Archivo del Autor: Moisés Morales Déciga

Cálculo Diferencial e Integral II: Recordatorio de derivadas

Por Moisés Morales Déciga

Introducción

Durante esta unidad se empezaron a estudiar las integrales indefinidas, como una generalización o una ampliación de la definición al empezar a considerarse como funciones, a la vez que se mencionaron e ilustraron las propiedades que éstas tienen.

Pero para poder seguir avanzando en el curso, es necesario recordar el proceso de derivación.

Muy seguramente haz escuchado que existe una relación entre la integral y la derivada, puede ser que incluso te hayan contado que la integral es la función inversa a la derivación o que son procesos opuestos y demás posibilidades.

Por otro lado, si aun no lo haz escuchado te comento que sí existe una relación entre ambos procesos pero no es formalmente correcto mencionarlo como inversos. Esto lo detallaremos más adelante.

Y como vamos a ilustrar esta relación, es necesario recordar la derivada y las reglas de derivación que se encontraron en el primer curso de cálculo.

La derivada

A partir de lo desarrollado en Cálculo I, se define coloquialmente a la derivada como la pendiente de la recta tangente a la curva en un punto o como la razón o velocidad de cambio de la función ante cambios de su variable independiente.

Formalmente, se define a la derivada como el siguiente límite.

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) \ – \ f(x)}{h} $$

Donde $f'(x)$ es la derivada de $f(x)$.

Al igual que en la entrada anterior, la derivada tiene propiedades con las cuales nos facilita su manejo al momento de operar la transformación con diferentes funciones, entre las cuales tenemos las siguientes propiedades.

Para las propiedades señaladas a continuación, es necesario considerar lo siguiente:

Sean $f$ y $g$ dos funciones derivables en $x_0$, es decir, que existe $f'(x_0)$ y $g'(x_0)$.

Derivada de suma de funciones y producto por una constante

  • $ (f + g)'(x_0) = f'(x_0) + g'(x_0)$
  • $(cf)'(x_0) = c f'(x_0)$

Derivada de producto de funciones

  • $(f \cdot g)’ (x_0) = f(x_0) \cdot g'(x_0) + f'(x_0) \cdot g(x_0)$
  • Si $g(x_0) \neq 0$ y $g'(x_0) \neq 0$, entonces

$$\left( \frac{1}{g} \right) ^{‘} (x_0) = – g(x_0) \left( \frac{1}{(g(x_0))^{2}} \right) $$

Estas son las propiedades que se ilustraron en el curso de Cálculo I, si quieres recordar la entrada, sigue este enlace. En esta entrada se presentan unas demostraciones de las propiedades, así como unos ejemplos.

Pero en este caso, podemos utilizar la notación de la integral indefinida para mostrar las propiedades y las reglas de derivación, como se muestra adelante.

Reglas de derivación

Para todas las siguientes reglas de derivación, suponga que la función es derivable.

Multiplicación por una constante

$$ \phi(x)=cf(x), \Rightarrow \phi'(x)=cf'(x).$$

Derivada de una suma

$$\phi(x)=f(x)+g(x), \Rightarrow \phi'(x)=f'(x)+g'(x).$$

Derivada del producto

$$\phi(x)=f(x) g(x), \Rightarrow \phi'(x)=f(x)g'(x) + f'(x)g(x) .$$

Derivada de un cociente

$$\phi(x) = \frac{f(x)}{g(x)}, \Rightarrow \phi'(x) = \frac{g(x)f'(x) – f(x)g'(x) }{[g(x)]^2}.$$

Derivación directa

Una vez que recordamos la derivada, su definición y las reglas de derivación, podemos recordar las fórmulas de derivación para funciones particulares, lo que nos permite calcular la derivada de forma directa o inmediata.

Esto nos facilita el proceso, ya que una vez que vemos la función, sabemos de forma instantánea, cual es su diferencial.

Derivación de potencias

Este es un caso de la derivada de un producto.

En caso de tener una potencia de la forma $x^n$.

\begin{align*}
\frac{d}{dx}x^n=n \cdot x^{n-1}.
\end{align*}

En caso de tener una raíz, es decir, la función es de la forma $\sqrt[n]{x}$, también tiene un tratamiento de potencia, como se muestra adelante.

\begin{align*}
\frac{d}{dx}\sqrt[n]{x} & = \frac{d}{dx} x^{\frac{1}{n}} \\
& =\frac{1}{n} x^{({\frac{1}{n} \ – \ 1)}} .
\end{align*}

Y por último, si tenemos un caso combinado, se tiene la siguiente regla.

\begin{align*}
\frac{d}{dx}\sqrt[n]{x^m} & = \frac{d}{dx} x^{\frac{m}{n}} \\
& =\frac{m}{n} x^{({\frac{m}{n} \ – \ 1)}} .
\end{align*}

Derivación de funciones racionales

En general, es un caso de la derivada de cociente, pero también puede ser tratada como una potencia.

\begin{align*}
\frac{d}{dx} \frac{1}{{x^m}} & = \frac{d}{dx} x^{- \ m} \\
& = – \ m \ x^{- \ m – 1} \\
& =-\frac{m}{x^{m+1}}
\end{align*}

Derivación de funciones trigonométricas

$$\frac{d}{dx}sen(x)=cos(x).$$

$$\frac{d}{dx}cos(x)=-sen(x).$$

\begin{align*}
\frac{d}{dx}tan(x) & =\frac{1}{{cos^2}(x)} \\
& =sec^2(x) \\
& =1+tan^2(x).
\end{align*}

\begin{align*}
\frac{d}{dx}cot(x) & =-\frac{1}{sen^2(x)} \\
& =-cosec^2(x) \\
&=-(1+cot^2(x)).
\end{align*}

Derivación de funciones inversas trigonométricas

$$\frac{d}{dx}arcsen(x)=\frac{1}{\sqrt{(1-x^2)}}.$$

$$\frac{d}{dx}arccos(x)=-\frac{1}{\sqrt{(1-x^2)}}.$$

$$\frac{d}{dx}arctan(x)=\frac{1}{1+x^2}.$$

$$\frac{d}{dx}arccot(x)=-\frac{1}{1+x^2}.$$

Derivada de la función exponencial

$$\frac{d}{dx}a^x=log(a)a^x.$$

$$\frac{d}{dx}e^x=e^x.$$

Derivada de la función logaritmo

$$\frac{d}{dx} log(a)x=\frac{1}{x ln(a)}.$$

$$\frac{d}{dx} ln(x)=\frac{1}{x}.$$

Regla de la cadena

Esta regla se utiliza cuando estamos haciendo composición de funciones o la función que estamos derivado es producto de otra transformación. Esta propiedad nos especifica la derivación en estos casos.

Tenemos dos funciones $\phi$ y $g$ continuas en sus intervalos de definición, no necesariamente están definidas en el mismo intervalo.

Entonces, la función compuesta $f(x)=g[\phi(x)]$ es también continua.

Entonces, si queremos obtener la derivada de la función $f(x)$, aplicamos el siguiente teorema llamado como «regla de la cadena».

$$f'(x) = g'(\phi) \phi'(x).$$

Si quieres recordar a detalle la regla de la cadena, así como su demostración, puedes consultarlo en el siguiente enlace.

