Archivo de la etiqueta: sistema de ecuaciones

Cálculo Diferencial e Integral III: Teorema de la función implícita y demostración

Por Alejandro Antonio Estrada Franco

Introducción

En esta parte del curso estamos abordando los resultados principales de campos vectoriales y su diferenciabilidad. Hemos hablado de cómo la derivada de una composición se calcula con regla de la cadena. También, enunciamos el teorema de la función inversa, lo demostramos, y vimos un ejemplo de cómo se usa. Ahora pasaremos a otro de los resultados fundamentales en el tema: el teorema de la función implícita. Vamos a motivarlo a partir del problema de resolver sistemas de ecuaciones no lineales. Luego, lo enunciaremos formalmente y lo demostraremos. La discusión y los ejemplos los dejaremos para la siguiente entrada.

Una motivación: resolver sistemas de ecuaciones no lineales

Con lo que repasamos sobre sistemas de ecuaciones lineales, y con lo que se ve en un curso de Álgebra Lineal I, se puede entender completamente cómo resolver sistemas de eccuaciones lineales. Recordemos un poco de esto. Tomemos el siguiente sistema de ecuaciones lineales en las variables $x_1,\ldots,x_n$:

\begin{align*}
\left\{ \begin{matrix}
a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.\\
\end{matrix} \right.
\end{align*}

Para resolverlo, se podría utilizar el proceso de reducción gaussiana. Tras hacer esto, podíamos clasificar a las variables en libres (que podían valer lo que sea) y pivote (que dependían afinmente de las libres). Esto daba todas las soluciones. Si, por decir algo, las variables pivote son $x_1,x_2,\ldots,x_m$ y las libre son $x_{m+1},\ldots,x_n$, entonces podemos reescribir lo anterior de la siguiente manera: «podemos despejar a las primeras en función de las segundas», algo así como

\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}

Elegimos a $x_{m+1},\ldots,x_n$ como queramos. De ahí $x_1,\ldots,x_m$ quedan definidos afinmente con las $T_1,\ldots,T_m$. Y esto da todas las soluciones. Pero, ¿qué sucedería si tenemos un sistema de ecuaciones mucho más general?

Para plantear esto, imaginemos que ahora tenemos cualesquiera funciones $f_1,\ldots,f_m:\mathbb{R}^n\to \mathbb{R}$ y que queremos encontrar todas las soluciones $x_1,\ldots,x_n$ al siguiente sistema de ecuaciones:

\begin{equation}
\label{eq:sistemadificil}
\left\{ \begin{matrix}
f_{1}(x_{1},\dots ,x_{n})=0 \\
\vdots \\
f_{m}(x_{1},\dots ,x_{n})=0.
\end{matrix}\right.
\end{equation}

Esto es tan general como pudiéramos esperar. A la izquierda hay ceros, pero es porque si hubiera otras cosas, podríamos pasarlas a la izquierda para dejar ceros a la derecha.

Este sistema \eqref{eq:sistemadificil} parece imposible de resolver: no tenemos idea de quiénes son las funciones $f_1,\ldots, f_n$, no hay reducción gaussiana, no hay variables libres, etc. Pero imaginemos que el campo vectorial $(f_1,\ldots,f_m)$ es de clase $C^1$ alrededor de algún punto $\bar{v}_0=(x_{1}^{0},\dots,x_{n}^{0})$ en donde queremos despejar. Esto nos diría que cerca de $\bar{v}_0$ cada expresión $f_i(\bar{v})$ con $\bar{v}=(x_{1},\dots,x_{n})$ se parece muchísimo a su mejor aproximación lineal:

\[f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)\]

donde, tenemos:
\begin{align*}
f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)
&=f_i(\bar{v}_0)+\left(\frac{\partial f_i}{\partial x_1}(\bar{v}_0),\dots ,\frac{\partial f_i}{\partial x_n}(\bar{v}_0)\right)\bullet\left(x_1 -x_{1}^{0},\dots , x_n -x_{n}^{0}\right)\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)(x_j -x_{j}^{0})\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_j -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v})+f_i(\bar{v}_0) -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}} (\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v}) + \bar{b}_i,
\end{align*}

donde $\bar{b}_i=f_i(\bar{v}_0)-\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^0$. Pero entonces el sistema es prácticamente el mismo sistema que

\begin{equation}\label{eq:sistemafacil}\left \{\begin{matrix}\frac{\partial f_{1}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{1}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{1}\hspace{0.1cm}=\hspace{0.1cm}0 \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{2}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{2}\hspace{0.1cm}=\hspace{0.1cm}0 \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{m}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{m}\hspace{0.1cm}=\hspace{0.1cm}0 \end{matrix}\right.\end{equation}

Esto se ve un poco complicado, pero cada $\frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_{0})x_{j}$ es simplemente un número real. ¡Cerquita de $\bar{v}_0$ el sistema de ecuaciones \eqref{eq:sistemadificil} es prácticamente un sistema lineal! Sería entonces de esperarse que las soluciones el sistema \eqref{eq:sistemadificil} original sean muy cercanas a las del sistema lineal \eqref{eq:sistemafacil} que sale y de nuevo recuperamos los trucos usuales: reducción gaussiana, variables libres, variables pivote, etc.

