Archivo de la etiqueta: positiva definida

Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(\bar{u},\bar{v})=b(\bar{v},\bar{u})$ para todos los $\bar{u},\bar{v}\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(\bar{u},\bar{v})=[\bar{u}]^{t}A[\bar{v}]=\left( [\bar{u}]^{t}A[\bar{v}] \right) ^{t}=[\bar{v}]^{t}A^{t}[\bar{u}].\]

En la igualdad de en medio usamos que $[\bar{u}]^{t}A[\bar{v}] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por qué?). Así pues, si $b$ es simétrica: \[ [\bar{v}]^{t}A^{t}[\bar{u}]=b\left( \bar{u},\bar{v} \right)=b\left( \bar{v},\bar{u}\right)=[\bar{v}]^{t}A[\bar{u}],\]

para todo $\bar{u},\bar{v}\in \mathbb{R}^n$. En particular, al evaluar $b(\bar{e}_i,\bar{e}_j)$ para $\bar{e}_i,\bar{e}_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $\bar{u},\bar{v}\in \mathbb{R}^2$ y la forma bilineal $b_2((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional de que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(\bar{u},\bar{v})=\frac{1}{2}\left(q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrollando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right) &= \frac{1}{2}\left( B(\bar{u}+\bar{v},\bar{u}+\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\&=\frac{1}{2}\left(B(\bar{u}+\bar{v},\bar{u})+B(\bar{u}+\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(B(\bar{u},\bar{u})+B(\bar{v},\bar{u})+B(\bar{u},\bar{v})+B(\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(2B(\bar{u},\bar{v})\right)=B(\bar{u},\bar{v}).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(\bar{v})&=b(\bar{v},\bar{v})\\
&=[\bar{v}]^{t}A[\bar{v}]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(\bar{v})=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadrático: \[ \begin{equation} q(\bar{v})=[\bar{v}]^{t}A[\bar{v}]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción sobre $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por qué?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(\bar{v})=b(\bar{v},\bar{v})=0$ para todo $\bar{v}\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $\bar{v}_{1}\in V$ tal que $b(\bar{v}_{1},\bar{v}_{1})\neq0$. Sean $U$ el subespacio generado por $\bar{v}_{1}$ y $W$ el conjunto de aquellos vectores $\bar{v}\in V$ para los que $b(\bar{v}_{1},\bar{v})=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{\bar{0} \}$. Supongamos $\bar{u}\in U\cap W$. Como $\bar{u}\in U$, $\bar{u}=k\bar{v}_{1}$ para algún escalar $k\in \mathbb{R}$. Como $\bar{u}\in W$, $0=b(\bar{v}_{1},\bar{u})=b(\bar{v}_{1},k\bar{v}_{1})=kb(\bar{v}_{1},\bar{v}_{1})$. Pero $b(\bar{v}_{1},\bar{v}_{1})\neq 0$; luego $k=0$ y por consiguiente $\bar{u}=\bar{0}$. Así $U\cap W=\{ \bar{0}\}$.
  2. Veamos que $V=U+W$. Sea $\bar{v}\in V$. Consideremos $\bar{w}$ definido como: \[ \bar{w}=\bar{v}-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}\bar{v}_{1}.\] Entonces \[ b(\bar{v}_{1},\bar{w})=b(\bar{v}_{1},\bar{v})-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}b(\bar{v}_{1},\bar{v}_{1})=0. \] Así $\bar{w}\in W$. Por tanto $\bar{v}$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ \bar{v}_{2},\dots ,\bar{v}_{n} \}$ de $W$ tal que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(\bar{v}_{1},\bar{v}_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{\bar{v}_{1},\dots ,\bar{v}_{n} \}$ de $V$ tiene la propiedad requerida de que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(\bar{x})\geq 0$ para todo $\bar{x}\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(\bar{x})>0$ para todo $\bar{x}\in \mathbb{R}^n \setminus \{\bar{0}\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congruencia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciamos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $\bar{a}$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}.$$

