Archivo de la etiqueta: función inversa

Geometría Analítica I: Recordatorio de funciones

Introducción

En la entrada anterior [Enlace entrada anterior] se introdujo la esencia del concepto de transformaciones y que estaremos viendo diversos tipos de transformaciones, pero para que no trabajemos en un espacio desconocido, en ésta entrada hablaremos de nociones básicas de funciones que debemos tener presentes para luego definir formalmente el concepto de qué es una transformación.

Funciones

Sean $E$ y $F$ dos conjuntos no vacíos, denominaremos función de un conjunto $E$ en un conjunto $F$ (o función definida en $E$ con valores en $F$) a una regla o ley $f$ que a todo elemento $x \in E$ le pone en correspondencia un determinado elemento $f(x) \in F$.

Al conjunto de los elementos $x \in E$ les llamamos dominio o argumento de la función $f$ y normalmente su notación es $Dom(f)$. Al conjunto de los elementos $f(x) \in F$ le llamamos rango o imagen y se denota por $Im(f)$. Además se encuentra el conjunto $F$ del contradominio, el cual contiene al rango.

A una función la designamos por lo general con la letra $f$ o con el símbolo $f: E \longrightarrow F$, que nos señala que $f$ aplica el conjunto $E$ en $F$. También podemos emplear la notación $x \mapsto f(x)$ para indicarnos que al elemento $x$ le corresponde el elemento $f(x)$. Cabe mencionar que en la mayoría de los casos las funciones se definen mediante igualdades, las cuales describen la ley de correspondencia.

Ejemplo 1. Podemos decir que la función $f$ está definida mediante la igualdad $f(x) = \sqrt{ x^2 + 1}$, $x \in [a,b]$. Si $y$ es la notación general de los elementos del conjunto $F$, o sea $F = \{y\}$, la aplicación $f: E \longrightarrow F$ se escribe en forma de la igualdad $y = f(x)$, y decimos entonces que la función se encuentra dada en su forma explícita.

Ejemplo 2. Mediante la siguiente imagen vamos a obtener $Domf$, $Imf$ y el $Codf$.

Podemos ver que $Domf$ es el conjunto formado por $\{1, -2, 2, -3, 3, 4\} $. La $Imf$ es $\{2, -4, 4, -6, 6, 8\}$ y el $Codf$ es $\{-2,2,-4,4,-6,6,8,-8\}$. Podemos darnos cuenta que no necesariamente la $Imf$ debe coincidir siempre con el $Codf$.

Ejemplo 3. Sea la función definida por la ecuación $y = \sqrt{3 – 9x}$. Debido a que la función es una raíz cuadrada, $y$ es función de $x$ sólo para $3-9x \geq 0$; pues para cualquier $x$ que satisfaga esta desigualdad, se determina un valor único de $y$. Procedemos a resolver la desigualdad:

\begin{align*}
3-9x & \geq 0,\\
3 & \geq 9x,\\
\dfrac{3}{9} & \geq x,\\
\dfrac{1}{3} & \geq x.
\end{align*}

Sin embargo si $x > \dfrac{1}{3}$, obtenemos la raíz cuadrada de un número negativo y en consecuencia no existe un número real $y$. Por tanto $x$ debe estar restringida a $\dfrac{1}{3} \geq x $. Concluimos que el $Domf$ es el intervalo $\left(- \infty, \dfrac{1}{3}\right]$ y la $Imf$ es $[0, + \infty).$

Gráfica de $f(x) = \sqrt{3-9x}$

Función inyectiva, sobreyectiva y biyectiva

Definición. Una función $f: E \longrightarrow F$ se denomina:

  • Inyectiva si $f(x) = f(x’)$ implica que $x = x’$. Otra forma de expresarlo es que no existen dos elementos de $E$ con una misma imagen ($x \neq x $ implica que $f(x) \neq f(x’)$).
  • Suprayectiva o sobreyectiva si $\forall y \in F$ existe $x \in E$ tal que $f(x)=y$. Es decir que todos los elementos del conjunto $F$ son imagen de algún elemento de $E$.
  • Biyectiva si la función cumple ser inyectiva y suprayectiva.