Pensando en que en el sistema \eqref{eq:sistemafacil} las variables pivote son $x_1,\ldots, x_m$ y las libres son $x_{m+1},\ldots,x_n$, entonces podemos encontrar transformaciones afines $T_1,\ldots,T_m:\mathbb{R}^n\to \mathbb{R}$ tales que las soluiones de \eqref{eq:sistemafacil} consisten en elegir $x_{m+1},\ldots,x_n$ arbitrariamente, y tomar

\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}

Muy probablemente $(x_1,\ldots,x_n)$ no será una solución de \eqref{eq:sistemadificil}, pues son sistemas diferentes entre sí. Pero suena a que son tan tan cercanos, que con tantita maniobra podremos encontrar funciones $S_1,\ldots, S_m: \mathbb{R}^n\to \mathbb{R}$ tales que cualquier solución a \eqref{eq:sistemadificil} similarmente está dada por elegir $x_{m+1},\ldots, x_n$ arbitrariamente y tomar

\begin{align*}
x_1 &= S_1(x_{m+1},\ldots,x_n)\\
x_2 &= S_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=S_m(x_{m+1},\ldots,x_n).
\end{align*}

Gracias a que pudimos poner a todos los $x_1,\ldots x_m$ en función de los $x_{m+1},\ldots,x_n$, hemos logrado encontrar todas las soluciones a \eqref{eq:sistemadificil} cerca de $\bar{v}_0$. El teorema de la función inversa nos ayuda a volver precisas muchas de las cosas discutidas en esta sección.

Enunciado del teorema de la función implícita

Pensemos que tenemos algunas restricciones dadas por ecuaciones como las del sistema \eqref{eq:sistemadificil}. Lo que el teorema de la función implícita nos dirá es que bajo suficiente regularidad y algunas condiciones de invertibilidad, en una vecindad de un punto $\bar{v}_{0}$ las incógnitas $x_{1},\dots ,x_{m}$ se pueden poner en función de las incógnitas $x_{m+1},\dots ,x_{n}$, es decir, que se puede despejar como lo mencionamos al final de la sección anterior. El enunciado es el siguiente.

Teorema (de la función implícita). Sea $f:S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^m$ un campo vectorial de clase $C^1$ en $S$ con funciones componentes $f_i: S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}$, para $i=1,\ldots,m$.

Pensemos en el conjunto $A$ de soluciones $(y_1,\ldots,y_m,x_1,\ldots,x_l)$ del siguiente sistema de ecuaciones:

\begin{equation}
\label{eq:sistemaimplicita}
\left\{ \begin{matrix}
f_{1}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0 \\
\vdots \\
f_{m}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0.
\end{matrix}\right.
\end{equation}

Supongamos además que para el punto $$(\bar{y}_0,\bar{x}_0)=\left(y_{1}^{0},\dots ,y_{m}^{0},x_{1}^{0},\dots ,x_{l}^{0}\right)\in S\cup A$$ la matriz

\[ \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{i}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \end{pmatrix} \]

es invertible. Entonces existen abiertos $V\subset \mathbb{R}^{m}$ y $U\subset \mathbb{R}^l$ con $\bar{y}_0\in V$, $\bar{x}_0\in U$, para los cuales hay una única función $h:U\to V$ de clase $C^{1}$ en $V$, tal que $f(\bar{y},\bar{x})=\bar{0}$ si y sólo si $\bar{y}=h(\bar{x})$.

Sólo para aclarar algunas diferencias con lo discutido anteriormente, aquí ya estamos separando en lo que esperaremos que serán las variables libres $x_1,\ldots,x_m$ y las variables pivote $y_1,\ldots,y_l$. Estamos además estudiando el caso en el que tenemos tantas variables libres como ecuaciones, pues este caso es fácil de enunciar en términos de la invertibilidad de una matriz. El caso más general se trata con reducción gaussiana como platicamos en la sección anterior. La igualdad $\bar{y}=h(\bar{x})$ es lo que entendemos como «despejar» a los $y_i$’s en función de los $x_j$’s.

Demostración del teorema de la función implícita

Veamos la demostración del teorema.

Demostración. Definamos $F:S\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ como $F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})$. Dado que $f$ es de clase $C^1$, se tendrá que $F$ también (explica esto como tarea moral).

Notemos que

\begin{align*}
F(\bar{y}_{0},\bar{x}_{0})&=(f(\bar{y}_{0},\bar{x}_{0}),\bar{x}_{0})=(\bar{0},\bar{x}_0).\end{align*}

Por otro lado, notemos que la matriz jacobiana de $F$ en $(\bar{y}_0,\bar{x}_0)$ es

$$\begin{bmatrix} \frac{\partial f_{1}}{\partial \bar{y}_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{1}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial x_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{m}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$

esta matriz además es invertible (también tendrás que explicar ambas cosas de tarea moral).

La idea clave es que entonces podemos usar el teorema de la función inversa en $F$. Aplícandolo en este contexto, obtenemos que existe $\delta >0$ tal que $F$ es inyectiva en una bola $B_{\delta}(\bar{y}_{0},\bar{x}_{0})\subset S$. Nos dice también que $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un conjunto abierto, y que $F ^{-1}:F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ es de clase $C^{1}$ en $F(B_{\delta}(\bar{y}_{0},\bar{x}_{0}))$. También dice algo de quién es la derivada explícitamente, pero eso no lo necesitaremos por ahora (de tarea moral tendrás que pensar qué nos dice esto).