Donde

$$\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(\bar{v})=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a})\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a}) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $\bar{a}$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $\bar{a}$:

\[ H_f(\bar{a})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a})\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[\bar{u}]^{t}A[\bar{v}]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema por qué éste se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Álgebra Lineal II: El teorema de descomposición polar real

Por Ayax Calderón

Introducción

En la entrada anterior enunciamos y demostramos el teorema espectral para matrices simétricas reales. Una de las consecuencias de este teorema es el teorema de descomposición polar. Se puede pensar en el teorema de descomposición polar como al análogo a un resultado muy conocido de números complejos: cualquier número complejo se puede pensar de la forma $z=e^{i\theta}r$ con $r\geq 0$ real. Geométricamente, el complejo se obtiene «rotando tanto como el argumento y luego alargando de acuerdo a la norma».

Así mismo, veremos que toda matriz $A$ tendrá una expresión de la forma $A=US$ donde $U$ es una matriz ortogonal (que juega el papel de «la rotación») y $S$ es una matriz simétrica positiva (que por el teorema espectral recordemos que es básicamente «alargar en varias direcciones»). Este resultado es increíble: ¡nos dice cómo son todas, todas las matrices reales en términos de matrices muy sencillas: las ortogonales (que conocemos muy bien) y las simétricas (que por el teorema espectral también conocemos muy bien)!

Caso invertible del teorema de descomposición polar

Recordemos un resultado de la entrada anterior, que era una de las partes de nuestro teorema de clasificación de matrices positivas. Nos dice que las matrices simétricas positivas «tienen raíz cuadrada».

Proposición. Sea $A$ una matriz simétrica positiva. Entonces existe una matriz simétrica $B$ tal que $B^2=A$.

Como recordatorio, para obtener a $B$ lo que hicimos fue diagonalizar a $A$ de la forma $A=P^{-1}DP$ con $D$ matriz diagonal cuyas entradas eran $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $A$. Como $A$ era positiva, sus eigenvalores eran no negativos, así que podíamos construir $D’$ con entradas $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$. Después, vimos que $B=P^{-1}D’P$ servía para que $B^2=A$. Observa que además $B$ es positiva pues sus eigenvalores son no negativos.

Como observación adicional, si $A$ fuera positiva definida entonces sus eigenvalores serían positivos, y entonces $B$ también tendría eigenvalores positivos. Así, $B$ sería positiva definida también. De hecho, se puede demostrar que en este caso la matriz $B$ es única (bajo la condición de ser simétrica positiva definida y raíz de $A$). Probar esto queda como parte de los ejercicios de la entrada.

Estamos listos para enunciar y demostrar el teorema de descomposición polar en el caso de matrices invertibles.

Teorema (De descomposición polar, caso invertible). Sea $A\in M_n(\mathbb{R})$ una matriz invertible. Entonces existe una única pareja $(U,S)$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva definida para la que se cumple que $A=US$.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ una matriz invertible. La matriz $^tAA$ es simétrica y positiva definida. Por la discusión anterior, existe una única matriz simétrica positiva definida $S$ tal que $^tAA=S^2$. Como $A$ es invertible, $S$ también lo es, así que definamos $$U=AS^{-1}.$$

Afirmamos que $(U,S)$ cumplen con lo requerido. Ya justificamos que $S$ es simétrica positiva definida. Además, de $U=AS^{-1}$ se obtiene inmediatamente $US=A$. Sólo falta verificar que $U$ es ortogonal. Para ello, al multiplicarla con su transpuesta obtenemos lo siguiente:
\begin{align*}
^tUU&=\hspace{.5mm}^tS^{-1}\hspace{.5mm}^tAAS^{-1}\\
&=S^{-1}S^2S^{-1}\\
&=I_n.
\end{align*}

Veamos ahora la unicidad. Supongamos que $A=U’S’$ con $U’$ ortogonal y $S’$ simétrica positiva definida, Entonces
$$^tAA=S’\hspace{.5mm}^tU’U’S’={S’}^2.$$

De esta manera, $S’$ es precisamente la raíz cuadrada de $^tAA$, que por la discusión anterior es única. Deducimos entonces que $S’=S$ y por lo tanto $U’=A{S’}^{-1}=AS^{-1}=U$.