Problema 1. Consideren la función $f: \mathbb{R} \longrightarrow \mathbb{R} $ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio y si es biyectiva.

Solución. Veamos el dominio de la función, para que la función racional $f(x) = \dfrac{3x-1}{x+3}$ no se indetermine debe cumplirse que:

\begin{align*}
x+3 & \neq 0,\\
x & \neq -3,\\
\therefore Domf & = \mathbb{R} – \{-3 \}.\\
\end{align*}

Ahora veamos si $f$ es biyectiva. Sean $a,b \in \mathbb{R} – \{ -3 \}$, para que $f$ sea inyectiva debe cumplir que $f(x) = f(x’)$ implica que $x = x’$, por ello:

\begin{equation*}
f(a) = f(b) \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} \dfrac{3a-1}{a+3} = \dfrac{3b-1}{b+3}.\\
\end{equation*}

Resolviendo:

\begin{align*}
(3a-1)(b+3) &= (3b-1)(a+3),\\
3ab + 9a – b -3 &= 3ab +9b -a -3,\\
10a &= 10b,\\
a &= b.
\end{align*}

Por tanto $f$ es inyectiva. Ahora veamos si $f$ es suprayectiva, sean $x, y \in E$ entonces:

\begin{align*}
f(x) = f(y) \hspace{0.5cm} &\Longrightarrow \hspace{0.5cm} y = \dfrac{3x-1}{x+3},\\
\end{align*}

Resolviendo

\begin{align*}
y(x+3) &= 3x-1,\\
yx +3y &= 3x-1,\\
yx-3x &= -3y-1,\\
x(y-3) &= -3y-1,
\end{align*}

y despejando a $x$

\begin{align*}
x &= \dfrac{-3y-1}{y-3},\\
x &= \dfrac{3y+1}{3-y},
\end{align*}

y como $3-y \neq 0$, entonces $y \neq 3$. En consecuencia $y \in \mathbb{R} – \{3 \}$. Pero al estar definida $f$ por $f: \mathbb{R} \longrightarrow \mathbb{R}$, tenemos que $f$ no es suprayectiva.

\begin{align*}
\therefore f \text{ no es biyectiva}.
\end{align*}

Composición de funciones y funciones inversas.

Definición. Dadas las funciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$ , donde la imagen de $f$ está contenida en el dominio de $g$, se define la función composición $(g \circ f): A \longrightarrow C$ como $(g \circ f)(x) = g(f(x)),$ para todos los elementos $x$ de $A$.

La composición de funciones se realiza aplicando dichas funciones en orden de derecha a izquierda, de manera que en $(g \circ f)(x)$ primero actúa la función $f$ y luego la $g$ sobre $f(x)$.

Ejemplo 4. Sean las funciones $f$ y $g$ tales que $f(x)=x+1$ y $g(x) = x^2 +2$, calcularemos las funciones composición $(g \circ f)(x)$ y $(f \circ g)(x)$. Tenemos para $(g \circ f)(x)$

\begin{align*}
(g \circ f)(x) = g[f(x)] &= g(x+1),\\
&= (x+1)^2 + 2,\\
&= x^2 +2x +1 +2,\\
&= x^2 + 2x +3.
\end{align*}

Y para $(f \circ g)(x)$

\begin{align*}
(f \circ g)(x) = f[g(x)] &= f(x^2+2),\\
&= (x^2 + 2) + 1,\\
&= x^2 + 3.\\
\end{align*}

Observemos que la composición no es conmutativa pues las funciones $(f \circ g)$ y $(g \circ f)$ no son iguales.

Definición. Llamaremos función inversa de $f$ a otra función $f^{-1}$ que cumple que si $f(x)=y$, entonces $f^{-1}(y)=x$.