Como $F$ manda $(\bar{y}_0,\bar{x}_0)$ a $(\bar{0},\bar{x}_0)$ y $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un abierto, entonces hay una bola abierta $W$ alrededor de $(\bar{0},\bar{x}_0)$ contenida en $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$. El conjunto $U$ que propondremos será el abierto que se obtiene al intersectar $W$ con el espacio en donde la coordenada correspondiente a $f(\bar{y},\bar{x})$ es cero. En otras palabras, $U$ es un abierto y consiste de $\bar{x}$ para los cuales existe un $\bar{y}$ tal que $F(\bar{y},\bar{x})=(\bar{0},\bar{x})$ (es decir, $f(\bar{y},\bar{x})=\bar{0}$).

Tomemos ahora un $\bar{x}\in U$. Afirmamos que hay sólo un $\bar{y}$ tal que $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$ y $f(\bar{y},\bar{x})=\bar{0}$. Si hubiera $\bar{y}$ y $\bar{y}’$ que satisfacen eso, tendríamos

$$F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})=(\bar{0},\bar{x})=(f(\bar{y}’,\bar{x}),\bar{x})=F(\bar{y}’,\bar{x}),$$

que por la inyectividad de $F$ implica $\bar{y}=\bar{y}’$. De hecho, dicho único $\bar{y}$ está en función de $F^{-1}$, que es de clase $C^1$ de modo que el conjunto de los $\bar{y}$ asignados a los $\bar{x}$ en $U$ es un abierto $V$.

Así, podemos definir $h:U\to V$ de la siguiente manera: $h(\bar{x})=\bar{y}$, donde $\bar{y}$ es el único elemento para el cual $f(\bar{y},\bar{x})=\bar{0}$ y $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$. De la discusión desarrollada, $h$ está bien definida y cumple con las propiedades buscadas.

Por último probemos que $h$ es de clase $C^{1}$ en $U$. Como $F^{-1}$ esta definida y, además es de clase $C^{1}$ sobre el conjunto $F(B_{\delta}(\bar{x}_{0},\bar{y}_{0}))$, si escribimos que $F^{-1}=\left( (F^{-1})_{1},\dots ,(F^{-1})_{m} \right)$, bastaría con demostrar:

\[ h(\bar{x})=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots , (F^{-1})_{m}(\bar{0},\bar{x})\right) \]

para cada $\bar{x}\in V$. Esto se hace como sigue:

\begin{align*} (h(\bar{x}),\bar{x})&=F^{-1}(F(h(\bar{x}),\bar{x}))\\ &=F^{-1}(\bar{0},\bar{x}) \\ &=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m}(\bar{0},\bar{x}),(F^{-1})_{m+1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m+l}(\bar{0},\bar{x}) \right). \end{align*}

Así queda terminada de la demostración de este importante teorema.

$\square$

Algunas reflexiones finales

Si quisiéramos usar de manera práctica la demostración para encontrar la función implícita $h$, necesitaríamos calcular la inversa $F^{-1}$. Sin embargo, las técnicas que tenemos hasta ahora no nos permiten hacer eso tan fácilmente. La versión del teorema de la función inversa que tenemos nos dice que hay una inversa, pero no nos dice quién es. La mayoría de las veces dar esta inversa es muy difícil, por no decir imposible.

Aunque esto parezca algo negativo, de cualquier forma tenemos un resultado muy importante. En algunos casos, sí podremos dar la función inversa con relativa facilidad. Y en otros contextos, aunque no podamos dar la inversa explícitamente, sí tendremos una base teórica robusta para demostrar otros resultados. El teorema de la función implícita es una palanca importante para otros resultados que brindan mucha luz acerca del comportamiento de los campos vectoriales.

Mas adelante

La demostración y el desarrollo teórico tanto del teorema de la función inversa, como el de la función implícita, son muy técnicos. Dejaremos los aspectos técnicos hasta aquí y en la siguiente entrada procesaremos mejor lo que quiere decir este teorema hablando de varios ejemplos, y también de sus consecuencias.

Tarea moral

  1. Considérese la función $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{2}$ dada por $T(x,y,z)=(x+z,y+x)$ aplica el teorema de la función implícita para obtener una función $h:\mathbb{R}\rightarrow \mathbb{R}^{2}$ tal que $(h(\bar{a}),\bar{a})$ es solución de la ecuación $T(x,y,z)=(0,0)$.
  2. Explica con detalle por qué la función $F$ de la demostración del teorema de la función implícita es de clase $C^1$.
  3. Verifica que en efecto $DF(\bar{y}_0,\bar{x}_0)$ es la expresión dada en la demostración del teorema. Además, justifica por qué es invertible.
  4. Justifica con detalle por qué los conjuntos $U$ y $V$ de la demostración en efecto son conjuntos abiertos.
  5. El teorema de la función inversa también nos dice quién es la derivada de la inversa. ¿Eso qué quiere decir en el contexto del teorema de la función implícita?

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar una matriz en forma canónica $J$, entonces existe $P$ invertible tal que $A=P^{-1}JP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}J^kP$, mostrando que $A^k$ y $J^k$ son similares. Además, sabemos por teoría anterior que matrices similares tienen el mismo rango. De modo que si $A$ es similar a $J$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $J$. Con esta idea en mente estudiaremos cómo es el rango de matrices de bloques de Jordan de eigenvalor cero.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para valores de $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $k\geq i$}\\ e_{i-k} & \text{para $k\leq i-1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para valores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices de bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz de bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, en donde $k_1,\ldots,k_d$ son enteros positivos de suma $n$ y con $k_1\leq \ldots \leq k_d$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de éstas contribuye con rango $k_i-1$. Así, en términos de las $m_j$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_j$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $({m_1}’,\ldots,{m_n}’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de $n$ ecuaciones en $n$ variables y con matriz asociada de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=({m_1}’,\ldots,{m_n}’)$. Entonces, en $J$ y $J’$ aparecen la misma cantidad de bloques de cada tamaño. Como además los bloques van de tamaño menor a mayor tanto en $J$ como en $J’$, concluimos que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_j$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_j$ bloques de tamaño $j$, que debemos colocar en orden creciente de tamaño.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendentemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $k\geq 3$ obtenemos que $\text{rango}(C^k)=\text{rango}(O_7)=0$. Si queremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_j$ de tamaño $j$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0 &= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, ésta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\triangle$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Más ejemplos de reducción gaussiana

Por Ayax Calderón

Introducción

En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.