$\square$

Caso general del teorema de descomposición polar

Es natural preguntarse qué sucede cuando la matriz $A$ no es invertible. Resulta que en ese caso aún podemos encontrar una descomposición, aunque perdemos un poco de las propiedades de las matrices y la unicidad. Por ejemplo, si $A=O_n$, entonces $A=UO_n$ para cualquier matriz ortogonal $U$ y entonces tenemos muchas posibles descomposiciones.

Teorema (De descomposición polar, caso general). Cualquier matriz $A\in M_n(\mathbb{R})$ se puede escribir de la forma $A=US$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva.

¿Por qué falla nuestra demostración? Todavía tenemos que $^tAA$ es positiva, así que podríamos tomar una raíz cuadrada $S$. El problema es que como $A$ no es invertible, entonces $S$ tampoco lo es. Por ello, no podemos definir $U=AS^{-1}$ como lo hicimos con anterioridad. Sin embargo, podemos ser astutos y «cambiar tantito» a $A$ para que sí se vuelva invertible. De hecho, podemos tomar muchas matrices que se acercan a $A$ y sí son invertibles. Con ello podemos usar un «argumento al límite». Formalicemos estas ideas.

Demostración. Consideremos las matrices $A_k=A+\frac{1}{k}I_n$. Recordemos que $\det(A+\lambda I_n)$ es un polinomio de grado $n$ así que tiene a lo más $n$ raíces. Por ello, existe un $k_0$ tal que para toda $k>k_0$ la matriz $A_k$ es invertible. Al aplicar el teorema de descomposición polar a cada una de dichas $A_k$, obtenemos una matriz ortogonal $U_k$ y una simétrica positiva definida $S_k$ tales que

$$A_k=U_kS_k.$$

Las entradas de cada $U_k$ cumplen que están en el intervalo $[-1,1]$ (pues la suma de las entradas de cada fila es igual a $1$). Así, $U_k$ es una sucesión de matrices en el compacto de matrices con entradas $[-1,1]$. En un compacto toda sucesión tiene una subsucesión convergente, así que podemos elegir una subsucesión de estas matrices, digamos $U_{k_1}, U_{k_2},\ldots$ que converge a una matriz $U$.

Se puede ver que el producto de matrices es continúo y obtener inversas de matrices también es continuo (por ejemplo, por las fórmulas de inversa por matriz de adjuntos). De este modo, aplicando límite $j\to \infty$ a la igualdad $^tU_{k_j}U_{k_j}=I_n$ obtenemos que $^tU=I_n$, de modo que $U$ es ortogonal.

Del mismo modo, como trasponer es continuo, $S_{k_1}, S_{k_2},\ldots$ converge a una matriz simétrica $S$. Finalmente, usando nuevamente la continuidad del producto de matrices obtenemos

\begin{align*}
A&=\lim_{j\to \infty} A_{k_j}\\
&=\lim_{j\to \infty} U_{k_j} S_{k_j}\\
&=US.
\end{align*}

Sólo nos falta demostrar que $S$ es positiva, pero si tomamos $X\in\mathbb{R}^n$, entonces pasando al límite $j\to \infty$ en la desigualdad $^tXS_{k_j}X > 0$ obtenemos $^tXSX\geq 0$. Aquí es donde se podría perder que $S$ es positiva definida, pero seguimos teniendo que $S$ es positiva.

$\square$

Más adelante…

Tanto el teorema espectral como el teorema de descomposición polar son resultados de caracterización fundamentales en álgebra lineal y finalmente nos dan una respuesta a la pregunta de, geométricamente, cómo son todas las posibles transformaciones lineales. En las siguientes secciones se esbozarán los resultados análogos para el caso complejo.

