Archivo de la etiqueta: sistemas de ecuaciones

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Por Julio Sampietro

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de $2\times 2$», y más adelante «de $3\times 3$». Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables $x_1, \dots, x_n$ es una ecuación de la forma

\begin{align*}
a_1 x_1 + \dots +a_n x_n =b,
\end{align*}

donde $a_1, \dots, a_n, b\in F$ son escalares dados y $n$ es un entero positivo. Las incógnitas $x_1,\dots, x_n$ suponen ser elementos de $F$.

Un sistema de ecuaciones lineales en las variables $x_1, \dots, x_n$ es una familia de ecuaciones lineales, usualmente escrito como

\begin{align*}
\begin{cases}
a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\
a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\
\quad \vdots\\
a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m
\end{cases}.
\end{align*}

Aquí de nuevo los $a_{ij}$ y los $b_i$ son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener $x_1,\ldots,x_n$ de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si $X$ es un vector columna con entradas $x_1, \dots, x_n$, $A$ es la matriz en $M_{m,n}(F)$ con entradas $[a_{ij}]$ y $b$ es un vector columna en $F^m$ con entradas $b_1, \dots, b_m$ entonces el sistema se reescribe como

\begin{align*}
AX=b.
\end{align*}

Puedes verificar esto usando la definición de $A$ como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores $X$ en $F^n$ que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) $x_1$, $x_2$ y $x_3$:

\begin{align*}
\begin{cases}
3x_1-2x_2+7x_3&=5\\
4x_1+3x_3&=7\\
2x_1+x_2-7x_3&=-1\\
-x_1+3x_2&=8
\end{cases}.
\end{align*}

Si tomamos al vector $b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix}$ en $\mathbb{R}^4$, al vector de incógnitas $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ y a la matriz $$A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},$$ entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores $X$ en $\mathbb{R}^3$ tales que $$AX=b.$$

$\triangle$

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si $C_1, \dots, C_n$ son las columnas de $A$, vistos como vectores columna en $F^{m}$, el sistema es equivalente a

\begin{align*}
x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.
\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que $b=0$. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales $AX=b$ se dice homogéneo si $b=0$ (es decir si $b_1= b_2=\dots= b_m=0$).
  2. Dado un sistema $AX=b$, el sistema lineal homogéneo asociado es el sistema $AX=0$.

Así, un sistema es homogéneo si es de la forma $AX=0$ para alguna matriz $A$.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

\begin{align*}
\begin{cases}
2x+3y-z&=-1\\
5x+8z&=0\\
-x+y&=1.
\end{cases}
\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.
\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=
\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.
\end{align*}

$\triangle$

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema $AX=b$ basta con encontrar un vector solución $X_0$ y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea $A\in M_{m,n}(F)$ y $b\in F^{m}$. Sea $\mathcal{S}\subset F^{n}$ el conjunto de soluciones del sistema homogéneo asociado $AX=0$. Si el sistema $AX=b$ tiene una solución $X_0$, entonces el conjunto de soluciones del sistema $AX=b$ no es más que

\begin{align*}
X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.
\end{align*}

Demostración: Por hipótesis, $AX_0=b$. Ahora al sustituir, $AX=b$ si y sólo si $AX=A X_0$, o bien $A(X-X_0)=0$. Es decir, un vector $X$ es solución de $AX=b$ si y sólo si $X-X_0$ es solución de $AY=0$, de otra manera, si y sólo si $X-X_0\in \mathcal{S}$. Pero esto último es equivalente a decir que existe $s\in \mathcal{S}$ tal que $X-X_0=s$, luego $X= X_0 +s\in X_0 +\mathcal{S}$. Esto prueba el resultado.