Más adelante…

Este ha sido un repaso muy corto y muy general sobre la derivada, en caso de querer recordarlo con mayor detalle o si tienes algún tema que te gustaría retomar con mayor detenimiento, puedes consultar la página de curso en el siguiente enlace, donde se enfoca en el cálculo diferencial.

Este pequeño recordatorio nos permitió introducir la diferencial a partir de la notación correspondiente de la integral indefinida, lo que nos ayuda de forma indirecta a ver la relación que tiene la derivada con la integral.

En la siguiente entrada se verá la introducción a los dos teoremas que tienen una alta importancia dentro del curso y que se emplearán en muchos cursos ya que, como su nombre lo dice, son fundamentales.

Estos teoremas explican formalmente la relación que existe entre el cálculo integral y el cálculo diferencial, así que nos van a facilitar cuando se tenga un problema que involucre ambos procesos.

Tarea moral

Encuentre las siguientes derivadas.

  1. $\ y(x) = (x^3 + 4x^2 – 7)^6.$
  2. $\ y(x) = sin^2(2x^3).$
  3. $ \ y(x) = \frac{1}{6x} + e^{2x}.$
  4. $\ y(x) = 3x cos(x^2) – (x^2+2x+1) tan(x) .$
  5. $\ y(x) = 4 ln((x-2)^2). $

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Propiedades de la integral indefinida
  • Entrada siguiente: Intuición de los teoremas fundamentales del cálculo

Cálculo Diferencial e Integral II: Primer teorema fundamental del cálculo

Por Moisés Morales Déciga

Introducción

Dada la introducción de la sección anterior, donde se genera la intuición de lo que son los teoremas fundamentales, podemos ahondar más en ellos.

En está primera sección tomaremos el primer teorema, que nos habla de la relación que existe entre la definición de una función integral y la derivada de esta función.

De forma económica, se dio un ejemplo que ejemplifica el efecto de aplicar la derivada al resultado de una integral, el cual podemos recordar:

\begin{align*}
\int \limits_0^x 4t^3 \ dt = x^4 ;\\
D(x^4)= 4x^3 .
\end{align*}

Recuperando dicho ejemplo, donde vimos que se recupera la función antes de aplicar la primer transformación; ahora es explicar de manera formal este efecto.

Primer teorema fundamental

El primer teorema fundamental nos da la relación entre la integral y la derivada, en ese orden.

Primero se define la integral de una función continua en un intervalo cerrado y se pide que la integral también sea continua y derivable en dicho intervalo. En caso de que se cumplan todas estas hipótesis, entonces la derivada de la integral es la función original, previo a la integral.

Entonces, prácticamente no transformaste en ningún momento la función.

Pero es importante recordar muy bien las hipótesis para poder aplicar el teorema.

Escribamos esto formalmente.

Teorema: (Primer teorema fundamental del cálculo).

Si $f$ es continua sobre un intervalo $[a,b]$; sea $G$ la función definida por:

$$G(x) = \int \limits_a^x f = \int \limits_a^x f(t) \ dt.$$

Donde $x \in [a,b]$ y $G$ es continua y diferenciable sobre $[a,b]$, entonces:

$$G'(x) = f(x), \ sobre \ [a,b].$$

Demostración.

Supongamos que $x_0 \in [a,b]$, sea $h \neq 0$, y se cumple que $ x_0 + h \in [a,b]$, entonces:

$$G(x_0 + h) \ – \ G(x_0) = \int \limits_a^{x_0 + h} f(t) \ dt \ – \ \int \limits_a^{x_0} f(t) \ dt .$$

Por hipótesis, $f$ es continua sobre el intervalo, por lo tanto es integrable.

Ahora, utilizando las propiedades de los límites de integración, se puede hacer la siguiente igualdad.

$$\int \limits_a^{x_0 + h} f \ – \ \int \limits_a^{x_0} f = \int \limits_{x_0}^{x_0 + h} f .$$

De forma que la expresión queda de la siguiente manera:

$$G(x_0 + h) \ – \ G(x_0) = \int \limits_{x_0}^{x_0 + h} f(t) \ dt $$

Observación: Utilizando el teorema del valor medio para la integral (se ilustra como recordatorio);

$$f(x_0) = \frac{1}{h} \int \limits_{x_0}^{x_0 + h} f(t) \ dt ,$$

Podemos escribir la función de la siguiente manera, sustituyendo en la expresión anterior:

\begin{align*}
\frac{G(x_0 + h) \ – \ G(x_0)}{h} \ – \ f(x_0) & = \frac{1}{h} \int \limits_{x_0}^{x_0 + h} [f(t) \ – \ f(x_0)] \ dt.
\end{align*}

Como se ha dicho, $f$ es continua en $x_0$, y recordando la definición de la derivada mediante épsilon y delta como sigue: «para cada $\epsilon >0$, existe un $\delta > 0$ tal que $|f(t) \ – \ f(x_0)| < \epsilon$ para todo $t \in [a,b] \cap \{ x_0 \ – \ \delta , x_0 + \delta \}$».

Se puede concluir que si $(0 < |h| < \delta)$ y $(x_0 + h \in [a,b])$ entonces implica que $|f(t) \ – \ f(x_0)| < \epsilon$ siempre que $(x_0 \leq t \leq x_0 + h)$ si $(h>0)$ ó $(x_0 + h \leq t \leq x_0)$ si $(h<0)$.

Esto quiere decir que si tenemos un valor de $h$ lo suficientemente pequeño, menor que una delta y que si consideramos un punto definido por $x_0 + h$ asegurando que se encuentra dentro de nuestro intervalo de integración; entonces la diferencia entre la función evaluada en cualquier punto $t$ y $f(x_0)$ es menor a épsilon, para cualquier punto $t$ entre $x_0$ y $x_0 + h$.

Por lo tanto, esto implica:

\begin{align*}
\left| \frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ – \ f(x_0) \right| & < \left| \frac{1}{h} \int \limits_{x_0}^{x_0 + h} [f(t) \ – \ f(x_0)] \ dt \right| \\ &
= \left| \frac{1}{h} \int \limits_{x_0}^{x_0 + h} \epsilon \ dt \right| = \epsilon.
\end{align*}

Siempre que $0 < |h| < \delta$ y $(x_0 + h) \in [a,b]$.

Entonces,

\begin{align*}
\left| \frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ – \ f(x_0) \right| & < \epsilon.
\end{align*}

Sin pérdida de generalidad, se puede ver que:

\begin{align*}
\frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ – \ f(x_0) < \epsilon \\
\frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ < \ f(x_0) + \epsilon.
\end{align*}

De forma que, al aplicar el límite haciendo que $h$ tienda a cero, recuperamos la definición de la derivada:

$$\lim_{h \to 0} \frac{ G(x_0 + h) \ – \ G(x_0) }{h} = G'(x_0).$$

Entones, estamos mostrando que:

$$G'(x_0) = \lim_{h \to 0} \frac{ G(x_0 + h) \ – \ G(x_0) }{h} = f(x_0)$$

para todo $x_0 \in [a,b]$.

Si consideramos el otro valor posible de la desigualdad del valor absoluto, tenemos el siguiente caso:

\begin{align*}
\frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ – \ f(x_0) > – \ \epsilon \\
\ f(x_0) \ – \ \frac{ G(x_0 + h) \ – \ G(x_0) }{h} \ < \epsilon.
\end{align*}

A pesar del cambio en el signo, la demostración se sigue de forma análoga llegando al mismo resultado.