Después de ello, en la cuarta unidad del curso cubriremos otro teorema que nos permitirá decir «cómo son todas las matrices». Quizás no todas las matrices sean directamente similares a una matriz diagonal. Pero enunciaremos y demostraremos el teorema de Jordan que dirá que cualquier matriz es similar a una «casi diagonal», a la que llamaremos diagonal por bloques.

Tarea moral

  1. Sean que $A$ y $B$ son matrices simétricas. Demuestra que $A$ y $B$ conmutan si y sólo si existe una misma matriz $P$ tal que $PAP^{-1}$ y $PBP^{-1}$ son diagonales (a esto se le conoce como que $A$ y $B$ sean «simultáneamente diagonalizables»)
  2. Usando el ejercicio anterior, demuestra que si $A$ es simétrica positiva definida, y se cumple $B^2=A=C^2$ con $B$ y $C$ matrices simétricas positivas definidas, entonces $B=C$.
  3. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que $^tAA=^tBB$. Demuestra que existe una matriz ortogonal $U\in M_n(\mathbb{R})$ tal que $B=UA$.
  4. Encuentra la descomposición polar de $$\begin{pmatrix}
    11 & -5\\
    -2 & 10 \end{pmatrix}.$$
  5. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Seminario de Resolución de Problemas: El teorema espectral y matrices positivas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada hablaremos de matrices simétricas y de matrices positivas. Nos enfocaremos en el caso en el que sus entradas sean números reales. Ambos tipos de matrices son fundamentales en la teoría de álgebra lineal. Tanto para las matrices simétricas como para las positivas hay resultados de caracterización que podemos utilizar en varios problemas matemáticos.

El teorema espectral para matrices simétricas reales

Si $A$ es una matriz de $m\times n$, su transpuesta $^tA$ es la matriz de $n\times m$ que se obtiene de reflejar a las entradas de $A$ en su diagonal principal. Otra forma de decirlo es que si en términos de entradas tenemos $A=[a_{ij}]$, entonces $^tA=[a_{ji}]$. Una matriz y su transpuesta comparten muchas propiedades, como su determinante, su polinomio característico, su rango, sus eigenvalores, etc.

Decimos que una matriz es simétrica si es igual a su transpuesta. Una matriz es ortogonal si es invertible y $^tA = A^{-1}$. Las matrices simétricas y ortogonales con entradas reales son muy importantes y cumplen propiedades bonitas.

Teorema (teorema espectral). Si $A$ es una matriz de $n\times n$ con entradas reales y simétrica, entonces:

  • Sus eigenvalores $\lambda_1,\ldots,\lambda_n$ (contando multiplicidades), son todos reales.
  • Existe una matriz ortogonal $P$ de $n\times n$ y con entradas reales tal que si tomamos a $D$ la matriz diagonal de $n\times n$ cuyas entradas en la diagonal principal son $\lambda_1,\ldots,\lambda_n$, entonces $$A=P^{-1}DP.$$

No todas las matrices se pueden diagonalizar. Cuando una matriz sí se puede diagonalizar, entonces algunas operaciones se hacen más sencillas. Por ejemplo si $A=P^{-1}DP$ como en el teorema anterior, entonces
\begin{align*}
A^2&=(P^{-1}DP)(P^{-1}DP)\\
&=P^{-1}DDP\\
&=P^{-1}D^2P,
\end{align*}

y de manera inductiva se puede probar que $A^k=P^{-1}D^kP$. Elevar la matriz $D$ a la $k$-ésima potencia es sencillo, pues como es una matriz diagonal, su $k$-ésima potencia consiste simplemente en elevar cada una de las entradas en su diagonal a la $k$.

Problema. Sea $A$ una matriz de $n\times n$ simétrica y de entradas reales. Muestra que si $A^k = O_n$ para algún entero positivo $k$, entonces $A=O_n$.

Sugerencia pre-solución. La discusión anterior te permite enunciar la hipótesis en términos de los eigenvalores de $A$. Modifica el problema a demostrar que todos ellos son cero.