Problemas resueltos

Problema 1. Implementa el algoritmo de reducción gaussiana en la matriz
\begin{align*}
A=\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}
\end{align*}

Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :

  • $R_i \leftrightarrow R_j$ para intercambiar el renglón $i$ con el renglón $j$.
  • $kR_i$ para multiplicar el renglón $i$ por el escalar $k$.
  • $R_i + kR_j$ para sumarle $k$ veces el renglón $j$ al renglón $i$.


\begin{align*}
A=&\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_1 \leftrightarrow R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_4 – R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 + 3R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
\frac{1}{2}R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 – 4R_2
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}
\end{align*}
\begin{align*}
R_1 – R_2
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
-1\cdot R_3
&\begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_4 – R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}\\
R_2 – \frac{1}{2} R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix} \\
R_1 + \frac{1}{2}R_3
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{3} R_4
&\begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
R_3 + 4R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_2 – \frac{5}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_1 + \frac{1}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{1}{3}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
=&A_{red}
\end{align*}

$\triangle$

Problema 2. Resuelve el siguiente sistema homogéneo.
\begin{align*}
\begin{cases}
x+2y-3z &=0\\
2x+5y+2z &=0\\
3x-y-4z &=0
\end{cases}
\end{align*}

Solución. La matriz asociada al sistema anterior es
\begin{align*}
\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}
\end{align*}
Para resolver el sistema $AX=0$ nos bastará con encontrar $A_{red}$, pues el sistema $A_{red}X=0$ es equivalente al sistema $AX=0$.
\begin{align*}
&\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}\\
R_2 -2R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
3 & -1 & -4
\end{pmatrix}\\
R_3 – 3R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_1 – 2R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_3 + 7R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & 0 & 61
\end{pmatrix}\\
R_2 – \frac{8}{61}R_3
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
R_1 + \frac{19}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
\frac{1}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=A_{red}
\end{align*}

De lo anterior se sigue que para resolver el sistema $AX=0$ basta con resolver el sistema
\begin{align*}
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}= \begin{pmatrix}
0\\
0\\
0
\end{pmatrix}.
\end{align*}
Pero este sistema es el sistema

\begin{align*}
\begin{cases} x = 0\\ y = 0 \\ z = 0. \end{cases}
\end{align*}

De esta forma, $x=y=z=0$ es la (única) solución al sistema original.

$\triangle$

Problema 3. Determina las soluciones fundamentales del sistema homogéneo $AX=0$, donde $A$ es la matriz
\begin{align*}
A=\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix}.
\end{align*}

Solución. Sea $AX=0$ el sistema
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}

Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.

Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz $A$ es
\begin{align*}
A_{red}=\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}

De esta forma, el sistema del problema es equivalente al sistema $A_{red}X=0$
\begin{align*}
\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}
Las variables pivote son $x$ y $z$. Las variables libres son $y$ y $w$.

Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
\begin{align*}
\begin{cases}
x =2y+w\\
z=-w.
\end{cases}
\end{align*}
por lo que
\begin{align*}
\begin{pmatrix}
x\\
y\\
z\\
w
\end{pmatrix}&=\begin{pmatrix}
2y+w\\
y\\
-w\\
w
\end{pmatrix}\\
&=y\begin{pmatrix}
2\\
1\\
0\\
0
\end{pmatrix} + w \begin{pmatrix}
1\\
0\\
-1\\
1
\end{pmatrix}
\end{align*}
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema $AX=0$, es decir que con estas soluciones se pueden generar todas las demás.

$\triangle$

Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.

Problema 4. Sea $n>2$ un número entero. Resuelve en números reales el sistema
\begin{align*}
x_2=\frac{x_1+x_3}{2}, x_3= \hspace{2mm} \frac{x_2+x_4}{2}, \hspace{2mm} \dots , \hspace{2mm}, x_{n-1}=\frac{x_{n-2}+x_n}{2}.
\end{align*}

Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por $2$ e igualándola a $0$. Por ejemplo, la primer ecuación se puede escribir como $x_1-2x_2+x_3=0$. Transformando el resto de las ecuaciones, obtenemos que el sistema se puede escribir en forma matricial como $AX=0$, donde$A$ es la matriz en $M_{n-2,n}(F)$ dada por
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.

Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.