$\square$

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean $A$ y $B$ dos matrices del mismo tamaño. Si los sistemas $AX=0$ y $BX=0$ son equivalentes, escribiremos $A\sim B$.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

\begin{align*}
\begin{cases}
x_1=0\\
x_1=1
\end{cases}
\end{align*}

o bien

\begin{align*}
\begin{cases}
x_1 -2x_2=1\\
2 x_2-x_1=0
\end{cases}.
\end{align*}

$\triangle$

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente $AX=b$ tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Más adelante

El principio de superposición dice que para entender las soluciones de los sistemas lineales de la forma $AX=b$, basta con entender a los homogéneos, es decir, los de la forma $AX=0$.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones $AX=0$, hay uno de la forma $A_{red}X=0$, con $A_{red}$ una matriz escalonada reducida, y equivalente a $A$.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Tarea moral

  • Muestra que el sistema \begin{align*}
    \begin{cases}
    x_1 -2x_2=1\\
    2 x_2-x_1=0
    \end{cases}.
    \end{align*}
    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea $b$ un vector en $F^n$ y $I_n$ la matriz identidad en $M_n(F)$. ¿Cómo se ve de manera explícita el sistema de ecuaciones $(2I_n)X=b$? ¿Cuáles son todas sus soluciones?
  • Sean $A,B$ matrices de tamaño $n\times n$ tales que el sistema $ABX=0$ solo tiene como solución la solución trivial. Demuestre que el sistema $BX=0$ también tiene como única solución a la solución trivial.
  • Sea $A\in M_2(\mathbb{C})$ y considere el sistema homogéneo $AX=0$. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. $A$ es invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones e inversas de matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada resolveremos problemas relacionados con el uso del método de reducción gaussiana para resolver sistemas de ecuaciones y encontrar inversas de matrices.

Problemas resueltos

Problema 1. Sea $A$ una matriz de tamaño $m\times n$ y sean $b$ y $c$ dos vectores en $\mathbb{R}^{m}$ tales que $AX=b$ tiene una única solución y el sistema $AX=c$ no tiene solución. Explica por qué tiene que ser cierto que $m>n$.

Solución. Dado que el sistema $AX=b$ es consistente, usando el teorema de existencia y unicidad podemos concluir que

  1. $\left(A’\vert b’\right)$ no tiene pivotes en la última columna,
  2. $A’$ tiene pivotes en todas sus columnas.

Sin embargo, sabemos que el sistema $AX=c$ no tiene solución. Otra vez por el teorema de existencia y unicidad, esto nos implica que $\left(A’\vert c’\right)$ tiene un pivote en la última columna. Sin embargo, ya sabíamos que $A’$ tiene pivotes en todas sus columnas, pero aún así hay espacio en $\left(A’\vert c’\right)$ para un pivote más, es decir, nos sobra espacio hasta abajo por lo que necesariamente tenemos al menos un renglón más que el número de columnas. Es decir $m\geq n+1$, y por lo tanto $m>n$.

$\triangle$

Problema 2. Determina si existen reales $w$, $x$, $y$ y $z$ tales que las matrices $$
\begin{pmatrix} x & 2\\ y & 1 \end{pmatrix}$$ y $$\begin{pmatrix} 5 & -2 \\ z & w \end{pmatrix}$$ sean inversas la una de la otra.

Solución. En una entrada anterior mostramos que para que dos matrices cuadradas $A$ y $B$ del mismo tamaño sean inversas, basta con mostrar que $AB=I$. De esta forma, haciendo el producto tenemos que el enunciado es equivalente a

\begin{align*}
\begin{pmatrix} 5x+2z & -2x+2w \\ 5y+z & -2y+w \end{pmatrix}
=\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}.
\end{align*}

Es decir, tenemos un sistema lineal

\begin{align*}
\begin{cases}
5x+2z&=1\\
-2x+2w&=0\\
5y+z&=0\\
-2y+w&=1.
\end{cases}
\end{align*}

Este es un sistema lineal de la forma $AX=b$, donde $$A=\begin{pmatrix} 5 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 5 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$ y $$b=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Para determinar si tiene solución, aplicamos reducción gaussiana a la matriz $(A|b)$. En los siguientes pasos estamos aplicando una o más operaciones elementales.

\begin{align*}
&\begin{pmatrix}
5 & 0 & 2 & 0 & 1 \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{10} \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{4}{5} \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}

Ya encontramos la forma escalonada reducida $(A’|b’)$ de $(A|b)$. La última columna de $(A’|b’)$ tiene un pivote (el de la última fila). De esta forma, el sistema de ecuaciones no tiene solución.

$\triangle$

En la práctica, se pueden usar herramientas tecnológicas para para resolver algunos problemas numéricos concretos. Sin embargo, es importante tener un sólido conocimiento teórico para saber cómo aprovecharlas.