Solución. Como $A$ es simétrica y de entradas reales, entonces sus eigenvalores $\lambda_1,\ldots, \lambda_n$ son reales y es diagonalizable. Digamos que su diagonalización es $P^{-1} D P$. Tenemos que $$O_n = A^k = P^{-1} D^k P.$$ Multiplicando por la matriz $P$ a la izquierda, y la matriz $P^{-1}$ a la derecha, tenemos que $D^k=O_n$. Las entradas de $D^k$ son $\lambda_1^k,\ldots,\lambda_n^k$, y la igualdad anterior muestra que todos estos números son iguales a cero. De este modo, $$\lambda_1=\ldots=\lambda_n=0.$$

Concluimos que $D=O_n$, y que por lo tanto $A=P^{-1} O_n P = O_n$.

$\square$

Veamos ahora un bello problema que motiva una fórmula para los números de Fibonacci desde la teoría del álgebra lineal.

Problema. Toma la matriz $$A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$ Calcula las primeras potencias de $A$ a mano. Conjetura y muestra cómo es $A^n$ en términos de la sucesión de Fibonacci. A partir de esto, encuentra una fórmula para el $n$-ésimo término de la sucesión de Fibonacci.

Sugerencia pre-solución. Para empezar, haz las primeras potencias y busca un patrón. Luego, para la demostración de esa parte, procede por inducción. Hay varias formas de escribir a la sucesión de Fibonacci, usa una notación que sea cómoda.

Solución. Al calcular las primeras potencias de la matriz $A$ obtenemos:

\begin{align*}
A&=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\\
A^2&=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\\
A^3&=\begin{pmatrix} 1 & 2 \\ 2& 3 \end{pmatrix},\\
A^4&=\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix},\\
A^5&=\begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.
\end{align*}

Al parecer, en las entradas de $A$ van apareciendo los números de Fibonacci. Seamos más concretos. Definimos $F_0=0$, $F_1=1$ y para $n\geq 0$ definimos $$F_{n+2}=F_{n}+F_{n+1}.$$ La conjetura es que para todo entero $n\geq 1$, se tiene que $$A^n=\begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1}\end{pmatrix}.$$

Esto se puede probar por inducción. Arriba ya hicimos el caso $n=1$. Supongamos la conjetura cierta hasta un entero $n$ dado, y consideremos la matriz $A^{n+1}$. Tenemos haciendo el producto de matrices, usando la hipótesis inductiva y la recursión de Fibonacci, que

\begin{align*}
A^{n+1}&=AA^n\\
& =\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}\\
&= \begin{pmatrix} F_n & F_{n+1} \\ F_{n-1} + F_n & F_n + F_{n+1} \end{pmatrix}\\
&=\begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}.
\end{align*}

Esto termina el argumento inductivo y prueba la conjetura.

Para encontrar una fórmula para los Fibonaccis, lo que haremos ahora es usar el teorema espectral. Esto lo podemos hacer pues la matriz $A$ es de entradas reales y simétrica. Para encontrar la matriz diagonal de la factorización, necesitamos a los eigenvalores de $A$. Su polinomio característico es $$\begin{vmatrix} \lambda & -1 \\ – 1 & \lambda -1 \end{vmatrix}=\lambda^2-\lambda -1.$$

Usando la fórmula cuadrática, las raíces de este polinomio (y por tanto, los eigenvalores de $A$) son $$\frac{1\pm \sqrt{5}}{2}.$$ Por el momento, para simplificar la notación, llamemos $\alpha$ a la de signo más y $\beta$ a la raíz de signo menos. Por el teorema espectral, existe una matriz invertible $P$ de $2\times 2$ tal que $$A=P^{-1}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P.$$

De esta forma, $$A^n = P^{-1}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P.$$

Aquí no es tan importante determinar concretamente $P$ ni realizar las cuentas, sino darnos cuenta de que tras realizarlas cada entrada será una combinación lineal de $\alpha^n$ y $\beta^n$ y de que los coeficientes de esta combinación lineal ya no dependen de $n$, sino sólo de las entradas de $P$. En particular, la entrada superior derecha de $A^n$ por un lado es $F_n$, y por otro lado es $r\alpha^n + s\beta ^n$.

