Introducción
Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial con producto interior, entonces podemos definir varias nociones geométricas en , como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.
Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.
En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre con un producto interior .
Conjuntos ortogonales y ortonormales
Comenzamos con la siguiente definición. Recuerda que es un espacio vectorial sobre con producto interior, así que induce una norma .
Definición. Sea un conjunto de vectores en . Decimos que es
- Ortogonal si cualquier par de vectores distintos de es ortogonal, es decir, si para todo en , con se tiene que
- Ortonormal si es ortogonal, y además todo vector de tiene norma .
En otras palabras, es ortonormal si para todo en se tiene y para y en distintos se tiene .
Ejemplo. Si tomamos a con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, y para se tiene .
Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en es el conjunto que sólo tiene al vector , pues este es un vector de norma .
Los vectores , y forman otro conjunto ortogonal en , pues en efecto
Sin embargo, este no es un conjunto ortonormal, pues la norma de es . Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales , y .
Propiedades de conjuntos ortogonales y ortonormales
Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si es un conjunto de vectores distintos de , entonces es un conjunto ortonormal.
Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.
Proposición. Si es un conjunto ortogonal de vectores no nulos, entonces los elementos de son linealmente independientes.
Demostración. Tomemos elementos de y supongamos que existen escalares tales que
Tomemos un índice en y hagamos el producto interior . Por un lado, como , este produto es . Por otro lado, por linealidad es
Cuando , el sumando correspondiente es igual a . De este modo, el único sumando no cero es cuando , el cual es . De estos argumentos, deducimos que Como los vectores son no nulos, se tiene que . Así, para todo , lo cual muestra que los vectores son linealmente independientes.
Como cada elemento de un conjunto ortonormal tiene norma , entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.
Corolario. En un espacio Euclideano de dimensión , los conjuntos ortogonales sin vectores nulos tienen a lo más elementos.
Bases ortogonales y ortonormales
Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.
Definición. Sea un conjunto de vectores en . Decimos que es
- Una base ortogonal si es una base de y es un conjunto ortogonal.
- Una base ortonormal si una base de y es un conjunto ortonormal.
Ejemplo. En la base canónica es una base ortonormal.
En el conjunto es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, es una base ortogonal.
Sin embargo, no es una base ortonormal pues el primero de ellos tiene norma . Si quisiéramos convertir a en una base ortonormal, podemos normalizar a cada uno de sus elementos.
En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.
Corolario. En un espacio Euclideano de dimensión , un conjunto ortonormal de vectores es una base ortonormal.
La importancia de las bases ortogonales yace en que dada una base ortonormal y un vector , podemos encontrar varias propiedades de en términos de fácilmente. Por ejemplo, veremos más adelante que:
- Las coordenadas de con respecto a la base son sencillas.
- Hay una fórmula simple para la norma de en términos de sus coordenadas en la base
- Si es una base de un subespacio de , entonces es fácil encontrar la distancia de a
Mejor aún, las bases ortonormales siempre existen.
Teorema. Todo espacio Euclideano tiene una base ortonormal.
Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.
Ejemplo de bases ortogonales en polinomios
Ejemplo. Tomemos el espacio de polinomios de grado a lo más con coeficientes reales. Además, tomemos números reales distintos . A partir de estos reales podemos definir la operación la cual es claramente bilineal y simétrica.
Tenemos que es una suma de cuadrados, y por lo tanto es no negativa. Además, si , es porque y como estamos trabajando en esto implica que cada sumando debe ser cero. Pero las igualdades dicen que los reales distintos son raíces de , y como es de grado a lo más , tenemos que es el polinomio . En resumen, es un producto interior en . Vamos a dar una base ortogonal con respecto a este producto interior.
Para , consideremos los polinomios Observa que y si , tenemos . Afirmamos que es una base ortonormal de con el producto interior que definimos. Como consiste de polinomios y , basta con que veamos que es un conjunto ortonormal.
Primero, notemos que
de modo que cada tiene norma .
Luego, notemos que si , entonces pues no puede ser simultáneamente y . De este modo,
Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que es base ortonormal.
Ejemplo de conjuntos ortogonales en funciones periódicas
Ejemplo. Consideremos el conjunto de funciones continuas y periódicas de periodo . Definimos Se puede mostrar que así definido es un producto interior en .
Para cada entero positivo , definimos
Además, definimos . Afirmamos que es un conjunto ortonormal de vectores. Mostremos esto.
Para empezar, notamos que
Luego, tenemos que para que
ya que para todo entero se tiene que De manera similar, usando la identidad se puede ver que la norma de es .
Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos , el resultado para ó se deduce de que
para todo entero .
Si tomamos dos ’s distintos, dos distintos o un y un , el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.
Más adelante…
En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.
En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
- Encuentra un conjunto ortogonal de vectores en tal que ninguna de las entradas de ninguno de sus vectores sea igual a .
- Escribe las demostraciones de los corolarios enunciados en esta entrada.
- Muestra que definido en el ejemplo de funciones periódicas es un producto interior.
- Termina de mostrar que la familia del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.
Entradas relacionadas
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»