Archivo de la etiqueta: homogéneo

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de $2\times 2$», y más adelante «de $3\times 3$». Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables $x_1, \dots, x_n$ es una ecuación de la forma

\begin{align*}
a_1 x_1 + \dots +a_n x_n =b,
\end{align*}

donde $a_1, \dots, a_n, b\in F$ son escalares dados y $n$ es un entero positivo. Las incógnitas $x_1,\dots, x_n$ suponen ser elementos de $F$.

Un sistema de ecuaciones lineales en las variables $x_1, \dots, x_n$ es una familia de ecuaciones lineales, usualmente escrito como

\begin{align*}
\begin{cases}
a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\
a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\
\quad \vdots\\
a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m
\end{cases}.
\end{align*}

Aquí de nuevo los $a_{ij}$ y los $b_i$ son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener $x_1,\ldots,x_n$ de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si $X$ es un vector columna con entradas $x_1, \dots, x_n$, $A$ es la matriz en $M_{m,n}(F)$ con entradas $[a_{ij}]$ y $b$ es un vector columna en $F^m$ con entradas $b_1, \dots, b_m$ entonces el sistema se reescribe como

\begin{align*}
AX=b.
\end{align*}

Puedes verificar esto usando la definición de $A$ como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores $X$ en $F^n$ que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) $x_1$, $x_2$ y $x_3$:

\begin{align*}
\begin{cases}
3x_1-2x_2+7x_3&=5\\
4x_1+3x_3&=7\\
2x_1+x_2-7x_3&=-1\\
-x_1+3x_2&=8
\end{cases}.
\end{align*}

Si tomamos al vector $b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix}$ en $\mathbb{R}^4$, al vector de incógnitas $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ y a la matriz $$A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},$$ entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores $X$ en $\mathbb{R}^3$ tales que $$AX=b.$$

$\square$

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si $C_1, \dots, C_n$ son las columnas de $A$, vistos como vectores columna en $F^{m}$, el sistema es equivalente a

\begin{align*}
x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.
\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que $b=0$. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales $AX=b$ se dice homogéneo si $b=0$ (es decir si $b_1= b_2=\dots= b_m=0$).
  2. Dado un sistema $AX=b$, el sistema lineal homogéneo asociado es el sistema $AX=0$.

Así, un sistema es homogéneo si es de la forma $AX=0$ para alguna matriz $A$.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

\begin{align*}
\begin{cases}
2x+3y-z&=-1\\
5x+8z&=0\\
-x+y&=1.
\end{cases}
\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.
\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=
\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.
\end{align*}

$\square$

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema $AX=b$ basta con encontrar un vector solución $X_0$ y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea $A\in M_{m,n}(F)$ y $b\in F^{m}$. Sea $\mathcal{S}\subset F^{n}$ el conjunto de soluciones del sistema homogéneo asociado $AX=0$. Si el sistema $AX=b$ tiene una solución $X_0$, entonces el conjunto de soluciones del sistema $AX=b$ no es más que

\begin{align*}
X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.
\end{align*}

Demostración: Por hipótesis, $AX_0=b$. Ahora al sustituir, $AX=b$ si y sólo si $AX=A X_0$, o bien $A(X-X_0)=0$. Es decir, un vector $X$ es solución de $AX=b$ si y sólo si $X-X_0$ es solución de $AY=0$, de otra manera, si y sólo si $X-X_0\in \mathcal{S}$. Pero esto último es equivalente a decir que existe $s\in \mathcal{S}$ tal que $X-X_0=s$, luego $X= X_0 +s\in X_0 +\mathcal{S}$. Esto prueba el resultado.