Problema 3. Determina si las siguientes matrices son invertibles. En caso de serlo, encuentra la inversa. \begin{align*}
A&=\begin{pmatrix} -1 & 1 & 3 \\ 0 & 1 & 5 \\ 7 & 3 & 2 \end{pmatrix}\\
B&=\begin{pmatrix}1 & 5 & -1 & 2 \\ -1 & 3 & 1 & 2 \\ 3 & 4 & 1 & -2 \\ -15 & 9 & -1 & 22 \end{pmatrix}.
\end{align*}

Solución. Usando la calculadora de forma escalonada reducida de eMathHelp, obtenemos que la forma escalonada reducida de $A$ y $B$ son, respectivamente

\begin{align*}
A_{red}&=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\\
B_{red}&=\begin{pmatrix}1 & 0 & 0 & -\frac{9}{8}\\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Por uno de nuestros teoremas de caracterización, para que una matriz cuadrada sea invertible debe de suceder que su forma escalonada reducida sea la identidad. Esto nos dice que $A$ sí es invertible, pero $B$ no.

Para encontrar la inversa de $A$, consideramos la matriz extendida $(A|I_3)$, y a ella le aplicamos reducción gaussiana. Usamos de nuevo la calculadora de eMathHelp para obtener

\begin{align*}
(A_{red}|X)=
\begin{pmatrix}
1 & 0 & 0 & -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\
0 & 1 & 0 & \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\
0 & 0 & 1 & -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}
\end{pmatrix}.
\end{align*}

De aquí obtenemos que la inversa de $A$ es \begin{align*}A^{-1}=\begin{pmatrix} -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\ \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\ -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}\end{pmatrix}.\end{align*}

$\triangle$

Finalmente, hay algunos problemas en los que no es posible aplicar herramientas digitales, o por lo menos no es directo cómo hacerlo. Esto sucede, por ejemplo, cuando en un problema las dimensiones o entradas de una matriz son variables.

Problema 4. Sea $a$ un número real. Determina la inversa de la siguiente matriz en $M_{n}(\mathbb{R})$: $$A=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ a^{n-2} & a^{n-3} & a^{n-4} & \cdots & 1 & 0 \\
a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{pmatrix}.$$

Solución. Recordemos que para obtener la inversa de una matriz cuadrada $A$, si es que existe, se puede aplicar a la matriz identidad las mismas operaciones elementales que se le apliquen a $A$ para llevarla a forma escalonada reducida.

¿Qué operaciones necesitamos hacer para llevar a $A$ a su forma escalonada reducida? La esquina $(1,1)$ ya es un pivote, y con transvecciones de factores $-a, -a^2,\ldots, -a^{n-1}$ podemos hacer $0$ al resto de las entradas en la columna $1$.

Tras esto, la entrada $(2,2)$ es ahora pivote de la segunda fila, y con transvecciones de factores $-a,-a^2,\ldots, -a^{n-2}$ podemos hacer $0$ al resto de las entradas en la columna $2$. Siguiendo este procedimiento, llevamos a $A$ a su forma escalonada reducida. Esto puede demostrar formalmente usando inducción.

Ahora veamos qué sucede si aplicamos estas mismas operaciones a la matriz identidad. Si aplicamos las mismas operaciones que arreglan la primer columna de $A$, pero a la matriz identidad, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ -a^2 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ -a^{n-2} & 0 & 0 & \cdots & 1 & 0 \\
-a^{n-1} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Si ahora aplicamos las operaciones que arreglan la segunda columna de $A$, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & -a^{n-3} & 0 & \cdots & 1 & 0 \\
0 & -a^{n-2} & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Continuando de esta manera, en cada columna sólo nos quedará un $1$ y un $-a$. Esto puede probarse formalmente de manera inductiva. Al final, obtenemos la matriz

$$B=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & -a & 1 \end{pmatrix},$$

en donde la diagonal principal consiste de puros unos, y la diagonal debajo de ella consiste de puras entradas $-a$.

Hay dos formas de proceder para dar una demostración formal que esta matriz encontrada es la inversa de $A$. La primera es completar las demostraciones inductivas que mencionamos. La segunda es tomar lo que hicimos arriba como una exploración del problema y ahora realizar de manera explícita el producto $AB$ o el producto $BA$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Sistemas de ecuaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente, en esta serie de entradas, veremos temas selectos de álgebra lineal y su aplicación a la resolución de problemas. Primero, hablaremos de sistemas de ecuaciones lineales. Luego, hablaremos de evaluación de determinantes. Después, veremos teoría de formas cuadráticas y matrices positivas. Finalmente, estudiaremos dos teoremas muy versátiles: el teorema de factorización $PJQ$ y el teorema de Cayley-Hamilton.

