Cálculo Diferencial e Integral I: Propiedades de las sucesiones convergentes

Introducción

En la entrada anterior vimos la definición y algunos ejemplos de sucesiones convergentes y no convergentes. Ahora que ya estamos familiarizados con estos conceptos, revisaremos algunas de las propiedades que tienen las sucesiones convergentes.

Propiedades de las sucesiones convergentes

Antes de iniciar con las propiedades, recordaremos la siguiente definición.

Definición. Decimos que una sucesión está acotada si existe un número real $M > 0$ tal que $|a_n| \leq M$ para todo $n \in \mathbb{N}$.

Después de esta definición podemos iniciar con una propiedad intuitiva de las sucesiones convergentes: si una sucesión es convergente, entonces está acotada.

Proposición. Sea $\{ a_n \}$ una sucesión en $\mathbb{R}$. Si $\{ a_n \}$ es convergente, es decir, si existe $L \in \mathbb{R}$ tal que $$\lim_{n \to \infty} a_n = L,$$ entonces $\{ a_n \}$ está acotada.

Demostración.

Sea $\epsilon = 1$. Como $\{ a_n \}$ converge, entonces existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene $|a_n – L| < 1$ y sabemos que $|a_n| – |L| \leq |a_n – L | < 1$, entonces

$$|a_n| < 1 + |L| \text{ para todo } n \geq n_0$$

Notemos que hasta ahora tenemos una cota para la sucesión para todo $n \geq n_0$. Para los primeros $n_0 – 1$ elementos de la sucesión, consideremos $\hat{M} = max \{ a_1, a_2, …, a_{n_0-1} \}$. Así, la cota para toda nuestra sucesión será $M = max \{ \hat{M}, 1 + |L| \}$.

Si $1 \leq n \leq n_0 – 1$, entonces
\begin{gather*}
|a_n| \leq \hat{M} \leq M \Rightarrow |a_n| \leq M \tag{1}
\end{gather*}

Por otro lado, si $n \geq n_0$, entonces
\begin{gather*}
|a_n| \leq 1 + |L| \leq M \Rightarrow |a_n| \leq M \tag{2}
\end{gather*}

Por (1) y (2), podemos concluir que para todo $n \in \mathbb{N}$ se tiene que $|a_n| \leq M$. Por lo tanto $\{a_n\}$ está acotado


$\square$

Observación. Criterio de no convergencia: Dado que toda sucesión convergente está acotada, entonces si una sucesión no está acotada no puede ser convergente.


Ahora que hemos probado la proposición anterior, podríamos preguntarnos si el regreso es cierto, es decir, ¿toda sucesión acotada converge? La respuesta es no y, de hecho, el contraejemplo lo revisamos en una entrada anterior: $\{ (-1)^n \}$. Se demostró que era una sucesión no convergente y está acotado por $1$.

La siguiente propiedad nos indica que si todos los elementos de una sucesión convergente son no negativos, entonces el límite debe ser no negativo.

Proposición. Sea $\{a_n \}$ una sucesión convergente en $\mathbb{R}$, si $n \geq 0$ para toda $n \in \mathbb{N}$, entonces $$\lim_{n \to \infty} a_n \geq 0 $$

Esta proposición quedará como tarea moral, se sugiere proceder por contradicción, es decir, suponer que el límite de $\{a_n\}$ es menor a cero.

Podemos pensar en una especie de «generalización» de la proposición anterior: si tenemos dos sucesiones convergentes $\{a_n\}$, $\{ b_n \}$ y para todo natural se cumple la desigualdad $a_n \leq b_n$, entonces el límite de las sucesiones debe respetar esa misma relación de orden.

Proposición. Si $\{ a_n \}$ y $\{ b_n \}$ son sucesiones convergentes en $\mathbb{R}$ y si $a_n \leq b_n$ para toda $n \in \mathbb{N}$, entonces $$ \lim_{ n \to \infty} a_n \leq \lim_{ n \to \infty} b_n.$$

Demostración.

