Archivo de la etiqueta: simétrica

Álgebra Lineal II: El teorema de descomposición polar real

Por Ayax Calderón

Introducción

En la entrada anterior enunciamos y demostramos el teorema espectral para matrices simétricas reales. Una de las consecuencias de este teorema es el teorema de descomposición polar. Se puede pensar en el teorema de descomposición polar como al análogo a un resultado muy conocido de números complejos: cualquier número complejo se puede pensar de la forma $z=e^{i\theta}r$ con $r\geq 0$ real. Geométricamente, el complejo se obtiene «rotando tanto como el argumento y luego alargando de acuerdo a la norma».

Así mismo, veremos que toda matriz $A$ tendrá una expresión de la forma $A=US$ donde $U$ es una matriz ortogonal (que juega el papel de «la rotación») y $S$ es una matriz simétrica positiva (que por el teorema espectral recordemos que es básicamente «alargar en varias direcciones»). Este resultado es increíble: ¡nos dice cómo son todas, todas las matrices reales en términos de matrices muy sencillas: las ortogonales (que conocemos muy bien) y las simétricas (que por el teorema espectral también conocemos muy bien)!

Caso invertible del teorema de descomposición polar

Recordemos un resultado de la entrada anterior, que era una de las partes de nuestro teorema de clasificación de matrices positivas. Nos dice que las matrices simétricas positivas «tienen raíz cuadrada».

Proposición. Sea $A$ una matriz simétrica positiva. Entonces existe una matriz simétrica $B$ tal que $B^2=A$.

Como recordatorio, para obtener a $B$ lo que hicimos fue diagonalizar a $A$ de la forma $A=P^{-1}DP$ con $D$ matriz diagonal cuyas entradas eran $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $A$. Como $A$ era positiva, sus eigenvalores eran no negativos, así que podíamos construir $D’$ con entradas $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$. Después, vimos que $B=P^{-1}D’P$ servía para que $B^2=A$. Observa que además $B$ es positiva pues sus eigenvalores son no negativos.

Como observación adicional, si $A$ fuera positiva definida entonces sus eigenvalores serían positivos, y entonces $B$ también tendría eigenvalores positivos. Así, $B$ sería positiva definida también. De hecho, se puede demostrar que en este caso la matriz $B$ es única (bajo la condición de ser simétrica positiva definida y raíz de $A$). Probar esto queda como parte de los ejercicios de la entrada.

Estamos listos para enunciar y demostrar el teorema de descomposición polar en el caso de matrices invertibles.

Teorema (De descomposición polar, caso invertible). Sea $A\in M_n(\mathbb{R})$ una matriz invertible. Entonces existe una única pareja $(U,S)$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva definida para la que se cumple que $A=US$.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ una matriz invertible. La matriz $^tAA$ es simétrica y positiva definida. Por la discusión anterior, existe una única matriz simétrica positiva definida $S$ tal que $^tAA=S^2$. Como $A$ es invertible, $S$ también lo es, así que definamos $$U=AS^{-1}.$$

Afirmamos que $(U,S)$ cumplen con lo requerido. Ya justificamos que $S$ es simétrica positiva definida. Además, de $U=AS^{-1}$ se obtiene inmediatamente $US=A$. Sólo falta verificar que $U$ es ortogonal. Para ello, al multiplicarla con su transpuesta obtenemos lo siguiente:
\begin{align*}
^tUU&=\hspace{.5mm}^tS^{-1}\hspace{.5mm}^tAAS^{-1}\\
&=S^{-1}S^2S^{-1}\\
&=I_n.
\end{align*}

Veamos ahora la unicidad. Supongamos que $A=U’S’$ con $U’$ ortogonal y $S’$ simétrica positiva definida, Entonces
$$^tAA=S’\hspace{.5mm}^tU’U’S’={S’}^2.$$

De esta manera, $S’$ es precisamente la raíz cuadrada de $^tAA$, que por la discusión anterior es única. Deducimos entonces que $S’=S$ y por lo tanto $U’=A{S’}^{-1}=AS^{-1}=U$.

$\square$

Caso general del teorema de descomposición polar

Es natural preguntarse qué sucede cuando la matriz $A$ no es invertible. Resulta que en ese caso aún podemos encontrar una descomposición, aunque perdemos un poco de las propiedades de las matrices y la unicidad. Por ejemplo, si $A=O_n$, entonces $A=UO_n$ para cualquier matriz ortogonal $U$ y entonces tenemos muchas posibles descomposiciones.