Como lo hemos hecho hasta ahora, frecuentemente no daremos las demostraciones para los resultados principales. Además, asumiremos conocimientos básicos de álgebra lineal. También, asumiremos que todos los espacios vectoriales y matrices con los que trabajaremos son sobre los reales o complejos, pero varios resultados se valen más en general.

Para cubrir los temas de álgebra lineal de manera sistemática, te recomendamos seguir un libro como el Essential Linear Algebra de Titu Andreescu, o el Linear Algebra de Friedberg, Insel y Spence. Mucho del material también lo puedes consultar en las notas de curso que tenemos disponibles en el blog.

Sistemas de ecuaciones lineales

Una ecuación lineal en $n$ incógnitas en $\mathbb{R}$ consiste en fijar reales $a_1,\ldots,a_n, b$ y determinar los valores de las variables $x_1,\ldots,x_n$ tales que $$a_1x_1+a_2x_2+\ldots+a_nx_n=b.$$

Si $a_1,\ldots,a_n$ no son todos cero, los puntos $(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ que son solución a la ecuación definen un hiperplano en $\mathbb{R}^n$.

Un sistema de ecuaciones lineales con $m$ ecuaciones y $n$ variables consiste en fijar, para $i$ en $\{1,\ldots,m\}$ y $j$ en $\{1,\ldots,n\}$ a reales $a_{ij}$ y $b_i$, y determinar los valores de las variables $x_1,\ldots,x_n$ que simultáneamente satisfacen todas las $m$ ecuaciones
$$\begin{cases}
a_{11}x_1+ a_{12}x_2+\ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\quad \quad \vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.
\end{cases}$$

Este sistema de ecuaciones se puede reescribir en términos matriciales de manera muy sencilla. Si $A$ es la matriz de $m\times n$ de entradas $[a_{ij}]$, $X$ es el vector de variables $(x_1,\ldots,x_n)$ y $b$ es el vector de reales $b_1,\ldots,b_m$, entonces el sistema de ecuaciones anterior se reescribe simplemente como $$AX=b.$$

Sistemas de ecuaciones lineales con mucha simetría

En algunos sistemas de ecuaciones hay mucha simetría, y no es necesario introducir técnicas avanzadas de álgebra lineal para resolverlos. Veamos el siguiente ejemplo.

Problema. Resuelve el sistema de ecuaciones

$$\begin{cases}
7a+2b+2c+2d+2e= -2020\\
2a+7b+2c+2d+2e=-1010\\
2a+2b+7c+2d+2e=0\\
2a+2b+2c+7d+2e=1010\\
2a+2b+2c+2d+7e=2020.
\end{cases}$$

Sugerencia pre-solución. Trabaja hacia atrás, suponiendo que el sistema tiene una solución. A partir de ahí, puedes usar las cinco ecuaciones y combinarlas con sumas o restas para obtener información.

Solución. Al sumar las cinco ecuaciones, obtenemos que $$15(a+b+c+d+e)=0,$$ de donde $2(a+b+c+d+e)=0$. Restando esta igualdad a cada una de las ecuaciones del sistema original, obtenemos que
$$\begin{cases}
5a= -2020\\
5b=-1010\\
5c=0\\
5d=1010\\
5e=2020.
\end{cases}$$

De aquí, si el sistema tiene alguna solución, debe suceder que
\begin{align*}
a&=\frac{-2020}{5}=-404\\
b&=\frac{-2020}{5}=-202\\
c&=\frac{-2020}{5}= 0\\
d&=\frac{-2020}{5}=202\\
e&=\frac{-2020}{5}=404.
\end{align*}

Como estamos trabajando hacia atrás, esta es sólo una condición necesaria para la solución. Sin embargo, una verificación sencilla muestra que también es una condición suficiente.

$\square$

Sistemas de ecuaciones de n x n y regla de Cramer

Si tenemos un sistema de $n$ variables y $n$ incógnitas, entonces es de la forma $$AX=b$$ con una matriz $A$ cuadrada de $n\times n$. Dos resultados importantes para sistemas de este tipo son el teorema de existencia y unicidad, y las fórmulas de Cramer.