¿Cómo obtenemos los valores de $\alpha$ y $\beta$? Basta substituir $n=1$ y $n=2$ para obtener un sistema de ecuaciones en $\alpha$ y $\beta$. Aquí abajo usamos que como $\alpha$ y $\beta$ son raíces de $x^2-x-1$, entonces $\alpha^2=\alpha+1$, $\beta^2=\beta+1$ y $\alpha+\beta = 1$.

$$\begin{cases}
1= F_1 = r \alpha + s \beta \\
1= F_2 = r \alpha^2 + s \beta^2 = r + s + 1.
\end{cases}$$

De aquí, obtenemos la solución
\begin{align*}
r&=\frac{1}{\alpha-\beta} = \frac{1}{\sqrt{5}}\\
s&=-r = -\frac{1}{\sqrt{5}}.
\end{align*}

Finalmente, todo este trabajo se resume a que una fórmula para los números de Fibonacci es $$F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n – \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

$\square$

Matrices positivas y positivas definidas

Por definición, una matriz simétrica $A$ de $n\times n$ con entradas reales es positiva si para cualquier vector (columna) $v$ en $\mathbb{R}^n$ se tiene que $$^t v A v \geq 0.$$ Aquí $^tv$ es la transposición de $v$, es decir, el mismo vector, pero como vector fila.

Si además la igualdad se da sólo para el vector $v=0$, entonces decimos que $A$ es positiva definida. Un ejemplo sencillo de matriz positiva es la matriz $A=\begin{pmatrix} 1 & -1 \\ -1 & 1\end{pmatrix},$ pues para cualquier vector $v=(x,y)$ se tiene que $$^t v A v = x^2-2xy+y^2=(x-y)^2\geq 0.$$ Sin embargo, esta matriz no es positiva definida pues la expresión anterior se anula en vectores no cero como $(1,1)$. Como puedes verificar, un ejemplo de matriz positiva definida es $$B=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

Las matrices reales que son positivas definidas son importantes pues caracterizan todos los productos interiores en $\mathbb{R}^n$. Una vez que se tiene un producto interior en un espacio vectorial de dimensión finita, se pueden aprovechar muchas de sus propiedades o consecuencias, por ejemplo, la desigualdad de Cauchy-Schwarz o la existencia de bases ortogonales para hacer descomposiciones de Fourier.

Para cuando se quieren resolver problemas, es muy útil conocer varias equivalencias de que una matriz sea positiva.

Equivalencias para matrices positivas

El siguiente resultado enuncia algunas de las equivalencias para que una matriz sea positiva

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Hay un resultado análogo para cuando se quiere determinar si una matriz $A$ es positiva definida. En ese caso, los eigenvalores tienen que ser todos positivos. Para los puntos $3$ y $4$ se necesita además que $B$ y $C$ sean invertibles.

Problema. Sea $A$ una matriz de $n\times n$ con entradas reales, simétrica y positiva. Muestra que si $$\text{tr}(A) = n \sqrt[n]{\det(A)},$$ entonces $A$ conmuta con cualquier matriz de $n\times n$.

Sugerencia pre-solución. Necesitarás usar que matrices similares tienen la misma traza y el mismo determinante, o una versión particular para este problema.

Solución. Las siguientes son propiedades de la traza y el determinante:

  • El determinante de una matriz diagonal es el producto de las entradas en su diagonal.
  • Si tenemos dos matrices similares, entonces tienen la misma traza.