Sólo es posible determinar la función inversa $f^{-1}: B \longrightarrow A$ si y sólo si $f: A \longrightarrow B$ es biyectiva.

Notemos que la función inversa $f^{-1}: B \longrightarrow A$ también es biyectiva y cumple:

\begin{align*}
f^{-1}(f(x)) &= x, \hspace{0.2cm} \forall x \in A,\\
f(f^{-1}(y)) &= y, \hspace{0.2cm} \forall y \in B.
\end{align*}

Dicho de otro modo,

\begin{align*}
f^{-1} \circ f &= id_{A},\\
f \circ f^{-1} &= id_{B},
\end{align*}

donde $id_{A}$ e $id_{B}$ son las funciones identidad de $A$ y $B$ respectivamente. Es decir, son las funciones $id_{A}: A \longrightarrow A$ definida por $id_{A}(x) = x$ e $id_{B}: B \longrightarrow B$ definida por $id_{B}(y) = y$.

Concepto formal de transformación

Ahora hemos llegado a la definición de nuestro interés.

Definición. Una transformación en un plano A es una función biyectiva $f: A \longrightarrow A$ del plano en sí mismo.

Llamaremos transformación en el plano, a toda función que hace corresponder a cada punto del plano, otro punto del mismo.

Tarea moral

Vamos a realizar unos par de ejercicios para repasar y practicar los conceptos que vimos en esta entrada.

Ejercicio 1. Consideren la siguiente función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio, si ella es inyectiva, suprayectiva y la inversa de $f$.

Ejercicio 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones, demuestren que

(1) Si $f$ y $g$ son inyectivas, entonces $g \circ f$ es inyectiva.

(2) Si $g \circ f$ es suprayectiva, entonces $g$ es suprayectiva.

Más adelante

En esta entrada vimos las nociones básicas de funciones que nos llevaron a definir formalmente el concepto de una transformación. Dicho concepto nos permitirá comenzar a trabajar en la siguiente entrada con unos primeros conjuntos cuyas propiedades hacen que tengan un nombre especial: los grupos de transformaciones.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Probabilidad I-Videos: Definición de variable aleatoria

Introducción

En muchos experimentos estaremos interesados más que en el experimento en sí mismo, en alguna consecuencia de su resultado aleatorio. Tales consecuencias pueden valorarse en términos numéricos, es decir podemos asociar a los resultados aleatorios un número real y esto puede considerarse como una función que mapea al espacio muestral en la recta real.

Estas funciones se denominan «variables aleatorias».

Variables aleatorias

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Sea $X:\Omega\rightarrow\mathbb{R}$ una función y sean $x\le\ y$ dos números reales. Demuestre que $(X\le\ x)\subseteq(X\le\ y)$.
  • Sea $\mathcal{F}$ la familia de todos los subconjuntos de $\Omega$, Demuestra cualquier función $X:\Omega\rightarrow\mathbb{R}$ es una variable aleatoria.
  • Sea $\Omega=\left \{ a,b,c,d,e,f \right \}$ con $\mathcal{F}=\left \{ \emptyset,\left \{ a.c.e \right \} ,\left \{ b,d,f \right \} ,\Omega \right \}$ y sea $X(\omega)=\omega$. Determina si $X$ es una variable aleatoria y justifica por qué.
  • Sea $A$ un evento, es decir, $A\in\mathcal{F}$ y sea $X$ una función tal que $$\\ X(\omega)= \left \{ \begin{matrix} 1 & \mbox{si }\omega\in A \\ 0 & \mbox{si }\omega\notin A \end{matrix} \right.$$ demuestra que $X$ es una variable aleatoria..
  • Sean $X$ y $Y$ variables aleatorias, demuestra que:
    • $X+Y$ es una variable aleatoria.
    • $XY$ es una variable aleatoria.
    • Si $Y\neq0$ entonces $X/Y$ es variable aleatoria.