Teorema (existencia y unicidad de soluciones). Si $A$ es una matriz cuadrada invertible de $n\times n$ y $b$ es un vector de $n$ entradas, entonces el sistema lineal de ecuaciones $$AX=b$$ tiene una solución única y está dada por $X=A^{-1}b$.

El teorema anterior requiere saber determinar si una matriz es invertible o no. Hay varias formas de hacer esto:

  • Una matriz cuadrada es invertible si y sólo si su determinante no es cero. Más adelante hablaremos de varias técnicas para evaluar determinantes.
  • Una matriz cuadrada es invertible si y sólo si al aplicar reducción gaussiana, se llega a la identidad.
  • También ,para mostrar que una matriz es invertible, se puede mostrar que cumple alguna de las equivalencias de invertibilidad.

Problema. Demuestra que el sistema lineal de ecuaciones

$$\begin{cases}
147a+85b+210c+483d+133e= 7\\
91a+245b+226c+273d+154e=77\\
-119a+903b+217c+220d+168e=777\\
189a+154b-210c-203d-108e=7777\\
229a+224b+266c-133d+98e=77777.
\end{cases}$$

tiene una solución única.

Sugerencia pre-solución. Reduce el problema a mostrar que cierta matriz es invertible. Para ello, usa alguno de los métodos mencionados. Luego, para simplificar mucho el problema, necesitarás un argumento de aritmética modular. Para elegir en qué módulo trabajar, busca un patrón en las entradas de la matriz.

Solución. Primero, notemos que el problema es equivalente a demostrar que la matriz

$$A=\begin{pmatrix}
147 & 85 & 210 & 483 & 133\\
91 & 245 & 226 & 273 & 154\\
-119 & 903 & 217 & 220 & 168\\
189 & 154 & -210 & -203 & -108 \\
229 & 224 & 266 & -133 & 98
\end{pmatrix}$$

es invertible. Mostraremos que su determinante no es $0$. Pero no calcularemos todo el determinante, pues esto es complicado.

Notemos que como $A$ es una matriz de entradas enteras, entonces su determinante (que es suma de productos de entradas), también es entero. Además, como trabajar en aritmética modular respeta sumas y productos, para encontrar el residuo de $\det(A)$ al dividirse entre $7$ se puede primero reducir las entradas de $A$ módulo $7$, y luego hacer la cuenta de determinante.

Al reducir las entradas módulo $7$, tenemos la matriz

$$B=\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0&0 & 2 & 0 & 0\\
0 & 0 & 0 & 3 & 0\\
0&0 & 0 & 0 & 4 \\
5& 0 & 0 & 0 & 0
\end{pmatrix}.$$

El determinante de la matriz $B$ es $-(1\cdot 2 \cdot 3 \cdot 4 \cdot 5)=-120$. Así,
\begin{align*}
\det(A) & \equiv \det(B)\\
&=-120\\
&\equiv 6 \pmod 7.
\end{align*}

Concluimos que $\det(A)$ es un entero que no es divisible entre $7$, por lo cual no puede ser cero. Así, $A$ es invertible.

$\square$

Por supuesto, en cualquier otro módulo podemos hacer la equivalencia y simplificar las cuentas. Pero $7$ es particularmente útil para el problema anterior pues se simplifican casi todas las entradas, y además funciona para dar un residuo no cero.

Ahora veremos otra herramienta importante para resolver problemas de ecuaciones lineales: las fórmulas de Cramer.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible de $n\times n$ con entradas reales y $b=(b_1,\ldots,b_n)$ un vector de reales. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

En realidad este método no es tan útil en términos prácticos, pues requiere que se evalúen muchos determinantes, y esto no suele ser sencillo. Sin embargo, las fórmulas de Cramer tienen varias consecuencias teóricas importantes.

Problema. Muestra que una matriz invertible $A$ de $n\times n$ con entradas enteras cumple que su inversa también tiene entradas enteras si y sólo si el determinante de la matriz es $1$ ó $-1$.

Sugerencia pre-solución. Para uno de los lados necesitarás las fórmulas de Cramer, y para el otro necesitarás que el determinante es multiplicativo.

