. Y de manera general, no es lo mismo para $a,b,c \in \mathbb{Z}$ la pareja $(a,(b,c))$ que la pareja $((a,b),c)$ pues siempre la primera componente de la primera pareja es un número, mientras que de la segunda, es una pareja ordenada.

Tarea moral

  1. ¿Cuántas parejas ordenadas hay en el producto cartesiano de $X \times Y$ si $X$ y $Y$ tienen un número finito de elementos?
  2. Demuestra que si $X,Y$ son dos conjuntos no vacíos, entonces $X \times Y = Y \times X$ si y solo si $X=Y$
  3. ¿Cómo es $ \emptyset \times Y$? ¿Cuántos elementos tiene?
  4. Encuentra el producto cartesiano $X \times X$ donde $X = \{x \in \mathbb{Z} : (x \leq 20)\land (x \ \text{es un número primo)} \}$
  5. Encuentra el producto cartesiano de $X \times Y$ donde $X= \{1, 5, 10 \}$ y $Y = X \times X$

Más adelante…

En la siguiente entrada, vamos a ver algunas propiedades del producto cartesiano. Algunas de las cuales ya hemos revisado en esta entrada, añadiendo otras sobre cómo se comportan con los conectores entre conjuntos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.