$~\square$

Ejemplo:

Sea $S(x) = \int \limits_0^3 x^2 dx$. Encuentre $S'(x)$.

Entonces, queremos la derivada de la integral de la función $f(x)=x^2$.

$$\frac{d}{dx} S(x) = \frac{d}{dx} \int \limits_0^3 x^2 dx . $$

Entonces, por el teorema fundamental del cálculo (primera parte), tenemos lo siguiente.

$$S'(x) = f(x), ~sobre ~[0,3].$$

$$ \left. S'(x) = x^2 \right]_0^3 = 3^2 – 0^2 = 9. $$

Corolario: Sea $f$ continua en $[a,b]$ y existe $g$ tal que $f = g’$, entonces:

$$ \int \limits_a^b f = g(b) \ – \ g(a) $$

Más adelante…

Acabamos de presentar formalmente y de demostrar el primer teorema fundamental del cálculo.

En resumen, este teorema nos dice que la derivada de una integral es la función original, siempre y cuando la función es continua y la integral es continua y derivable.

Entonces, cuando tenemos este tipo de funciones, las transformaciones si son funciones inversas, prácticamente no estamos modificando la función al hacerla pasar por estos procesos.

Esto es útil cuando tenemos funciones que sabemos que provienen de una integral y que queremos derivar, pero que su proceso de cálculo tradicional o, coloquialmente, al momento de arrastrar el lápiz el desarrollo puede ser engorroso. Pero al saber su origen o de donde proviene, el procedimiento se simplifica.

En la siguiente entrada veremos la segunda parte del teorema fundamental. Sería la contraposición al teorema que acabamos de analizar.

Si en este partimos de la integral hacia la derivada, en el siguiente que vamos a ver será a partir de la derivada para terminar con la integral.

Tarea moral

  1. Demuestra el Corolario presentando en la parte anterior.
  2. Encuentra las derivadas de las siguientes funciones.
    • $G(x)=\int \limits_0^x \sqrt{1 + t^2}dt.$
    • $G(x)= \int \limits_a^{x^3} sin^3(t) dt .$
    • $G(x)= \int \limits_a^{x^4} sec(t) dt.$
    • $G(x)= \int \limits_1^x \frac{1}{t^3+1}dt .$
    • $G(x)= \int \limits_1^{1-3x} \frac{u^3}{u^2+1}dt .$
  3. Suponga una función $F (x) = \int \limits_1^{\sqrt x} sen(t) \ dt$. Calcule la derivada de $F'(x)$. Observación: utilizar la regla de la cadena.
  4. Suponga una función $F (x) = \int \limits_{x}^{2 x} t^3 \ dt$. Calcule la derivada de $F'(x)$. Observación: utilizar la regla de la cadena y propiedades de la integral, debido a que ambos límites son variables.

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Intuición de los teoremas fundamentales del cálculo
  • Entrada siguiente: El segundo teorema fundamental del cálculo

Cálculo Diferencial e Integral II: Propiedades de la integral definida

Por Moisés Morales Déciga

Introducción

En las entradas anteriores se dio la motivación de la construcción de la integral y la definición de la integral de Riemann. Para que cierta integral exista, necesitamos que el ínfimo de ciertas sumas superiores coincida con el supremo de ciertas sumas inferiores. Vimos algunas condiciones que garantizan que esto suceda, por ejemplo, que exista el límite de las sumas superiores e inferiores para las particiones homogéneas, y que dicho límite sea el mismo en ambos casos. Lo que haremos ahora es estudiar más propiedades de la integral.

Las propiedades que veremos nos permitirán concluir la existencia de ciertas integrales de manera sencilla y, a la vez, nos permitirán manipular algebraicamente a las integrales. En caso de necesitar un recordatorio de la definición de integral, te recomendamos consultar la entrada anterior.

Integrabilidad de familias de funciones especiales

Hay algunas propiedades de funciones que se estudian desde Cálculo I que implican la integrabilidad. A continuación presentamos un par de ejemplos.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es acotada y monótona en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Supondremos que $f$ es estrictamente creciente. Otras variantes de monotonía (no decreciente, no creciente, estrictamente decreciente) tienen una demostración similar, que puedes hacer por tu cuenta.

Tomemos la partición homogénea $P_n$ del intervalo $[a,b]$. Definiendo $$x_j=a+j\frac{b-a}{n}$$ para $j=0,\ldots,n$, se tiene que las celdas son $$[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n].$$

Las celdas tienen todas longitud $\frac{b-a}{n}$ y como la función es estrictamente creciente, el mínimo se alcanza al inicio de cada celda. De esta manera, la suma inferior para esta partición es:

\begin{align*}
\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right).
\end{align*}

Similarmente, el máximo se alcanza al final de cada celda. Por ello, la suma superior para esta partición es

\begin{align*}
\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right).
\end{align*}

Restando la suma inferior a la superior, obtenemos

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\left(\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right)\right)-\left(\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right)\right)\\
&=\frac{b-a}{n}(f(x_n)-f(x_0))\\
&=\frac{(b-a)(f(b)-f(a))}{n}.
\end{align*}

De acuerdo a la condición de Riemann (enunciada en la entrada anterior), la función será integrable si logramos que esta diferencia sea tan pequeña como queramos. Tomemos entonces cualquier $\epsilon>0$ y $n$ un entero tan grande como para que $n>\frac{1}{\epsilon}(b-a)(f(b)-f(a))$. Para este $n$, se cumple que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{(b-a)(f(b)-f(a))}{n}<\epsilon,
\end{align*}

y por ello la función es integrable.

$\square$

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Como primera observación, como $f$ es continua en el intervalo cerrado y acotado $[a,b]$, entonces es acotada, de modo que sí podemos hablar de sus sumas superiores e inferiores.

La estrategia que usaremos para ver que es integrable será verificar nuevamente la condición de Riemann, es decir, que para cualquier $\epsilon > 0$, existe una suma superior y una inferior cuya diferencia es menor que $\epsilon$. La intuición es que con una partición suficientemente fina, el máximo y mínimo de $f$ son muy cercanos porque los puntos que los alcanzan están en una celda muy chiquita (y entonces son muy cercanos). Para poder hacer esto «globalmente» en todas las celdas, necesitaremos una propiedad un poco más fuerte que continuidad: continuidad uniforme (puedes seguir el enlace para recordar este contenido aquí en el blog). Pero ésta se tiene pues las funciones continuas en intervalos cerrados y acotados son uniformemente continuas.

Tomemos entonces $\epsilon >0$. Como mencionamos, $f$ es uniformemente continua y el intervalo $[a,b]$ es cerrado y acotado, entonces $f$ es uniformememente continua. Así, existe una $\delta>0$ tal que si $|x-y|<\delta$, entonces $|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Tomemos $n$ tan grande como para que $\frac{b-a}{n}<\delta$. Tras hacer esto, en cada celda $i$ de la partición homogénea $P_n$ los valores $m_i$ y $M_i$ donde $f$ alcanza el mínimo y máximo respectivamente cumplen que $|M_i-m_i|\leq \frac{b-a}{n}<\delta$ y por lo tanto para cada $i$ se tiene $f(M_i)-f(m_i)=|f(M_i)-f(m_i)|<\frac{\epsilon}{b-a}$.