Más adelante…

Para especificar las probabilidades de los valores de las variables aleatorias tan diversificadas y poder especificarlas de la misma manera, introducimos a continuación en la teoría de la probabilidad el concepto de función de distribución de una variable aleatoria.

Entradas relacionadas

Cálculo Diferencial e Integral I: Continuidad de la función inversa

Introducción

Esta entrada será la última referente a la funciones continuas y se hará el estudio de las condiciones necesarias para que, dada una función continua, su inversa también sea continua. Para lograr nuestro objetivo, haremos uso de los conceptos revisados en la entrada anterior e iniciaremos retomando la definición de intervalo y probaremos un teorema que nos permite caracterizarlos.

Intervalos

Anteriormente, se había dado la siguiente definición de intervalos.

Definición: Sean $a,b \in \r$. Definimos los siguientes intervalos en $\RR$ como sigue:

  • Intervalo cerrado:
    \[
    [a,b]=\left\{x : a \leq x \leq b\right\}
    \]
  • Intervalo abierto
    \[
    (a,b)=\left\{x : a < x < b\right\}
    \]
  • Semiabierto por la izquierda/ Semicerrado por la derecha
    \[
    (a,b]=\left\{x : a < x \leq b\right\}
    \]
  • Semiabierto por la derecha/ Semicerrado por la izquierda
    \[
    [a,b)=\left\{x : a \leq x < b\right\}
    \]

Ahora revisaremos un teorema que nos permite caracterizar a los intervalos y éste nos dice que si se toman cualesquiera dos puntos de un intervalo $A$, entonces el intervalo generado por tales puntos está contenido dentro de $A$.

Teorema. Si $A$ es un subconjunto de $\mathbb{R}$ que contiene al menos dos puntos y tiene la propiedad

$$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subseteq A \tag{1}$$

Entonces $A$ es un intervalo.

Demostración.

La demostración se divide en cuatro casos de acuerdo a si está o no acotado.

  • Caso 1. $A$ está acotado
    Dado que $A$ está acotado y $A \neq \varnothing$, podemos definir el supremo y el ínfimo. Sean $a = infA$ y $b = supA$. Entonces $A \subseteq [a,b]$. Nos enfocaremos en demostrar que $(a,b) \subseteq A$.

    Si $z \in (a,b)$, es decir, $a<z<b$, entonces $z$ no es cota inferior de $A$, por lo que existe $x \in A$ tal que $x<z$. De la misma forma, $z$ no es una cota superior de $A$, por lo que existe $y \in A$ tal que $z<y.$ Por lo tanto, $z \in [x,y]$ y por $(1)$ se tiene que $z \in A$. Puesto que $z$ es un elemento arbitrario de $(a,b)$ podemos concluir que $(a,b) \subseteq A$.

    Notemos que si $a \in A$ y $b \in A$, se tiene que $A= [a,b]$ pues $a$ y $b$ son el ínfimo y supremo respectivamente. Si $a \notin A$ y $b \notin A$, entonces $A = (a,b)$. Si $a \notin A$ y $b \in A$, entonces $A = (a,b]$. Finalmente, si $a \in A$ y $b \notin A$, entonces $A = [a,b)$.

  • Caso 2. $A$ está acotado superiormente pero no inferiormente.
    Definimos $b = supA$. Entonces $A \subseteq (- \infty, b]$. Veremos que $(- \infty, b) \subseteq A$.

    Si $z \in (- \infty, b)$, es decir $z<b$, entonces no es cota superior, por lo que existe $y \in A$ tal que $z < y$, además dado que $A$ no está acotado inferiormente, existe $x \in A$ tal que $x < z$. De esta forma, gracias a $(1)$ se tiene que $z \in [x,y] \subseteq A$. Dado que $z$ es un elemento arbitrario de $(- \infty, b)$, entonces $(-\infty, b) \subseteq A$.

    Notemos que si $b \in A$, entonces $A = (- \infty, b]$ y si $b \notin A$, entonces $A = (- \infty, b)$.