En el primer paso, sumamos dos veces la fila $2$ a la primer fila. Al hacer esto obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & -3 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -5 & 4 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & 2 &\cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 &\cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

El patrón es ahora claro. Conforme arreglamos la columna $j$, luego la columna $j+1$ tiene a los números $-(j+1), -j, \ldots, -3, -2$ y la columna $j+2$ tiene a los números $j,j-1,j-2,\ldots,1,-2,1$. Esto puede demostrarse formalmente por inducción. Al arreglar la columna $n-2$, la matriz queda en la siguiente forma escalonada reducida:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-2 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & -(n-2) & n-3 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & -(n-3) & n-4 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & -(n-4) & n-5 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 2\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}.
\end{align*}

Estamos listos para resolver el sistema asociado. Las variables libres son $x_{n-1}$ y $x_n$, que podemos darles valores arbitrarios $a$ y $b$. Las variables pivote son todas las demás, y de acuerdo a la forma de la matriz anterior, están dadas por

\begin{align*}
x_1&=(n-1)a – (n-2) b\\
x_2&=(n-2)a – (n-3) b\\
x_3&=(n-3)a – (n-4) b\\
&\vdots\\
x_{n-2}&=2a- b.
\end{align*}

Esto determina todas las soluciones.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Determinantes en sistemas de ecuaciones lineales y regla de Cramer

Por Leonardo Ignacio Martínez Sandoval

Introducción

Con la teoría que hemos desarrollado acerca de espacios vectoriales, de determinantes y con las herramientas que hemos adquirido para calcularlos, podemos volver a visitar el tema de sistemas de ecuaciones lineales y verlo desde una perspectiva más completa. Los determinantes en sistemas de ecuaciones lineales nos sirven para varias cosas.

Por un lado, sirven para encontrar el rango de una matriz. El rango está relacionado con la dimensión del espacio de soluciones a un sistema lineal de ecuaciones. Esto es parte del contenido del importante teorema de Rouché-Capelli que enunciaremos y demostraremos.

Por otro lado, cuando tenemos sistemas lineales con matriz asociada cuadrada e invertible, podemos usar determinantes para encontrar las soluciones. A esto se le conoce como las fórmulas de Cramer o la regla de Cramer. También enunciaremos y demostraremos esto. La regla de Cramer es parcialmente útil en términos prácticos, pues para sistemas concretos conviene más usar reducción gaussiana. Sin embargo, es muy importante en términos teóricos, cuando se quieren probar propiedades de las soluciones a un sistema de ecuaciones.

Rango de una matriz y determinantes

Recuerda que el rango de una matriz $A$ en $M_{m,n}(F)$ es, por definición, la dimensión del espacio vectorial que es la imagen de la transformación $X\mapsto AX$ de $F^n\to F^m$. Anteriormente, mostramos que esto coincide con la dimensión del espacio vectorial generado por los vectores columna de $A$. Como el rango de una matriz coincide con su transpuesta, entonces también es la dimensión del espacio vectorial generado por los vectores fila de $A$.

Lo que veremos ahora es que podemos determinar el rango de una matriz $A$ calculando algunos determinantes de matrices pequeñas asociadas a $A$. Una submatriz de $A$ es una matriz que se obtiene de eliminar algunas filas o columnas de $A$.

Teorema. Sea $A$ una matriz en $M_{m,n}(F)$. El rango de $A$ es igual al tamaño de la submatriz cuadrada más grande de $A$ que sea invertible.

Demostración. Llamemos $C_1,\ldots,C_n$ a las columnas de $A$. Sabemos que $$r=\dim \text{span}(C_1,\ldots,C_n).$$

Mostraremos primero que hay una submatriz cuadrada de tamaño $r$. Por el lema de Steinitz, podemos escoger $r$ enteros $1\leq i_1<\ldots<i_r\leq n$ tal que las columnas $C_{i_1},\ldots,C_{i_r}$ de $A$ cumplen $$\text{span}(C_1,\ldots,C_n)=\text{span}(C_{i_1},\ldots,C_{i_r}).$$ Así, la matriz $B$ hecha por columnas $C_{i_1},\ldots,C_{i_r}$ está en $M_{m,r}(F)$ y es de rango $r$.

Ahora podemos calcular el rango de $B$ por filas. Si $F_1,\ldots,F_m$ son las filas de $B$, tenemos que $$r=\dim \text{span}(F_1,\ldots,F_m).$$ De nuevo, por el lema de Steinitz, existen enteros $1\leq j_1<\ldots<j_r\leq m$ tales que $$\text{span}(F_1,\ldots,F_m)=\text{span}(F_{i_1},\ldots,F_{i_r}).$$ De esta forma, la matriz $C$ hecha por las filas $F_{j_1},\ldots,F_{j_r}$ está en $M_r(F)$ y es de rango $r$. Por lo tanto, $C$ es una matriz cuadrada de tamaño $r$ y es invertible.

Esta matriz $C$ es una submatriz de $A$ pues se obtiene al eliminar de $A$ todas las columnas en posiciones distintas a $i_1,\ldots,i_r$ y todas las filas en posiciones distintas a $j_1,\ldots,j_r$. Esto muestra una parte de lo que queremos.

Ahora mostraremos que si $B$ es una submatriz de $A$ cuadrada e invertible de tamaño $d$, entonces $d\leq r$. En efecto, tomemos una $B$ así. Sus columnas son linealmente independientes. Si $i_1<\ldots<i_n$ corresponden a los índices de las columnas de $A$ que se preservan al pasar a $B$, entonces las columnas $C_{i_1},\ldots,C_{i_d}$ de $A$ son linealmente independientes, ya que si hubiera una combinación no trivial de ellas igual a cero, entonces la habría de las columnas de $B$, lo cual sería una contradicción a que son linealmente independientes.

De esta forma,
\begin{align*}
d&=\dim \text{span}(C_{i_1},\ldots,C_{i_d})\\
&\leq \dim \text{span} (C_1,\ldots,C_d)\\
&=r,
\end{align*}

que es la desigualdad que nos faltaba para terminar la prueba.