Ya tenemos los ingredientes para realizar la cuenta de sumas superiores e inferiores.

Por un lado,

$$\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(M_1)+\ldots+f(M_n)\right).$$

Por otro,

$$\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(m_1)+\ldots+f(m_n)\right),$$

así que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{b-a}{n}\sum_{i=1}^n \left(f(M_i)-f(m_i)\right)\\
&<\frac{b-a}{n}\sum_{i=1}^n \frac{\epsilon}{b-a}\\
&=\frac{b-a}{n}\left(n\frac{\epsilon}{b-a}\right)\\
&=\epsilon.
\end{align*}

Esto muestra que podemos acercar una partición superior tanto como queramos a una inferior. Por el criterio de la entrada anterior, la función $f$ es integrable en $[a,b]$.

$\square$

Separación de la integral en intervalos

Enunciemos una propiedad importante de la integral: puede partirse en intervalos.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Demostración. Veamos primero que si la integral en todo $[a,b]$ existe, entonces las otras dos también. Trabajaremos usando la condición de Riemann. Sea $\epsilon>0$. Como $f$ es integrable en $[a,b]$, entonces existe una partición $P$ de $[a,b]$ tal que

$$\overline{S}(f,P)-\underline{S}(f,P)<\epsilon.$$

Podemos suponer que uno de los puntos de $P$ es el punto $c$, pues de no serlo, refinamos a $P$ incluyendo a $c$. Esto no aumenta la suma superior, ni disminuye la inferior, así que sigue cumpliendo la desigualdad anterior. Si $P=\{x_0,\ldots,x_n\}$, podemos entonces pensar que para alguna $k$ en $\{0\ldots,n\}$ se cumple que $x_k=c$, y entonces de esta partición de $[a,b]$ salen las particiones:

  • $P_1 = \{a=x_0, x_1, … , x_k=c\}$ de $[a,c]$ y
  • $P_2 = \{c={x_k}, x_{k+1}, … , x_n=b\}$ de $[c,b]$.

Como las celdas de $P$ son celdas de $P_1$ ó $P_2$, entonces las sumas superiores e inferiores cumplen:

\begin{align*}
\overline{S} (f,P_1) + \overline{S} (f,P_2) &= \overline{S} (f,P), \\
\underline{S} (f,P_1) + \underline{S} (f,P_2) &= \underline{S} (f,P) .\\
\end{align*}

Si se restan ambas sumas, se obtiene lo siguiente:

\begin{align*}
\left(\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1)\right) + \left(\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2)\right) = \overline{S} (f,P) \ – \ \underline{S} (f,P) < \epsilon.\\
\end{align*}

Ambos términos de la izquierda son positivos y su suma es menor que $\epsilon$, así que concluimos:

\begin{align*}
\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1) &< \epsilon,\\
\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2) &< \epsilon.\\
\end{align*}

De este modo, por el criterio de Riemann se tiene que $f$ es integrable en $[a,c]$ y en $[c,b]$.

Si la integrales en $[a,c]$ y $[c,b]$ existen, entonces puede hacerse una prueba similar: para cualquier $\epsilon$ habrá una partición $P$ de $[a,c]$ con diferencia de suma superior e inferior menor a $\epsilon/2$, y lo mismo para una partición $P’$ de $[c,b]$. Un argumento similar al de arriba ayudará a ver que $P\cup P’$ es una partición de $[a,b]$ que hace que la diferencia de la suma superior e inferior sea menor a $\epsilon$. Los detalles quedan para que los verifiques por tu cuenta.

Veamos ahora que cuando las integrales existen, entonces se cumple la igualdad

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Tomemos cualquier partición $P’$ de $[a,b]$. Tomemos el refinamiento $P=P’\cup \{c\}$ y escribamos $P=P_1\cup P_2$ como arriba. Usando que las integrales son ínfimos de sumas superiores (y por lo tanto son cotas inferiores), tenemos que:

\begin{align*}
\overline{S}(f,P’) & \geq \overline{S}(f,P)\\
&=\overline{S}(f,P_1) + \overline{S}(f,P_2)\\
&\geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.
\end{align*}

Por definición, $\int \limits_{a}^{b} f(x) \ dx$ es el ínfimo de las sumas superiores sobre todas las particiones $P’$ de $[a,b]$ y entonces es la mayor de las cotas inferiores. Como arriba tenemos que $\int_a^c f(x)\, dx + \int_c^b f(x) \,dx$ es cota inferior para todas estas sumas superiores, entonces:

$$\int_a^b f(x)\, dx \geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.$$

Así mismo, para cualesquiera particiones $P_1$ y $P_2$ de $[a,c]$ y $[c,b]$ respectivamente, tenemos que $P_1\cup P_2$ es partición de $[a,b]$ y entonces

$$\overline{S}(f,P_1) + \overline{S}(f,P_2) = \overline{S}(f,P_1\cup P_2) \geq \int_a^b f(x)\,dx,$$

de donde

$$\overline{S}(f,P_1) \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2).$$

Así, para cualquier partición $P_2$ fija, hemos encontrado que $\int_a^b f(x)\,dx – \overline{S}(f,P_2)$ es cota inferior para todas las sumas superiores de particiones $P_1$ de $[a,c]$. De este modo, por ser la integral en $[a,c]$ la mayor de estas cotas inferiores, se tiene

$$\int_a^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2)$$

para cualquier partición $P_2$ de $[c,b]$. Pero entonces

$$\overline{S}(f,P_2) \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx, $$

se cumple para toda partición $P_2$ de $[b,c]$, de donde concluimos

$$\int_b^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx.$$

Despejando, obtenemos la desigualdad

$$\int_a^b f(x)\, dx + \int_b^c f(x)\, dx \geq \int_a^b f(x).$$

Junto con la desigualdad que mostramos arriba, se obtiene la desigualdad deseada.

$\square$

Límites reales arbitrarios

Hasta ahora siempre hemos hablado de la existencia de la integral de una función en un intervalo $[a,b]$ con $a\leq b$. Cuando $a=b$, la integral que buscamos es en el intervalo $[a,a]$ y se puede mostrar que en este caso la integral siempre existe y es igual a cero, es decir, que $$\int_a^a f(x)\, dx = 0.$$

La siguiente definición nos dice qué hacer cuando en los límites de integración vamos de un número mayor a uno menor.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sean $a<b$ reales. Si la integral de $f$ en el intervalo $[a,b]$ existe, entonces definimos la integral de $f$ de $b$ a $a$ como sigue: $$\int_b^a f(x)\,dx= – \int_a^b f(x)\, dx.$$

Esta definición es compatible con todo lo que hemos platicado, y nos permite extender la identidad $$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$ de la proposición de la sección anterior a valores arbitrarios de $a,b,c$, sin importar en qué orden estén en la recta real (siempre y cuando las integrales existan, por supuesto). Por ejemplo, si $a>b>c$, entonces podemos proceder como sigue mediante lo que ya hemos demostrado y definido:

\begin{align*}
\int_a^b f(x)\, dx &= – \int_b^a f(x)\, dx \quad \text{Def. int. para $a>b$.}\\
&= – \left(\int_c^a f(x)\, dx \ – \ \int_c^b f(x)\, dx\right) \quad \text{Por prop. anterior pues $c<b<a$.}\\
&= – \int_c^a f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Distribuir el $-$}\\
&= \int_a^c f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Def. int. para $a>c$}.
\end{align*}

Aquí se ve como con un orden específico de $a,b,c$ se sigue cumpliendo la identidad buscada, aunque $c$ no quede entre $a$ y $b$ y no se cumpla que $a\leq b$. Siempre es posible hacer esto y te recomendamos pensar en cómo argumentar todos los casos posibles de $a,b,c$.