  • Caso 3. $A$ está acotado inferiormente pero no superiormente
    La prueba es análoga al caso 2.

  • Caso 4. $A$ no está acotado inferiormente ni superiormente.
    La prueba es muy similar a la de los casos anteriores por lo cual se dejará como tarea moral.

$\square$

Notemos que el regreso también es cierto, es decir, si $A$ es un intervalo, entonces cumple $(1)$ y la demostración también quedará como tarea moral.

Continuidad de la función inversa

El siguiente teorema nos indica que una función continua mapea intervalos en intervalos, es decir, los preserva.

Teorema (Preservación de intervalos). Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ continua en $I$. Entonces el conjunto $f(I)$ es un intervalo.

Demostración.

Sean $y_1$, $y_2 \in f(I)$ tal que $y_1 < y_2$, entonces existen los puntos $x_1$, $x_2$ tal que $y_1 = f(x_1)$ y $y_2 = f(x_2)$. Por el teorema del valor intermedio, se tiene que si $y \in [y_1,y_2]$, entonces existe $x \in I$ tal que $y = f(x) \in f(I)$. Por lo tanto, se tiene que $[y_1,y_2] \subseteq f(I)$ y por el teorema de caracterización de intervalos, se concluye que $f(I)$ es un intervalo.

$\square$

Ahora veremos que la monotonía también se preserva bajo la función inversa.

Proposición. Si $f: A \to \mathbb{R}$ es una función estrictamente creciente, entonces $f^{-1}: f(A) \to \mathbb{R}$ también es estrictamente creciente. Si $f$ es estrictamente decreciente, $f^{-1}$ también lo es.

Demostración.

Sea $f$ un función estrictamente creciente y sean $y_1$, $y_2 \in f(A)$ tal que $y_1<y_2$ y sean $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$.

Supongamos que $x_2 < x_1$, pero $f$ es creciente lo que implica que $y_2 = f(x_2) < f(x_1) = y_1$ lo cual es una contradicción pues $y_1<y_2$. Por lo tanto, $f^{-1}(y_1)=x_1 < x_2 = f^{-1}(y_2)$. Por lo tanto $f^{-1}$ es estrictamente creciente.

La prueba es análoga para el caso donde $f$ es estrictamente decreciente.

$\square$

Los últimos dos teoremas de la entrada hacen referencia a las condiciones que deben estar presentes para que la inversa de una función continua también sea continua.

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es estrictamente monótona, entonces $f^{-1}$ es continua.

Demostración.

Por la proposición anterior tenemos que $f^{-1}: f(I) \to \mathbb{R}$ también es estrictamente monótona y sabemos que $f(I)$ es un intervalo. Por el teorema revisado en la entrada anterior, concluimos que $f^{-1}$ también es continua.

$\square$

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es continua e inyectiva, entonces $f^{-1}$ es continua.

Demostración.

Por lo revisado en la entrada anterior, sabemos que si $f$ es continua e inyectiva, entonces es estrictamente monótona y se sigue por el teorema anterior que $f^{-1}$ es continua.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Prueba el caso 4 para el teorema de preservación de intervalos.
  • Prueba que si $A$ es un intervalo con al menos dos puntos, entonces se cumple que
    $$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subseteq A, \tag{1}$$
  • Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ una función inyectiva. Menciona qué relación existe entre las siguiente condiciones:
    • $f$ es continua
    • $f(I)$ es un intervalo
    • $f$ es estrictamente monótona
    • $f^{-1}$ es continua

Más adelante…

En la siguiente entrada daremos inicio a una nueva unidad y entraremos a uno de los temas más famosos del cálculo: la derivada. Dentro de esta nueva unidad, veremos a profundidad la definición de derivada así como su interpretación geométrica y sus propiedades. Una vez se conozcan los fundamentos teóricos, se verán aplicaciones que existen en diversos campos tales como la economía, la física, etc.

Entradas relacionadas