$\square$

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean $A$ y $B$ dos matrices del mismo tamaño. Si los sistemas $AX=0$ y $BX=0$ son equivalentes, escribiremos $A\sim B$.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

\begin{align*}
\begin{cases}
x_1=0\\
x_1=1
\end{cases}
\end{align*}

o bien

\begin{align*}
\begin{cases}
x_1 -2x_2=1\\
2 x_2-x_1=0
\end{cases}.
\end{align*}

$\square$

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente $AX=b$ tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Tarea moral

  • Muestra que el sistema \begin{align*}
    \begin{cases}
    x_1 -2x_2=1\\
    2 x_2-x_1=0
    \end{cases}.
    \end{align*}
    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea $b$ un vector en $F^n$ y $I_n$ la matriz identidad en $M_n(F)$. ¿Cómo se ve de manera explícita el sistema de ecuaciones $(2I_n)X=b$? ¿Cuáles son todas sus soluciones?
  • Sean $A,B$ matrices de tamaño $n\times n$ tales que el sistema $ABX=0$ solo tiene como solución la solución trivial. Demuestre que el sistema $BX=0$ también tiene como única solución a la solución trivial.
  • Sea $A\in M_2(\mathbb{C})$ y considere el sistema homogéneo $AX=0$. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. $A$ es invertible.

Más adelante

El principio de superposicion dice que para entender las soluciones de los sistemas lineales de la forma $AX=b$, basta con entender a los homogéneos, es decir, los de la forma $AX=0$.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones $AX=0$, hay uno de la forma $A_{red}X=0$, con $A_{red}$ una matriz escalonada reducida, y equivalente a $A$.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Entradas relacionadas

Álgebra Lineal I: Propiedades de determinantes

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes $n-$dimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas $n$-lineal alternantes en un espacio vectorial de dimensión $n$. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea $A$ una matriz en $M_n(F)$.

  1. Si multiplicamos un renglón o una columna de $A$ por un escalar $\lambda$, entonces su determinante se multiplica por $\lambda$.
  2. Se tiene que $\det(\lambda A)=\lambda^n A$.

Demostración. 1. Sea $A_j$ la matriz obtenida me multiplicar el $j$-ésimo renglón por $\lambda$. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que
\begin{align*}
\det A_j&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots \lambda a_{j\sigma(j)}\dots a_{n\sigma(n)}\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&= \lambda \det A.
\end{align*}

La demostración para la $j$-ésima columna queda como tarea moral.

2. Sea $\lamda A=[\lambda a_{ij}]$, entonces por definición tenemos

\begin{align*}
\det (\lambda A)&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)(\lambda a_{1\sigma(1)})\dots (\lambda a_{n\sigma(n)})\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda^n a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\lambda^n \cdot \det A
\end{align*}

De manera alternativa, podemos aplicar el primer inciso $n$ veces, una por cada renglón.

$\square$

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante $\det$ (de vectores) con respecto a la base canónica de $F^n$ evaluada en los renglones de $A$. Al multiplicar uno de los renglones por $\lambda$, el vector entrada de $\det$ se multiplica por $\lambda$. El resultado se sigue inmediatamente de que $\det$ es una forma $n$-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea $V$ un espacio vectorial de dimensión finita y transformaciones lineales $T_1:V\to V$, $T_2:V\to V$. Se tiene que $$\det(T_1\circ T_2) = \det T_1\cdot \det T_2.$$

Demostración. Sea $(v_1,\dots , v_n)$ una base cualquiera de $V$. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que
\begin{align*}
\det (T_1 \circ T_2)&= \det _{(v_1,\dots , v_n)}(T_1(T_2(v_1)),\dots , T_1(T_2(v_n)))\\
&=\det T_1 \cdot \det_{(v_1,\dots , v_n)}(T_2(v_1), \dots , T_2(v_n))\\
&= \det T_1 \cdot \det T_2.
\end{align*}

$\square$

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean $A$ y $B$ matrices en $M_n(F)$. Se tiene que $$\det(AB)=\det A \cdot \det B.$$

Demostración. Sean $V=F^n$, $T_1:V\to V$ la transformación lineal definida por $x\mapsto Ax$ y similarmente $T_2:V\to V$ la transformación lineal definida por $x\mapsto Bx$. Sabemos que $A, B, AB$ son las matrices asociadas a $T_1, T_2, T_1\circ T_2$ con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal $T$ en $V$, $\det T = \det A_T$, para una matriz que la represente en cualquier base. Entonces

\begin{align*}
\det(AB)&=\det A_{T_1\circ T_2}\\
&= \det T_1\circ T_2\\
&=\det T_1 \cdot \det T_2\\
&=\det A_{T_1} \cdot \det A_{T_2} \\
&= \det A \cdot \det B.
\end{align*}

$\square$

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz $A$ en $M_n(F)$ es invertible si y sólo si $\det A\neq 0$.