$\square$

Ejemplo. Supongamos que queremos encontrar el rango de la siguiente matriz en $M_{3,5}(\mathbb{R})$: $$A=\begin{pmatrix}4 & 5 & -4 & 7 & 2\\ 0 & -3 & -1 & 0 & 9\\ 0 & -5 & 0 & 9 & -3 \end{pmatrix}.$$

Por propiedades de rango que vimos anteriormente, ya sabemos que su rango es a lo más el mínimo de sus dimensiones, así que su rango es como mucho $\min(3,5)=3$.

Por otro lado, notemos que si eliminamos la segunda y cuarta columnas, entonces obtenemos la submatriz cuadrada $$\begin{pmatrix} 4 & -4 & 2\\ 0 & -1 & 9\\ 0 & 0 & -3\end{pmatrix}.$$ Esta es una matriz triangular superior, así que su determinante es el producto de las diagonales, que es $4\cdot (-1)\cdot (-3)=12$.

Como el determinante no es cero, es una matriz invertible de tamaño $3$. Por la proposición anterior, el rango de $A$ debe ser entonces mayor o igual a $3$. Juntando las dos desigualdades que encontramos, el rango de $A$ debe ser igual a $3$.

$\triangle$

Estas ideas nos servirán al aplicar determinantes en sistemas de ecuaciones.

Teorema de Rouché-Capelli

Recordemos que un sistema lineal de ecuaciones con $m$ ecuaciones y $n$ incógnitas es de la forma

\begin{align*}
a_{11}x_1 + a_{12} x_2 + \ldots + a_{1n}x_n &= b_1\\
a_{21}x_1 + a_{22} x_2 + \ldots + a_{2n}x_n &= b_2\\
\vdots&\\
a_{m1}x_1 + a_{m2} x_2 + \ldots + a_{mn}x_n &= b_m,
\end{align*}

lo cual se puede reescribir en términos matriciales tomando una matriz, un vector de escalares y un vector de incógnitas así:
\begin{align*}
A&=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},\\
b&=\begin{pmatrix}b_1\\ \vdots\\ b_m\end{pmatrix} \text{ y }\; X=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix},
\end{align*} y reescribiendo el sistema como $$AX=b.$$

Si $C_1,\ldots, C_n$ son las columnas de la matriz $A$, también sabemos que $$AX=x_1C_1+\ldots + x_nC_n,$$ de modo que el sistema de ecuaciones puede ser escrito como $$x_1C_1+\ldots + x_nC_n=b.$$

Esto nos da una intuición fuerte de lo que es un sistema lineal de ecuaciones: se trata de determinar si $b$ está en el espacio generado por las columnas de $A$, y si es así, ver todas las formas en las que podemos obtenerlo.

El teorema de la sección anterior nos permite aplicar determinantes en sistemas de ecuaciones lineales mediante el siguiente resultado.

Teorema (Rouché-Capelli). Sean $A\in M_n(F)$ y $b\in F^m$. Sea $(A|b)$ la matriz en $M_{n,n+1}(F)$ obtenida de agregar a $b$ como columna hasta la derecha de la matriz $A$. Entonces:

  • El sistema lineal de ecuaciones $AX=b$ tiene al menos una solución si y sólo si $\rank(A)=\rank((A|b))$.
  • El conjunto de soluciones $\mathcal{S}_h$ al sistema homogéneo es un subespacio de $F^n$ de dimensión $n-\rank(A)$.

Demostración. Por la discusión previa, el sistema tiene una solución si y sólo si $b$ es una combinación lineal de las columnas de $A$. De esta forma, si existe una solución, entonces $\rank(A)=\rank((A|b))$, pues el espacio generado por las columnas de $A$ sería el mismo que el de las columnas de $(A|b)$.

Por otro lado, si $\rank(A)=\rank((A|b))$ es porque las columnas de $A$ y las de $(A|b)$ generan el mismo espacio, de modo que $b$ está en el espacio vectorial generado por las columnas. Esto prueba la primer parte.

Para la segunda parte, el sistema homogéneo es $AX=0$, de modo que el conjunto solución es precisamente el kernel de la transformación $T:F^n\to F^m$ tal que $X\mapsto AX$. Por el teorema de rango-nulidad, tenemos que $$\dim \mathcal{S}_h = n-\dim \text{Im}(T)=n-\text{rank}(A).$$ Esto termina la demostración.

$\square$

Como discutimos con anterioridad, ya que tenemos una solución $x_0$ para el sistema de ecuaciones $AX=b$, entonces todas las soluciones son el conjunto $$x_0+\mathcal S_h:=\{x_0 + x: x\in \mathcal S_h\}.$$ En otras palabras, cualquier solución al sistema se puede obtener sumando a $x_0$ una solución al sistema lineal homogéneo asociado.

Ejemplo. Consideremos el siguiente sistema de ecuaciones en $\mathbb{R}$ en tres variables:
\begin{align*}
2x+3y-z=1\\
3x-y+2z=0\\
3x+10y-5z=0
\end{align*}

Afirmamos que el sistema no tiene solución. La matriz asociada es $A=\begin{pmatrix} 2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5\end{pmatrix}$. Por lo que sabemos de determinantes de $3\times 3$, podemos calcular su determinante como
\begin{align*}
\begin{vmatrix}
2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5
\end{vmatrix} &= (2)(-1)(-5)+(3)(10)(-1)+(3)(3)(2)\\
&-(-1)(-1)(3)-(2)(10)(2)-(3)(3)(-5)\\
&=10-30+18-3-40+45\\
&=0.
\end{align*}

Esto muestra que $A$ no es invertible, y que por lo tanto tiene rango a lo más $2$. Como $$\begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = (2)(-1)-(3)(3)=-11$$ es un subdeterminante no cero de tamaño 2, entonces $A$ tiene rango $2$.