En particular, las hipótesis implican, por el teorema espectral, que $A$ se puede diagonalizar con matrices $A=P^{-1} D P$, donde $D$ es la matriz diagonal que tiene en su diagonal principal a los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$, y $P^{-1}$ es una matriz invertible. Como $A$ y $D$ son similares, se tiene que
\begin{align*}
\text{tr}(A)=\text{tr}(D)=\lambda_1+\ldots+\lambda_n\\
\det(A)=\det(D)=\lambda_1\cdot\ldots\cdot\lambda_n.
\end{align*}

Como $A$ es positiva, entonces todos sus eigenvalores son no negativos, así que satisfacen la desigualdad MA-MG:

$$\frac{\lambda_1+\ldots+\lambda_n}{n} \geq \sqrt[n]{\lambda_1\cdot\ldots\cdot\lambda_n}.$$

Por la última hipótesis del problema, esta desigualdad es de hecho una igualdad. Pero la igualdad en MA-MG se alcanza si y sólo si todos los números son iguales entre sí. Tenemos entonces que todos los eigenvalores son iguales a un cierto valor $\lambda$, y entonces $D=\lambda I_n$. Como cualquier múltiplo escalar de la matriz identidad conmuta con cualquier matriz de $n\times n$, tendríamos entonces que

\begin{align*}
A&=P^{-1}D P \\
&=P^{-1}(\lambda I_n) P\\
&=(\lambda I_n) (P^{-1}P)\\
&=\lambda I_n.
\end{align*}

Con esto probamos que $A$ es de hecho un múltiplo de la matriz identidad, y por lo tanto conmuta con cualquier matriz de $n\times n$.

$\square$

Más problemas

Puedes encontrar más problemas del teorema espectral, de formas y matrices positivas en la Sección 10.2 y la Sección 10.8 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación $T$ es simétrica y $W$ es un subespacio estable bajo $T$, entonces $W^\bot$ también lo es. Además, $T$ restringida a $W$ o a $W^\bot$ también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Demostración. Como $V$ es espacio Euclideano, entonces tiene cierta dimensión finita $n$. Haremos inducción fuerte sobre $n$. Si $n=1$, el polinomio característico de $T$ es de grado $1$ y con coeficientes reales, así que tiene una raíz $\lambda$ real. Si $v$ es un eigenvector de $T$ para $\lambda$, entonces $\frac{v}{\norm{v}}$ también es eigenvector de $T$ y conforma una base ortonormal para $V$.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a $n$ y tomemos $V$ espacio Euclideano de dimensión $n$. Por el teorema fundamental del álgebra, el polinomio característico de $T$ tiene por lo menos una raíz $\lambda$ en $\mathbb{C}$. Como $T$ es simétrica, cualquier matriz $A$ que represente a $T$ también, y $\lambda$ sería una raíz del polinomio característico de $A$. Por el resultado que vimos en la entrada anterior, $\lambda$ es real.

Consideremos el kernel $W$ de la transformación $\lambda \text{id} – T$. Si $W$ es de dimensión $n$, entonces $W=V$, y por lo tanto $T(v)=\lambda v$ para todo vector $v$ en $V$, es decir, todo vector no cero de $V$ es eigenvector de $T$. De esta forma, cualquier base ortonormal de $V$ satisface la conclusión. De esta forma, podemos suponer que $W\neq V$ y que por lo tanto $1\leq \dim W \leq n-1$, y como $$V=W\oplus W^\bot,$$ se obtiene que $1\leq \dim W^\bot \leq n-1$. Sea $B$ una base ortonormal de $W$, que por lo tanto está formada por eigenvectores de $T$ con eigenvalor $\lambda$.

Como la restricción $T_1$ de $T$ a $W^\bot$ es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal $B’$ de eigenvectores de $T_1$ (y por lo tanto de $T$) para $W^\bot$.

Usando de nuevo que $$V=W\oplus W^\bot,$$ tenemos que $B\cup B’$ es una base de $V$ formada por eigenvectores de $T$.

El producto interior de dos elementos distintos de $B$, o de dos elementos distintos de $B’$ es cero, pues individualmente son bases ortonormales. El producto de un elemento de $B$ y uno de $B’$ es cero pues un elemento está en $W$ y el otro en $W^\bot$. Además, todos los elementos de $B\cup B’$ tiene norma $1$, pues vienen de bases ortogonales. Esto muestra que $B\cup B’$ es una base ortonormal de $V$ que consiste de eigenvectores de $T$.