Teorema (De descomposición polar, caso general). Cualquier matriz $A\in M_n(\mathbb{R})$ se puede escribir de la forma $A=US$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva.

¿Por qué falla nuestra demostración? Todavía tenemos que $^tAA$ es positiva, así que podríamos tomar una raíz cuadrada $S$. El problema es que como $A$ no es invertible, entonces $S$ tampoco lo es. Por ello, no podemos definir $U=AS^{-1}$ como lo hicimos con anterioridad. Sin embargo, podemos ser astutos y «cambiar tantito» a $A$ para que sí se vuelva invertible. De hecho, podemos tomar muchas matrices que se acercan a $A$ y sí son invertibles. Con ello podemos usar un «argumento al límite». Formalicemos estas ideas.

Demostración. Consideremos las matrices $A_k=A+\frac{1}{k}I_n$. Recordemos que $\det(A+\lambda I_n)$ es un polinomio de grado $n$ así que tiene a lo más $n$ raíces. Por ello, existe un $k_0$ tal que para toda $k>k_0$ la matriz $A_k$ es invertible. Al aplicar el teorema de descomposición polar a cada una de dichas $A_k$, obtenemos una matriz ortogonal $U_k$ y una simétrica positiva definida $S_k$ tales que

$$A_k=U_kS_k.$$

Las entradas de cada $U_k$ cumplen que están en el intervalo $[-1,1]$ (pues la suma de las entradas de cada fila es igual a $1$). Así, $U_k$ es una sucesión de matrices en el compacto de matrices con entradas $[-1,1]$. En un compacto toda sucesión tiene una subsucesión convergente, así que podemos elegir una subsucesión de estas matrices, digamos $U_{k_1}, U_{k_2},\ldots$ que converge a una matriz $U$.

Se puede ver que el producto de matrices es continúo y obtener inversas de matrices también es continuo (por ejemplo, por las fórmulas de inversa por matriz de adjuntos). De este modo, aplicando límite $j\to \infty$ a la igualdad $^tU_{k_j}U_{k_j}=I_n$ obtenemos que $^tU=I_n$, de modo que $U$ es ortogonal.

Del mismo modo, como trasponer es continuo, $S_{k_1}, S_{k_2},\ldots$ converge a una matriz simétrica $S$. Finalmente, usando nuevamente la continuidad del producto de matrices obtenemos

\begin{align*}
A&=\lim_{j\to \infty} A_{k_j}\\
&=\lim_{j\to \infty} U_{k_j} S_{k_j}\\
&=US.
\end{align*}

Sólo nos falta demostrar que $S$ es positiva, pero si tomamos $X\in\mathbb{R}^n$, entonces pasando al límite $j\to \infty$ en la desigualdad $^tXS_{k_j}X > 0$ obtenemos $^tXSX\geq 0$. Aquí es donde se podría perder que $S$ es positiva definida, pero seguimos teniendo que $S$ es positiva.

$\square$

Más adelante…

Tanto el teorema espectral como el teorema de descomposición polar son resultados de caracterización fundamentales en álgebra lineal y finalmente nos dan una respuesta a la pregunta de, geométricamente, cómo son todas las posibles transformaciones lineales. En las siguientes secciones se esbozarán los resultados análogos para el caso complejo.

Después de ello, en la cuarta unidad del curso cubriremos otro teorema que nos permitirá decir «cómo son todas las matrices». Quizás no todas las matrices sean directamente similares a una matriz diagonal. Pero enunciaremos y demostraremos el teorema de Jordan que dirá que cualquier matriz es similar a una «casi diagonal», a la que llamaremos diagonal por bloques.

Tarea moral

  1. Sean que $A$ y $B$ son matrices simétricas. Demuestra que $A$ y $B$ conmutan si y sólo si existe una misma matriz $P$ tal que $PAP^{-1}$ y $PBP^{-1}$ son diagonales (a esto se le conoce como que $A$ y $B$ sean «simultáneamente diagonalizables»)
  2. Usando el ejercicio anterior, demuestra que si $A$ es simétrica positiva definida, y se cumple $B^2=A=C^2$ con $B$ y $C$ matrices simétricas positivas definidas, entonces $B=C$.
  3. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que $^tAA=^tBB$. Demuestra que existe una matriz ortogonal $U\in M_n(\mathbb{R})$ tal que $B=UA$.
  4. Encuentra la descomposición polar de $$\begin{pmatrix}
    11 & -5\\
    -2 & 10 \end{pmatrix}.$$
  5. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»