La intuición en áreas de que la integral $\int_b^a f(x)\, dx$ cambia de signo con respecto a $\int_a^b f(x)\, dx$ es que en una recorremos el área de izquierda a derecha y en la otra de derecha a izquierda. Entonces, «recorremos el área al revés» porque «graficamos hacia atrás». Por ejemplo, se tiene el intervalo $[5,1]$, la forma en que se recorrerá al momento de graficar sería del $5$ al $1$ y, si la función es positiva, la integral será negativa.

Linealidad de la integral

Tomemos dos funciones acotadas $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ y supongamos que son integrables en el intervalo $[a,b]$. Tomemos cualquier real arbitrario $\alpha$. A partir de esto, podemos construir la función $f+\alpha g$, que recordemos que su definición es que es una función de $[a,b]$ a $\mathbb{R}$ con regla de asignación $$(f+\alpha g)(x) = f(x) + \alpha g(x).$$

Si tomamos una partición $P$ de $[a,b]$, se puede verificar fácilmente que

\begin{align*}
\overline{S}(f+\alpha g, P)&=\overline{S}(f,P)+\alpha \overline{S}(g,P),\\
\underline{S}(f+\alpha g, P)&=\underline{S}(f,P)+\alpha \underline{S}(g,P).
\end{align*}

Restando ambas expresiones,

$$\overline{S}(f+\alpha g, P) \ – \ \underline {S}(f+\alpha g, P) = \left(\overline{S}(f,P) \ – \ \underline{S}(f,P)\right) + \alpha \left(\overline{S}(g,P) \ – \ \underline{S}(g,P)\right).$$

Intuitivamente (respaldados por el criterio de Riemann), el lado derecho puede ser tan pequeño como queramos pues $f$ y $g$ son integrables. Así que el lado izquierdo también. Esto muestra que $f+\alpha g$ también es integrable en $[a,b]$. Te recomendamos hacer una demostración formal.

Además, si $P_n$ es una sucesión de particiones en donde los tamaños de celda convergen a cero (y por lo tanto para las cuales las sumas superiores convergen a la integral para cada función de arriba), entonces:

\begin{align*}
\int_a^b (f+\alpha g)(x)\, dx &= \lim_{n\to \infty} \overline{S} (f+\alpha g, P_n)\\
&=\lim_{n\to \infty} \left(\overline{S}(f,P_n)+ \alpha\overline{S}(g,P_n)\right)\\
&=\lim_{n\to \infty} \overline{S}(f,P_n) + \alpha \lim_{n\to \infty} \overline{S}(g,P_n)\\
&=\int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.
\end{align*}

En resumen, hemos demostrado lo siguiente:

Teorema. La integral es lineal. Es decir, si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son funciones acotadas e integrables en $[a,b]$, entonces para cualquier real $\alpha$ también $f+\alpha g$ es integrable en $[a,b]$ y además se cumple $$\int_a^b (f+\alpha g)(x)\, dx = \int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.$$

Dos casos particulares de interés son los siguientes:

  • Si en el teorema anterior tomamos $\alpha=1$, entonces obtenemos que $\int_a^b (f+g)(x)=\int_a^b f(x)\, dx + \int_a^b g(x)\, dx$, es decir, la integral abre sumas.
  • Si en el teorema anterior tomamos $f$ como la función constante cero, entonces obtenemos que $\int_a^b \alpha g(x)\, dx = \alpha \int_a^b g(x)\, dx$, es decir la integral saca escalares.

La integral respeta desigualdades

Veamos que la integral, en cierto sentido, respeta desigualdades. Un primer paso que es muy sencillo de verificar es lo que sucede con la integral de funciones no negativas.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es una función integrable en el intervalo $[a,b]$ y se cumple $f(x)\geq 0$ para todo $x\in [a,b]$, entonces $$\int_a^b f(x)\, dx \geq 0.$$

Demostración. Como $f(x)\geq 0$, entonces claramente para cualquier partición $P$ se cumple que $\overline{S}(f,P)\geq 0$, pues aparecen puros términos positivos en la suma superior. Así, $0$ es una cota inferior para las sumas superiores. Como la integral es la máxima de dichas cotas superiores, entonces $$\int_a^b f(x)\, dx \geq 0,$$ como queríamos.

$\square$

De este resultado y las propiedades que hemos mostrado, podemos deducir algo mucho más general.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones integrables en un intervalo $[a,b]$, dentro del cual también se cumple que $f(x)\leq g(x)$. Entonces, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx.$$

Demostración. Como $f$ y $g$ son integrables en $[a,b]$, entonces la combinación lineal $g-f$ también lo es, y además $(g-f)(x)=g(x)-f(x)\geq 0$. Por la proposición anterior y la linealidad de la integral, tenemos entonces que: $$\int_a^b g(x)\, dx \ – \ \int_a^b f(x)\, dx = \int_a^b (g-f)(x)\, dx \geq 0.$$

De aquí, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx,$$ como queríamos.

$\square$

Más adelante…

Todas las propiedades que hemos enunciado se utilizarán de aquí en adelante. Es importante que las tengas presentes. Son propiedades que nos permiten factorizar funciones para que al momento de integrar o que nos permiten partir una integral complicada en otras más sencillas con integración inmediata o ya conocida.

En la siguiente entrada enunciaremos y demostraremos el teorema del valor medio para la integral. Es un teorema muy relevante, pues será uno de los ingredientes en la demostración de otros teoremas importantes para el cálculo integral.

Tarea moral

  1. Utilizando las propiedades anteriores, resuelve las siguientes integrales.
    • $\int \limits_0^1 7(4+3x^2) ~dx.$
    • $\int \limits_2^0 \frac{1}{4}(32x-3x^2+6) ~dx.$
  2. Termina con detalle todas las demostraciones de la entrada que hayan quedado pendientes.
  3. Usndo las propiedades de esta entrada, demuestra que la integral $\int_{-10}^{10} x^7-x^5+3x^3+27x\, dx$ existe y determina su valor. Sugerencia. Muestra que la función dentro de la integral es continua y cumple $f(x)=-f(x)$. Usa varias de las propiedades de esta entrada.
  4. Demuestra la siguiente igualdad:
    $$ \int \limits_{a}^{b} \alpha \ f(x) \ dx \ + \int \limits_{a}^{b} \beta\ g(x) \ dx \ = \ \int \limits_{a}^{b} \alpha f(x) \ + \beta g(x) \ dx .$$
  5. Sean $a\leq b\leq c\leq d$ números reales. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,d]$. Demuestra que todas las integrales $$\int_a^c f(x)\, dx, \int_b^d f(x)\, dx, \int_a^d f(x)\,dx, \int_b^c f(x)\,dx$$
    existen y muestra que satisfacen la siguiente identidad:
    $$\int_a^c f(x)\, dx + \int_b^d f(x)\, dx = \int_a^d f(x)\,dx + \int_b^c f(x)\,dx.$$
  6. Sean $a<b$ reales. Demuestra que si la función $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, se cumple que $f(x)\geq 0$ para $x\in [a,b]$ y además existe por lo menos un punto $c$ tal que $f(c)>0$, entonces $\int_a^b f(x)\, dx >0$. Como sugerencia, demuestra que existe todo un intervalo (aunque sea muy chiquito) donde la función es positiva, y usa otras propiedades que hemos mostrado. Luego, encuentra un contraejemplo para esta afirmación en donde $f$ no sea continua.