Ahora consideremos la matriz $$(A|b)=\begin{pmatrix} 2 & 3 & -1 & 1\\ 3 & -1 & 2 & 0 \\ 3 & 10 & -5 & 0\end{pmatrix}.$$ Eliminemos la tercer columna. Podemos calcular al siguiente subdeterminante de $3\times 3$ por expansión de Laplace en la última columna:

\begin{align*}
\begin{vmatrix}
2 & 3 & 1\\ 3 & -1 & 0 \\ 3 & 10 & 0
\end{vmatrix} &= 1 \cdot \begin{vmatrix} 3 & -1 \\ 3 & 10 \end{vmatrix} – 0 \begin{vmatrix} 2 & 3 \\ 3 & 10 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix}\\
&= 1 \cdot (3\cdot 10 + 1\cdot 3)\\
&=33.
\end{align*}

De esta forma, $(A|b)$ tiene una submatriz de $3\times 3$ invertible, y por lo tanto tiene rango al menos $3$. Como tiene $3$ filas, su rango es a lo más $3$. Con esto concluimos que su rango es exactamente $3$. Conluimos que $$\text{rank} A = 2 \neq 3 = \text{rank} (A|b),$$ de modo que por el teorema de Rouché-Capelli, el sistema de ecuaciones no tiene solución.

$\triangle$

Antes de ver un ejemplo en el que el sistema sí tiene solución, pensemos qué sucede en este caso. Si la matriz $A$ es de rango $r$, por el teorema de la sección pasada podemos encontrar una submatriz cuadrada $B$ de tamaño $r$ que es invertible. Tras una permutación de las variables o de las ecuaciones, podemos suponer sin perder generalidad que corresponde a las variables $x_1,\ldots,x_r$ y a las primeras $r$ ecuaciones. De esta forma, el sistema $AX=b$ se resume en el siguiente sistema de ecuaciones equivalente:

\begin{align*}
a_{11}x_1 + a_{12} x_2 + \ldots + a_{1r}x_r &= b_1-a_{1,r+1}x_{r+1}-\ldots -a_{1,n} x_n\\
a_{21}x_1 + a_{22} x_2 + \ldots + a_{2r}x_r &= b_2-a_{2,r+1}x_{r+1}-\ldots -a_{2,n} x_n\\
\vdots\\
a_{r1}x_1 + a_{r2} x_2 + \ldots + a_{rr}x_r &= b_m-a_{r,r+1}x_{r+1}-\ldots -a_{r,n} x_n,
\end{align*}

Aquí $x_{r+1},\ldots,x_n$ son lo que antes llamábamos las variables libres y $x_1,\ldots,x_r$ son lo que llamábamos variables pivote. Como la submatriz $B$ correspondiente al lado izquierdo es invertible, para cualquier elección de las variables libres podemos encontrar una única solución para las variables pivote. Ya habíamos probado la existencia y unicidad de cierta solución. Pero de hecho, hay una forma explícita de resolver sistemas de ecuaciones correspondientes a matrices cuadradas. Esto es el contenido de la siguiente sección.

Fórmulas de Cramer para sistemas cuadrados

El siguiente teorema es otra aplicación de determinantes en sistemas de ecuaciones lineales. Nos habla de las soluciones de un sistema lineal $AX=b$ en donde $A$ es una matriz cuadrada e invertible.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible en $M_n(F)$ y $b=(b_1,\ldots,b_n)$ un vector en $F^n$. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

Demostración. La existencia y unicidad de la solución ya las habíamos mostrado anteriormente, cuando vimos que la única solución está dada por $$X=(x_1,\ldots,x_n)=A^{-1}b.$$

Si $C_1,\ldots,C_n$ son las columnas de $A$, que $(x_1,\ldots,x_n)$ sea solución al sistema quiere decir que $$x_1C_1+\ldots+x_nC_n=b.$$

El determinante pensado como una función en $n$ vectores columna es $n$-lineal, de modo que usando la linealidad en la $i$-ésima entrada y que el determinantes es alternante, tenemos que:
\begin{align*}
\det A_i &= \det(C_1,\ldots,C_{i-1},b,C_{i+1},\ldots,C_n)\\
&= \det(C_1,\ldots,C_{i-1},\sum_{j=1}^n x_j C_j,C_{i+1},\ldots,C_n)\\
&=\sum_{j=1}^n x_j \det(C_1,\ldots,C_{i-1},C_j,C_{i+1},\ldots,C_n)\\
&=x_i \det(C_1,\ldots,C_{i-1},C_i,C_{i+1},\ldots,C_n)\\
&=x_i \det A
\end{align*}

Como $A$ es invertible, su determinante no es $0$, de modo que $$x_i=\frac{\det A_i}{\det A},$$ como queríamos.

$\square$

Veamos un ejemplo concreto de la aplicación de las fórmulas de Cramer.