Demostración. Supongamos que $A$ es invertible, entonces existe $B\in M_n(F)$ tal que $AB=I_n=BA$.
Así,

$1=\det I_n = \det (AB) = \det A \cdot \det B$.

Como el lado izquierdo es $1$, ambos factores del lado derecho son distintos de $0$. Por lo tanto $\det A \neq 0.$ Nota que además esta parte de la prueba nos dice que $\det A^{-1}=(\det A)^{-1}$.

Ahora supongamos que $\det A \neq 0$. Sea $(e_1, \dots , e_n)$ la base canónica de $F^n$ y $C_1,\dots , C_n$ las columnas de $A$. Como $\det_{(e_1,\ldots,e_n)}$ es una forma lineal alternante, sabemos que si $C_1,\ldots,C_n$ fueran linealmente dependientes, la evaluación daría cero. Ya que la columna $C_i$ es la imagen bajo $A$ de $e_i$, entonces

$\det A =\det _{(e_1,\dots , e_n)}(C_1, \dots , C_n) \neq 0$.

Por lo tanto los vectores $C_1, \dots , C_n$ son linealmente independientes y así $\text{rank}(A)=n$. Se sigue que $A$ es una matriz invertible.

$\square$

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea $A$ una matriz en $M_n(F)$. Se tiene que $$\det({^tA})=\det A.$$

Demostración. Por definición

$\det({^tA})=\displaystyle\sum_{\sigma \in S_n}\text{sign}(\sigma^{-1})a_{\sigma^{-1}(1)1 \dots a_{\sigma^{-1}(n)n}}.$

Luego, para cualquier permutación $\sigma$ se tiene

$$a_{\sigma(1)1}\dots a_{\sigma(n)n}=a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}$$

pues $a_{i\sigma^{-1}(i)}=a_{\sigma(j)j}$, donde $j=\sigma^{-1}(i)$.
También vale la pena notar que $$\text{sign}(\sigma^{-1})=\text{sign}(\sigma)^{-1}=\text{sign}(\sigma).$$

De lo anterior se sigue que

\begin{align*}
\det({^tA})&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma^{-1})a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\\
&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\det A.
\end{align*}

$\square$

Teorema. Sea $V$ un espacio vectorial de dimensión finita $T:V\to V$ una transformación lineal. Se tiene que $$\det(^t T) = \det T.$$

Demostración. Sea $A$ la matriz asociada a $T$, entonces $^tA$ es la matriz asociada a $^tT$. Luego $$\det (^tT)=\det (^tA)=\det A = \det T.$$

$\square$

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea $A\in M_n(F)$ una matriz antisimétrica para algún $n$ impar. Demuestra que $\det(A)=0$.

Demostración. Como $A=-A^t$, entonces $\det A = \det (- {^tA})$, pero $\det A = \det ({^tA})$.
Se sigue que
\begin{align*}
\det ({^tA}) &= \det (-{^tA})\\
&=(-1)^n \det ({^tA})\\
&=-\det ({^tA}).
\end{align*}

Concluimos $\det (^tA)=0$

$\square$

Tarea moral

  • Muestra que al multiplicar una columna de una matriz por $\lambda$, entonces su determinante se multiplica por $\lambda$.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica $A\in M_n(F)$ con $n$ par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.

Más adelante…

En esta entrada enunciamos y demostramos varias propiedades de los determinantes. Ahora, vamos a ponerlas en práctica resolviendo algunos problemas.

En las siguientes entradas, que constituyen la parte final del curso, vamos a hablar de diferentes técnicas para calcular el determinante de una matriz y obtendremos sus eigenvalores y eigenvectores. Vamos a ver cómo esto nos conduce a uno de los teoremas más importantes del curso de Algebra Lineal I: el teorema espectral.

Entradas relacionadas