Solución. El determinante de una matriz con entradas enteras es un número entero. Si la inversa de $A$ tiene entradas enteras, entonces su determinante es un entero. Usando que el determinante es multiplicativo, tendríamos que $$\det(A)\cdot \det(A^{-1}) = \det (I) = 1.$$ La única forma en la que dos enteros tengan producto $1$ es si ambos son $1$ o si ambos son $-1$. Esto muestra una de las implicaciones.

Ahora, supongamos que $A$ tiene determinante $\pm 1$. Si tenemos una matriz $B$ de columnas $C_1,\ldots,C_n$, entonces para $j$ en $\{1,\ldots,n\}$ la $j$-ésima columna de $AB$ es $AC_j$. De este modo, si $D_1,\ldots, D_n$ son las columnas de $A^{-1}$, se debe cumplir para cada $j$ en $\{1,\ldots,n\}$ que $$AD_j= e_j,$$ en donde $e_j$ es el $j$-ésimo elemento de la base canónica. Para cada $j$ fija, esto es un sistema de ecuaciones.

Por las fórmulas de Cramer, la $i$-ésima entrada de $C_j$, que es la entrada $x_{ij}$ de la matriz $A^{-1}$, está dada por $$x_{ij}=\frac{\det(A_{ij})}{\det(A)}=\pm \det(A_{ij}),$$ donde $A_{ij}$ es la matriz obtenida de colocar al vector $e_j$ en la $i$-ésima columna de $A$.

La matriz $A_{ij}$ tiene entradas enteras, así que $x_{ij}=\pm \det(A_{ij})$ es un número entero. Así, $A^{-1}$ es una matriz de entradas enteras.

$\square$

Sistemas de ecuaciones de m x n y teorema de Rouché-Capelli

Hasta aquí, sólo hemos hablando de sistemas de ecuaciones que tienen matrices cuadradas asociadas. También, sólo hemos hablado de los casos en los que no hay solución, o bien en los que cuando la hay es única. Los sistemas de ecuaciones lineales en general tienen comportamientos más interesantes. El siguiente resultado caracteriza de manera elegante todo lo que puede pasar.

Teorema (Rouché-Capelli). Sea $A$ una matriz de $m\times n$ con entradas reales, $(b_1,\ldots,b_m)$ un vector de reales y $(x_1,\ldots,x_n)$ un vector de incógnitas. Supongamos que $A$ tiene rango $r$. Entonces:

  • El sistema $AX=b$ tiene al menos una solución $X_0$ si y sólo si el rango de la matriz de $m\times (n+1)$ obtenida de colocar el vector $b$ como columna al final de la matriz $A$ también tiene rango $r$.
  • El conjunto solución del sistema $AX=(0,0,\ldots,0)$ es un subespacio vectorial $\mathcal{S}$ de $\mathbb{R}^n$ de dimensión $n-r$.
  • Toda solución al sistema $AX=b$ se obtiene de sumar $X_0$ y un elemento de $\mathcal{S}$.

Problema. Encuentra todos los polinomios $p(x)$ con coeficientes reales y de grado a lo más $3$ tales que $p(2)=3$ y $p(3)=2$.

Sugerencia pre-solución. Usa notación efectiva, eligiendo variables para cada uno de los coeficientes de $p(x)$. Luego, enuncia cada hipótesis como una ecuación.

Solución. Tomemos $p(x)=ax^3+bx^2+cx+d$. La hipótesis implica que

$$\begin{cases}
8a+4b+2c+d=p(2)= 3\\
27a+9b+3c+d=p(3)=2.
\end{cases}$$

El rango de la matriz $$\begin{pmatrix} 8 & 4 & 2 & 1\\ 27 & 9 & 3 & 1\end{pmatrix}$$ es a lo más $2$, pues tiene $2$ renglones. Pero es al menos $2$, pues los dos vectores columna $(2,3)$ y $(1,1)$ son linealmente independientes. Exactamente el mismo argumento muestra que la matriz aumentada $$\begin{pmatrix} 8 & 4 & 2 & 1 & 3\\ 27 & 9 & 3 & 1 & 2\end{pmatrix}$$ es de rango $2$. Por el primer punto del teorema de Rouché-Capelli, este sistema tiene solución.