Entradas relacionadas

Cálculo Diferencial e Integral II: Introducción y método exhaustivo

Por Moisés Morales Déciga

Introducción

Este curso es la continuación de la materia Cálculo Diferencial e Integral I. En el primer curso de cálculo hablamos del cálculo diferencial. Nuestro principal objeto matemático fue la derivada y cómo se puede interpretar como la razón de cambio del objeto de análisis: la tangente de una curva, la velocidad y aceleración de una partícula, la variación de un objeto en su trayectoria, etc.

En este siguiente curso hablaremos de temas relacionados con el cálculo integral. Hablaremos un poco de sus orígenes, de los principales objetos matemáticos que estudia, de varios aspectos fundamentales de su teoría y de sus aplicaciones. El objetivo principal de esta rama matemática es el estudio de las integrales y las anti-derivadas. Una motivación importante es que ellas son una herramienta para la solución de problemas de cálculo de áreas y de volúmenes.

Así, el objeto matemático estelar del curso será la integral y la motivaremos mediante su gran utilidad para el cálculo de áreas. Sin embargo, esto no será lo único que haremos. La definiremos formalmente, probaremos las muchas propiedades matemáticas que tiene y veremos numerosas aplicaciones no sólo al cálculo de integrales, sino también a la construcción de otros objetos matemáticos fundamentales como la función exponencial.

Es muy probable que ya cuentes con una buena noción de área. En cursos de primaria, secundaria y bachillerato se explica un poco de esto y se dan fórmulas para calcular áreas. Sin embargo, estas fórmulas no salen de la nada. Pueden ser construidas a partir de nociones más básicas y por distintos métodos. Uno de ellos es la integración. Hasta que hagamos más precisiones formales, puedes aprovechar la intuición que ya tienes sobre las áreas y pensar en ellas intuitivamente como una magnitud que «mide» qué tan grande es una región contenida dentro de ciertos límites y cuyas unidades están «al cuadrado». Esto te ayudará a tener en qué cimentar tu intuición para cuando demos una definición más formal.

Algunas notas históricas

Históricamente, se han encontrado casos de utilización de de herramientas de cálculo diferencial en trabajos antiguos, por ejemplo, los trabajos de Arquímedes. Pero fue hasta los siglos XVI y XVII donde se tuvo un desarrollo sistemático, atribuido a Isaac Newton y Gottfried Leibniz, quienes son considerados como los dos grandes pioneros y más grandes representantes del Cálculo. Sin embargo, no fueron los únicos aportadores a éste.

Otra persona importante, Isaac Barrow, quién sería el profesor de Newton, tenía una comprensión sobre la reciprocidad entre la derivación e integración. Este concepto es el punto de partida del cálculo desarrollado por Newton y Leibnitz. Es primordial pues da pie a la introducción y demostración de los dos teoremas fundamentales del cálculo.

Método exhaustivo

A modo de introducción, platicaremos en esta entrada sobre el método exhaustivo. Es un método matemático que utiliza la geometría para aproximar algún resultado o aproximar a la solución un problema que tengamos. La característica que tiene el método es que, a la vez que aumenta el cálculo o las repeticiones, aumenta el grado de precisión de nuestra aproximación con respecto al resultado que queremos.

Arquímides desarrolló una de las aplicaciones de este método para el cálculo de áreas planas. Eudoxo también trabajó con este método, sólo que su objetivo era calcular el volumen de las pirámides de Egipto. En cierto sentido, también ya usamos este método cuando hablamos de la derivada de una función. Para pensar en la tangente en un punto $P$ a la gráfica de una función, la intuición (y de hecho, en cierto sentido la definición formal) consistió en tomar rectas secantes que pasaran por $P$ y otro punto $Q$ en la gráfica. Conforme $Q$ se acercaba a $P$ nos aproximábamos más y más a la tangente y, si cierto límite existía, justo esa era la definición de tangente.

Para ejemplificar nuevamente el método exhaustivo, veremos cómo encontrar de manera un poco informal el el área de un círculo. Sea $C$ un círculo y sea $M\geq 3$ un número natural. Tomemos $P_M$ un polígono regular de $M$ lados inscrito al círculo $C$ y $Q_M$ un polígono de $M$ lados circunscrito al círculo $C$. Para que dichos polígonos queden bien definidos, podemos pedir además que su lado inferior sea horizontal. Por ejemplo, en la figura a continuación se muestra el caso $M = 5$.

Notemos que los polígonos que definimos tienen dos áreas: una que incluye al área del círculo y otra que está incluida en el círculo.

Para cada valor de $M$ tenemos dos polígonos. De este modo, estamos generando dos sucesiones de polígonos: la de polígonos inscritos $\{P_M\}_{M\geq 3}$ y la de polígonos circunscritos $\{Q_M\}_{M\geq 3}$. Notemos que el área cada uno de los polígonos inscritos $P_M$ queda acotada superiormente por el área de cada uno de los polígonos $Q_M$; a su vez, el área de cada uno de los polígonos circunscritos $Q_M$ queda acotada inferiormente por el área de cada uno de los polígonos $P_M$. Además, no es muy difícil convencerse de que el área de los polígonos inscritos crece conforme $M$ aumenta y, en contraparte, el área de los circunscritos decrece conforme $M$ aumenta. Recordando del primer curso de cálculo lo que sabemos sobre supremos, ínfimos y sobre sucesiones monótonas y acotadas, tendríamos entonces que los siguientes dos límites existen:

\begin{align*}
p&=\lim_{M\to \infty} \text{área}(P_M)=\sup_{M\geq 3} \text{área}(P_M)\\
q&=\lim_{M\to \infty} \text{área}(Q_M)=\inf_{M\geq 3} \text{área}(Q_M).
\end{align*}

Además, $p\leq q$. De hecho, si el área del círculo $C$ que nos interesa es $c$, entonces por lo que mencionamos arriba tendríamos que $p \leq c \leq q$. Nuestra intuición nos dice que cuando la $M$ aumenta, generamos un polígono con más lados que van acercándose a la circunferencia, y que en el límite debemos obtener el área de la circunferencia. Por lo tanto, esperaríamos que $p=c=q$.

¿Qué sería suficiente para respaldar esta intuición? ¿Bastaría que calculáramos explícitamente $\lim_{M\to \infty} \text{área}(P_M)$ y $\lim_{M\to \infty} \text{área}(Q_M)$ (por ejemplo, dividiendo los polígonos en triángulos para encontrar una fórmula explícita) y que viéramos que son iguales? Esto seguro aumentaría mucho la confianza en nuestro procedimiento. Pero, ¿qué tal que aproximamos al círculo con otros polígonos que no son regulares? ¿nos dará lo mismo? Nuestra definición formal de área ayudará a resolver estas dudas.