Ejemplo. Consideremos el siguiente sistema de ecuaciones en $\mathbb{R}$ en tres variables:
\begin{align*}
2x+3y-z=1\\
3x-y+2z=0\\
3x+10y-5z=3
\end{align*}

En un ejemplo anterior vimos que la matriz asociada $A=\begin{pmatrix} 2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5\end{pmatrix}$ tiene rango $2$. Se puede verificar que la matriz aumentada $$(A|b)=\begin{pmatrix} 2 & 3 & -1 & 1\\ 3 & -1 & 2 & 0 \\ 3 & 10 & -5 & 3 \end{pmatrix}$$ también tiene rango $2$. Por el teorema de Rouché-Capelli, debe existir una solución al sistema de ecuaciones $AX=b$, y el sistema homogéneo tiene espacio de soluciones de dimensión $3-2=1$.

Como la submatriz de las primeras dos filas y columnas es invertible por tener determinante $2(-1)-(3)(3)=-11\neq 0$, entonces el sistema de ecuaciones original es equivalente al subsistema

\begin{align*}
2x+3y=1+z\\
3x-y=-2z.
\end{align*}

Para encontrar su solución, fijamos una $z$ arbitraria. Usando la regla de Cramer, la solución al sistema

está dada por
\begin{align*}
x&=\frac{\begin{vmatrix} 1+z & 3 \\ -2z & -1 \end{vmatrix}}{-11}=\frac{1-5z}{11}\\
y&=\frac{\begin{vmatrix} 2 & 1+z \\ 3 & -2z \end{vmatrix}}{-11}=\frac{3+7z}{11}.
\end{align*}

De esta forma, las soluciones al sistema original están dadas por $$\left(\frac{1-5z}{11}, \frac{3+7z}{11},z\right)=\left(\frac{1}{11},\frac{3}{11},0\right) + z \left(-\frac{5}{11},\frac{7}{11},1\right).$$

Observa que en efecto el espacio de soluciones del sistema homogéneo es de dimensión $1$, pues está generado por el vector $$\left(-\frac{5}{11},\frac{7}{11},1\right),$$ y que todas las soluciones al sistema original son una de estas soluciones, más la solución particular $$\left(\frac{1}{11},\frac{3}{11},0\right).$$

$\square$

Para terminar, veamos un ejemplo muy sencillo de cómo usar las fórmulas de Cramer en un sistema de ecuaciones de $2\times 2$ con un parámetro $\theta$. La intepretación geométrica del siguiente sistema de ecuaciones es «encuentra el punto $(x,y)$ del plano tal que al rotarse en $\theta$ alrededor del origen, llega al punto $(a,b)$ » .

Problema. Sea $a,b,\theta$ números reales. Encuentra las soluciones $x,y$ al sistema de ecuaciones
\begin{align*}
x \cos \theta – y \sin \theta = a\\
x \sin \theta + y \cos \theta = b.
\end{align*}

Solución. La matriz asociada al sistema es $$A=\begin{pmatrix} \cos \theta & -\sin\theta \\ \sin \theta & \cos \theta\end{pmatrix}$$ que tiene determinante $$\det A = \cos ^2 \theta + \sin^2 \theta = 1.$$

De acuerdo al teorema de Cramer, las soluciones al sistema están dadas por:

\begin{align*}
x&=\frac{\begin{vmatrix}a & -\sin \theta\\ b & \cos \theta \end{vmatrix}}{\det A} = a\cos \theta + b\sin \theta\\
y&=\frac{\begin{vmatrix}\cos \theta & a \\ \sin \theta & b \end{vmatrix}}{\det A} = b\cos \theta – a\sin \theta.
\end{align*}

$\triangle$

Hay herramientas en línea que te permiten ver de manera interactiva cómo usar las fórmulas de Cramer para sistemas de ecuaciones en los reales. Una de ellas es el Cramer’s Rule Calculator de matrix RESHISH, en donde puedes ver la solución por pasos para ejemplos que tú fijes.

Más adelante…

En esta entrada volvimos a hablar de sistemas de ecuaciones lineales, pero ahora que ya sabemos determinantes, pudimos verlo con un enfoque diferente al que habíamos utilizado para abordar el tema en la primera unidad. También hablamos de la regla de Cramer, una herramienta muy poderosa cuando estamos intentando resolver sistemas de ecuaciones.

Ahora, vamos a ver cómo se usa lo que vimos en esta entrada resolviendo varios ejemplos. Después, empezaremos a abordar el tema de eigenvalores y eigenvectores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Determina el rango de la matriz $$A=\begin{pmatrix} 2 & 0 & -1 \\ 3 & -2 & 4 \\ 5 & -2 & 3 \\ -1 & 2 & -5 \end{pmatrix}.$$
  • Para la matriz $A$ del inciso anterior, resuelve los sistemas de ecuaciones lineales $AX=\begin{pmatrix}5\\8\\3\\2\end{pmatrix}$ y $AX=\begin{pmatrix}5\\8\\13\\-3\end{pmatrix}$.
  • Verifica que la matriz aumentada en el último ejemplo en efecto tiene rango $2$.
  • Muestra que si $A$ es una matriz en $M_n(\mathbb{R})$ con entradas enteras y de determinante $1$, y $b$ es un vector en $R^n$ con entradas enteras, entonces la solución $X$ del sistema de ecuaciones $AX=b$ tiene entradas enteras.
  • ¿Cómo puedes usar la regla de Cramer para encontrar la inversa de una matriz invertible $A$?
  • Considera un sistema de ecuaciones con coeficientes en un campo $F_1$ y una extensión de campo $F_2$. Muestra que si el sistema tiene una solución en $F_2$, entonces también tiene una solución en $F_1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»