Para encontrar esta solución de manera práctica, fijamos reales $a$ y $b$ y notamos que ahora

$$\begin{cases}
2c+d= 3-8a-4b\\
3c+d=2-27a-9b
\end{cases}$$

es un sistema en $2$ variables, y como $$\det\begin{pmatrix} 2 & 1\\ 3 & 1\end{pmatrix}=-1,$$ tiene una única solución para $c$ y $d$. Al hacer las cuentas, o usar fórmulas de Cramer, obtenemos que
\begin{align*}
c&=-1-19a-5b\\
d&=5+30a+6b.
\end{align*}

Así, concluimos que los polinomios $p(x)$ solución consisten de elegir cualesquiera reales $a$ y $b$ y tomar $$p(x)=ax^3+bx^2-(1+19a+5b)x+(5+20a+6b).$$

$\square$

Por supuesto, para usar este teorema es necesario conocer el rango de la matriz $A$. En el problema tuvimos la suerte de que eso es sencillo. Hablaremos más adelante de varias técnicas para encontrar el rango de matrices.

Más problemas

Puedes encontrar más problemas de sistemas de ecuaciones lineales en el Capítulo 3 y en la Sección 7.6 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Por Blanca Radillo

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema 1. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. 2 Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\triangle$

Problema 3. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Problemas de ecuaciones lineales y cambios de coordenadas en los complejos

Por Claudia Silva

Introducción

En las entradas anteriores platicamos de cómo resolver sistemas de ecuaciones lineales complejos, y de como pasar de coordenadas polares a rectangulares y viceversa. Ahora veremos un método más para resolver problemas de ecuaciones lineales en los complejos en tres variables. Además, haremos problemas de práctica de estos temas.

La regla de Kramer para tres variables

Cuando platicamos de resolver problemas de ecuaciones lineales complejas en dos variables, vimos que si el determinante no era $0$, entonces podíamos dar la solución de manera explícita. A esto se le conoce como la regla de Kramer. Veremos ahora cuál es la versión de esta regla para tres variables. A continuación enunciamos el método, y más abajo, en el video, se explica un poco más a detalle.

Proposición. Consideremos el siguiente sistema lineal de ecuaciones complejas en variables $x$, $y$ y $z$.
\begin{align*}
ax+by+cz&=j\\
dx+ey+fz&=k\\
gx+hy+iz&=l.
\end{align*}

Supongamos que el determinante $\Delta=\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}$ no es $0$. Entonces, el sistema tiene una única solución, dada por
\begin{align*}
x&=\frac{\begin{vmatrix} j & b & c\\ k & e & f\\ l & h & i \end{vmatrix}}{\Delta},\\
y&=\frac{\begin{vmatrix} a & j & c\\ d & k & f\\ g & l & i \end{vmatrix}}{\Delta},\\
z&=\frac{\begin{vmatrix} a & b & j\\ d & e & k\\ g & h & l \end{vmatrix}}{\Delta}.
\end{align*}

No veremos la demostración de esta técnica, pues es uno de los temas que estudiarás en álgebra lineal con más generalidad. Sin embargo, veremos algunos ejemplos de cómo se aplica.

Problemas de ecuaciones lineales

Para comenzar, resolveremos un sistema de ecuaciones de dos variables.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones:
\begin{align*}
iz+2w&=3+4i\\
2z-iw&=6-3i.
\end{align*}

Pasemos ahora a un ejemplo con tres variables. El el ejemplo 328 del libro Álgebra Superior de Bravo, Rincón, Rincón.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones.
\begin{align*}
z_1+z_2+z_3&=6+4i\\
iz_1+(1+i)z_2+(1-i)z_3&=7+4i\\
z_i+iz_2-z_3&=2i.
\end{align*}

El problema está resuelto en los siguientes dos videos.

Problemas de cambio de coordenadas

Finalmente, veremos algunos problemas de cambio entre coordenadas polares y coordenadas rectangulares. Recordemos que la figura clave para cambiar entre coordenadas es la siguiente:

Cambios entre coordenadas polares y rectangulares
Cambio entre coordenadas polares y rectangulares

Problema. Calcula las coordenadas rectangulares del complejo cuyas coordenadas polares son $r=\sqrt{2}$ y $s=45^\circ$, y del complejo cuyas coordenadas polares son $r=3$ y $s=90^\circ$.

Problema. Expresa $7+7i$ y $4+2i$ en coordenadas polares.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»