En resumen, el método iterativo nos permite aproximar el área del círculo, encerrándolo entre 2 polígonos, de los cuales sabemos calcular el área mediante triángulos. Intuitivamente, mientras más fraccionemos los polígonos, la aproximación del área del círculo será mejor. Esta idea de «encerrar» el área que nos interesa entre dos áreas que sepamos (o acordemos) cómo calcular será clave cuando definamos la integral definida.

Más adelante…

En esta entrada hablamos brevemente sobre la conexión de este curso de cálculo con el anterior. Dimos unas pocas notas históricas e introducimos la idea del método exhaustivo. En la siguiente entrada comenzaremos a formalizar estas ideas para el cálculo de áreas entre la gráfica de una función y el eje $x$.

Tarea moral

  1. Con las herramientas de geometría que has adquirido en la educación básica, intenta completar el ejemplo que comenzamos sobre el método exhaustivo. No te preocupes mucho por la formalización de límites, funciones trigonométricas, fórmulas de áreas de triángulos, etc. Es parte de lo que haremos en este curso. Entre otras cosas, tendrás que:
    • Calcular explícitamente la distancia del centro de un círculo $C$ de radio $r$ a un vértice (y a un lado) del polígono inscrito (y circunscrito) en $C$ que es regular y de $n$ lados.
    • Encontrar el área de $P_n$ y $Q_n$.
    • Encontrar los límites de estas áreas conforme $n$ tiende a infinito.
  2. Investiga más sobre los orígenes del cálculo integral.
  3. Averigua sobre el método exhaustivo y otros usos históricos que se le ha dado.
  4. El método exhaustivo puede ser algo peligroso si se usa apresuradamente. Por ejemplo, toma un cuadrado de lado $1$ y divídelo en cuadrados pequeños para formar un tablero de $n\times n$. Mediante un camino $C_n$ que sube y va a la derecha alternadamente, se puede comenzar en el vértice inferior izquierdo y llegar al vértice superior derecho. Intuitivamente, cuando $n$ tiende a infinito, este camino pareciera converger a la diagonal del cuadrado, la cual tiene longitud $\sqrt{2}$. Sin embargo, la longitud de cada camino $C_n$ siempre es $2$ pues en total avanza una unidad a la derecha y una hacia arriba. ¿Por qué la longitud de $C_n$ no tiende a $\sqrt{2}$ si aparentemente $C_n$ tiende a la diagonal del cuadrado?
  5. Realiza un repaso de los teoremas principales de Cálculo Diferencial e Integral I. ¡Te serán sumamente útiles para este curso! En particular, sería bueno que revises los siguientes temas:
    • Definición y propiedades de límites.
    • Definición y propiedades de funciones contínuas.
    • Definición y propiedades de derivadas.
    • Reglas de derivación.
    • El teorema del valor intermedio.
    • El teorema del valor medio.

Entradas relacionadas

Cálculo Diferencial e Integral II: Teorema del valor medio para la integral

Por Moisés Morales Déciga

Introducción

En una entrada anterior, presentamos un ejemplo de integración por punto medio que sirve como introducción al tema del teorema del valor medio para la integral. En dicho ejemplo, aproximamos la integral mediante sumas de áreas de rectángulos cuyas bases eran todas iguales, y cuya altura estaba dada por la evaluación de una función en el punto medio de cada intervalo.

Esta manera de aproximar una integral usando algún punto arbitrario dentro de cada intervalo de una partición, y haciendo la suma de Riemann correspondiente, será el punto de partida para entender primero a la integral como un promedio, y luego para llevar ese entendimiento más allá y enunciar el teorema del valor medio para la integral. Lo que nos dirá este teorema es que cuando una integral de una función continua exista, entonces dicha integral siempre puede calcularse como la longitud del intervalo de integración, por la evaluación de la función en algún punto del intervalo.

A continuación formalizamos estas ideas.

Función promedio e intuición del teorema del valor medio

Quizás recuerdes la siguiente definición de tu educación básica.

Definición. Sean $z_1,\ldots,z_n$ números reales. Su promedio o media aritmética es el número

$$\frac{z_1 + z_2 + … + z_n}{n}.$$

De manera similar, si tomamos $x_1,\ldots,x_n$ números en un cierto intervalo $[a,b]$ y $f:[a,b]\to \mathbb{R}$, entonces podemos considerar a los valores $f(x_1),\ldots,f(x_n)$ y obtener su promedio:

$$\frac{f(x_1) + f(x_2) + … + f(x_n)}{n} .$$

A esto le llamamos el valor promedio de la función en $x_1,\ldots,x_n$.

Pensemos que tomamos una partición en $n$ partes del intervalo $[a,b]$. La longitud de cada celda sería $\Delta x_i = (b-a)/n$. Si tomamos a los puntos $x_1,\ldots,x_n$, uno en cada celda de dicha partición, entonces tendríamos que

\begin{align*}
\frac{f(x_1) + f(x_2) + … + f(x_n)}{n}&=\frac{b-a}{b-a} \sum_{i=1} ^n \frac{f(x_i)}{n}\\
&=\frac{1}{b-a} \sum_{i=1}^n f(x_i) \Delta x_i.
\end{align*}

A la derecha nos queda una suma de Riemann. Si la función fuera integrable en $[a,b]$, dicha suma convergería a $\frac{1}{b-a}\int_a^b f(x)\, dx$ conforme $n\to \infty$ (como recordatorio, revisa la entrada de definición de la Integral). Y el lado izquierdo, conforme $n$ crece, se vuelve el promedio de más y más puntos distribuidos homogéneamente en $[a,b]$. De aquí sale la siguiente intuición: «la integral entre $b-a$ es el valor promedio de la función en todo el intervalo».

Esta intuición es buena y conviene formalizarla con un nombre apropiado.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada e integrable en un intervalo $[a,b]$, con $a<b$ reales. Definimos el promedio de $f$ en $[a,b]$ como el número $$\frac{1}{b-a}\int_a^b f(x)\, dx.$$

Observa que podemos poner a esta expresión como un cociente de integrales:

$$\frac{1}{b-a} \int \limits_{a}^{b} f(x) \ dx = \frac{ \int \limits_{a}^{b} f(x) \ dx }{ \int \limits_{a}^{b} 1 \ dx }.$$

Teorema del valor medio para la integral

El teorema del valor medio establece una relación muy importante entre una función continua y promedio en cierto intervalo $[a,b]$.

Teorema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función que es continua en el intervalo $[a,b]$, con $a\leq b$ reales. Entonces, siempre existe $\xi\in[a,b]$ tal que

$$ \int \limits_{a}^{b} f(x) dx = f(\xi)(b-a).$$

Si $b>a$, podemos dividir entre $b-a$ y esto quiere decir que siempre podemos encontrar un valor $\xi\in [a,b]$ tal que $f(\xi)$ es igual al promedio de $f$ en $[a,b]$.

Demostración. Si $a=b$, entonces no hay nada que hacer, pues en ambos lados de la igualdad tenemos cero. Así, sean $a<b$ números reales y $f:\mathbb{R}\to \mathbb{R}$ función continua dentro del intervalo $[a,b]$.