$\square$

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $M_n(\mathbb{R})$, tales que $$A=P^{-1}DP.$$

Demostración. Como $A$ es una matriz simétrica, la transformación $T:F^n\to F^n$ dada por $T(X)=AX$ es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de $F^n$ que consiste de eigenvectores de $T$. Digamos que estos eigenvectores son $C_1,\ldots,C_n$. Por definición de $T$, estos eigenvectores de $T$ son exactamente eigenvectores de $A$.

Anteriormente demostramos que si construimos a una matriz $B$ usando a $C_1,\ldots,C_n$ como columnas y tomamos la matriz diagonal $D$ cuyas entradas son los eigenvalores correspondientes $\lambda_1,\ldots,\lambda_n$, entonces $$A=BDB^{-1}.$$

Afirmamos que la matriz $B$ es ortogonal. En efecto, la fila $j$ de la matriz $^t B$ es precisamente $C_j$. De esta forma, la entrada $(i,j)$ del producto ${^tB} B$ es precisamente el producto punto de $C_i$ con $C_j$. Como la familia $C_1,\ldots,C_n$ es ortonormal, tenemos que dicho producto punto es uno si $i=j$ y cero en otro caso. De aquí, se concluye que ${^tB} B=I_n$.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo $P=B^{-1}$, tenemos la igualdad $$A=P^{-1}DP,$$ con $D$ diagonal y $P$ ortogonal, justo como lo afirma el teorema.

$\square$

Matrices positivas y positivas definidas

Una matriz $A$ simétrica en $M_n(\mathbb{R})$ induce una forma bilineal simétrica en $\mathbb{R}^n$ mediante la asignación $$(x,y) \mapsto {^t x} A y,$$ con forma cuadrática correspondiente $$x \mapsto {^t x} A x.$$

Definición. Una matriz $A$ en $M_n(\mathbb{R})$ es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Demostración. (1) implica (2). Supongamos que $A$ es positiva y tomemos $\lambda$ un eigenvalor de $A$. Tomemos $v$ un eigenvector de eigenvalor $\lambda$. Tenemos que:
\begin{align*}
\lambda \norm{v}^2 &=\lambda {^tv} v\\
&= {^t v} (\lambda v)\\
&={^t v} Av\\
&\geq 0.
\end{align*}

Como $\norm{v}^2\geq 0$, debemos tener $\lambda \geq 0$.

(2) implica (3). Como $A$ es matriz simétrica, por el teorema espectral tiene una diagonalización $A=P^{-1}DP$ con $P$ una matriz invertible y $D$ una matriz diagonal cuyas entradas son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal $E$ cuyas entradas son los reales $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}.$ Notemos que $E^2=D$, así que si definimos a la matriz $B=P^{-1}EP$, tenemos que $$B^2=P^{-1}E^2 P = P^{-1}DP = A.$$

Además, $B$ es simétrica pues como $E$ es diagonal y $P$ es ortogonal, tenemos que
\begin{align*}
{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\
&= P^{-1} E P\\
&= B.
\end{align*}

(3) implica (4). Es inmediato, tomando $C=B$ y usando que $B$ es simétrica.

(4) implica (1). Si $A= {^tC} C$ y tomamos un vector $v$ en $\mathbb{R}^n$, tenemos que

\begin{align*}
{^t v} A v &= {^tv} {^tC} C v\\
&= {^t(Cv)} (Cv)\\
&=\norm{Cv}^2\\
&\geq 0,
\end{align*}

lo cual muestra que $A$ es positiva.

$\square$

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en $\mathbb{C}$, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Más adelante…

En esta entrada discutimos dos demostraciones del teorema espectral. Sólo nos falta discutir cómo podemos aplicarlo. En la siguiente entrada trabajaremos con algunos problemas, por ejemplo, ver cómo se usa para demostrar que una matriz simétrica no es diagonalizable.

Finalmente, discutiremos cómo podemos pensar en las nociones de continuidad y acotamiento en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de $\mathbb{R}^3$ conformada por eigenvectores de la matriz $\begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.$
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz $$\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}$$ es positiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»