Las funciones continuas tienen valor máximo y mínimo en intervalos cerrados y acotados. Así, existen $x_0$ y $y_0$ en $[a,b]$ tales que $f(x_0) = m$ es el mínimo de la función en el intervalo y, $f(y_0) = M$ es el máximo de la función en el intervalo. Como las funciones constantes son integrables y la integral respeta desigualdades, tenemos que:

\begin{align*}
m(b \ – \ a) &= f(x_0) (b \ – \ a)\\
&=\int_a^b f(x_0)\, dx\\
&\leq \int_a^b f(x)\, dx\\
&\leq \int_a^b f(y_0)\, dx\\
&=f(y_0) (b-a)\\
&=M (b-a).
\end{align*}

Nos importa recuperar de esta cadena de desigualdades que $$m(b-a)\leq \int_a^b f(x)\, dx \leq M(b-a),$$ y por lo tanto $$m\leq \frac{1}{b-a} \int_a^b f(x)\, dx \leq M.$$

De esta manera, $\frac{1}{b-a} \int_a^b f(x)$ es un valor entre $f(x_0)$ y $f(y_0)$. Pero por el teorema del valor intermedio, si una función continua toma dos valores, entonces toma cualquier valor entre ellos. Así, existe $\xi$ entre $x_0$ y $y_0$ tal que $$f(\xi)=\frac{1}{b-a} \int_a^b f(x)\, dx.$$

Multiplicando por $b-a$, obtenemos la igualdad deseada.

$ \square$

Para entender un poco mejor el teorema del valor medio para la integral, veamos un ejemplo.

Ejemplo. Veamos el teorema del valor medio en acción para la función $f(x)=x$ en el intervalo $[3,4]$.

Ya habíamos encontrado el valor de esta integral en la entrada «Definición de la Integral Definida». Dicho valor fue $\frac{7}{2}=3.5$.

Lo que nos diría el teorema del valor medio es que podemos encontrar un punto $\xi \in[3,4]$ tal que Sustituyendo en la expresión encontrada por el teorema, se tiene lo siguiente.

$$f(\xi)(4 \ – \ 3) = \int \limits_{3}^{4} f(x) dx=3.5,$$

es decir, tal que $f(\xi)=3.5$. Y en efecto, dicho punto es justamente $3.5$, pues $f(3.5)=3.5$. Notemos que, tal como se quería, tenemos que $3.5\in [3,4]$. Por lo tanto, el punto $\xi = 3.5 $ dentro del intervalo $[3,4]$ es tal que al evaluarlo en la función, da por resultado el promedio de $f$ en $[3,4]$.

$\triangle$

Teorema del valor medio generalizado para la integral

Hay otra versión del teorema del valor medio que generaliza la noción de promedio. Quizás en tu educación básica cursaste una materia en donde el $30\%$ de tu calificación eran tareas, el $20\%$ era participaciones y el $50\%$ el examen. En este caso, si sacaste $x,y,z$ en las tareas, participaciones y examen respectivamente, entonces tu calificación final era $0.3 x + 0.2 y + 0.5 z$. Este tipo de promedios en donde distintos números tienen distinto valor quedan reflejados en la siguiente definición.

Definición. Sean $z_1,\ldots,z_n$ números reales y $p_1,\ldots,p_n$ números positivos. La media aritmética ponderada con dichos pesos es el número real $$\frac{p_1z_1+p_2z_2+\ldots+p_nz_n}{p_1+p_2+\ldots+p_n}.$$

El promedio se recupera eligiendo todos los pesos $p_i$ iguales a $1$, es decir, dando la misma ponderación para todos los valores que tenemos dentro del conjunto, independientemente del valor que hayan tenido. Las medias aritméticas son importantes pues aparecen en las aplicaciones. Por ejemplo, en física podemos pensar que los $p_i$ son pesos de partículas localizadas en los puntos $z_i$. En este caso la media aritmética ponderada representará el centro de gravedad de dichos objetos.

Estas ideas pueden llevarse al contexto continuo. Se pueden pensar en las ideas del teorema del valor medio, pero donde ahora en cada punto ponderaremos de acuerdo a una función peso. Esto hará que ahora distintos puntos tengan distinta preferencia, y que a su vez ya no se tenga una media aritmética, sino una media aritmética ponderada.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,b]$ y sea $p:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,b]$ y no negativa, con integral positiva. Definimos el promedio ponderado de $f$ como el número

$$\frac{\int_a^b f(x) p(x) \, dx}{\int_a^b p(x)\, dx}.$$

Se puede demostrar el siguiente teorema, que generaliza al teorema del valor medio para la integral.

Teorema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua en $[a,b]$ y sea $p:\mathbb{R}\to \mathbb{R}$ una función continua en $[a,b]$ y no negativa, con integral positiva. Entonces existe un valor $\xi\in [a,b]$ tal que:

$$\int \limits_{a}^{b} f(x) \ p(x) \ dx = f(\xi) \ \int \limits_{a}^{b} p(x) \ dx .$$

Observación. Si $p(x)$ es la función constante $1$, recuperamos el teorema del valor medio para la integral.

Ya tienes todas las herramientas para probar esta generalización. ¡Te espera en los problemas!

Más adelante…

A partir de la definición de la integral mediante sumas se obtienen teoremas y propiedades que nos permiten simplificar el cálculo de la integral y tener herramientas para resolver problemas mediante diferentes métodos.

Este teorema nos permite calcular la integral a partir del punto medio del intervalo, simplificando el proceso ya que no es necesario determinar el ínfimo o el supremo de cada partición.

Un poco después veremos algunas aplicaciones de este teorema. Será de suma importancia cuando enunciemos y mostremos los teoremas fundamentales del cálculo.

Tarea moral

  1. Encuentra el valor promedio la función dada, en el intervalo dado. Luego, encuentra un valor $\xi$ en el intervalo dado tal que $f(\xi)$ sea la integral que encontraste.
    • $f(x)=1 + x^2$ en $[-1,2]$.
    • $f(x)=\sqrt x$ en el intervalo $[0,4]$.
    • $f(x)=1+2x-x^2$ en el intervalo $[-2,2]$.
  2. Determina el valor promedio ponderado de las siguientes funciones, usando la función ponderación dada.
    • $f(x)=1+x^2$ en $[-1,2]$, con función ponderación $p(x)=x+1$.
    • $f(x)=4x^2 – 2x$ en $[1,4]$, con función ponderación $p(x)=3$.
    • $f(x)=(x-3)^2$ en en $[2,5]$, con función ponderación $p(x)=x-2$.
  3. Demuestra el teorema del valor medio generalizado para la integral.
  4. El teorema del valor medio es falso en general si la función no es continua. Considera la siguiente función $$f(x)=\begin{cases} 0 & \text{si $x\in [0,1]$}\\ 1 & \text{si $x\in[1,3].$}\end{cases}$$
    • Demuestra que esta función es integrable en $[0,3]$.
    • Encuentra explícitamente el valor de esa integral mediante la definición.
    • Muestra que no existe ningún $\xi\in [0,3]$ tal que $f(\xi)=\frac{1}{3-0} \int_a^b f(x)\, dx.$
  5. Sea $f:\mathbb{R}\to\mathbb{R}$ una función continua y tal que $f(x)\geq 3$ para todo $x$ en cierto intervalo $[a,b]$. Demuestra que si el promedio de $f$ en $[a,b]$ es $3$, entonces $f(x)=3$ para todo $x\in [a,b]$. ¿Fue importante que el número fuera $3$? Enuncia y demuestra una generalización.

Entradas relacionadas