Definamos la sucesión $c_n = b_n – a_n$. Como $\{ a_n \}$ y $\{ b_n \}$ son convergentes, digamos a $L_1$ y $L_2$, entonces $\{ c_n \}$ es convergente a $L_2-L_1$. Además, sabemos que $a_n \leq b_n$ para toda $n \in \mathbb{N}$, entonces $b_n – a_n \geq 0$ para toda $n \in \mathbb{N}$ y utilizando la proposición anterior tenemos que

\begin{gather*}
\lim_{n \to \infty} c_n \geq 0 \\ \\
\Rightarrow \lim_{n \to \infty} ( b_n – a_n ) \geq 0 \\ \\
\Rightarrow \lim_{n \to \infty} b_n \geq \lim_{n \to \infty} a_n
\end{gather*}

$\square$

Ahora veremos una propiedad que nos indica que si una sucesión converge a $L$, la sucesión generada tomando el valor absoluto de sus elementos es una sucesión convergente a $|L|$

Proposición. Sea $\{ a_n \}$ una sucesión en $\mathbb{R}$ que converge a $L$. Entonces la sucesión $\{ |a_n| \}$ converge a $|L|$.

Demostración.

Sea $\epsilon > 0$. Podemos notar que $||a_n| – |L|| \leq |a_n – L|$ y como $\{a_n\}$ converge, existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene que $|a_n – L| < \epsilon$. Entonces

\begin{gather*}
||a_n| – |L|| \leq |a_n – L| < \epsilon \\ \\
\therefore ||a_n| – |L||< \epsilon \\ \\
\therefore \lim_{n \to \infty} |a_n| = |L|
\end{gather*}

$\square$

Proposición. Sea $\{ a_n \}$ una sucesión. Si
$$\lim_{n \to \infty} |a_n| = 0, \quad \text{entonces} \quad \lim_{n \to \infty} a_n = 0.$$

Demostración.
Sea $\epsilon > 0$. Como $$\lim_{n \to \infty} |a_n| = 0$$


Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene que $||a_n|-0| < \epsilon$
Y notemos que
\begin{align*}
||a_n|-0| =& ||a_n|| \\
= & |a_n| \\
= &|a_n-0|
\end{align*}
\begin{gather*}
\therefore |a_n -0| < \epsilon \\ \\
\therefore \lim_{n \to \infty} a_n = 0
\end{gather*}

$\square$

Proposición. Si $|r|<1$, entonces $$\lim_{n \to \infty} r^n = 0.$$

Demostración.
Si $r = 0$, entonces $r^n = 0$, es decir, la sucesión es una contante lo cual implica que su límite es la misma constante, en este caso $0$.

Supongamos entonces que $r \neq 0$. Como $|r|<1 \Rightarrow \frac{1}{|r|} > 1$. Definamos $b = \frac{1}{|r|}-1$. Notemos que $b > 0 $ y $|r| = \frac{1}{b+1}$. Entonces $|r^n| = (\frac{1}{b+1})^n$, por la desigualdad de Bernoulli tenemos que $(1+ b) ^n \geq 1+ nb $ para todo $n \in \mathbb{N}$. Se sigue que

$$|r^n| = \frac{1}{(1+b) ^n} \leq \frac{1}{1+nb} \leq \frac{1}{nb}$$

Consideremos $n_0 > \frac{1}{b \cdot \epsilon}$, si $n \geq n_0$, entonces

\begin{gather*}
|r^n| \leq \frac{1}{n_0b} \leq \frac{1}{nb} < \epsilon \\ \\
\therefore |r^n| < \epsilon \\ \\
\therefore \lim_{n \to \infty} r^n = 0
\end{gather*}

$\square$

Para finalizar, revisaremos una propiedad muy interesante que nos indica que si dos sucesiones convergentes al mismo límite $L$ «encierran» a una tercera, entonces ésta última también converge y lo hace a $L$. Esta propiedad es conocida como teorema del sándwich.

Teorema. Sean $\{a_n \}$, $\{b_n \}$, $\{c_n \}$ tres sucesiones en $\mathbb{R}$ tales que

i) Para todo $n \in \mathbb{N}$ se tiene que $a_n \leq b_n \leq c_n$

ii) $$\lim_{n \to \infty} a_n = L, \quad \lim_{n \to \infty} c_n = L$$

Entonces $$\lim_{n \to \infty} b_n = L.$$

Demostración.
Sea $\epsilon >0$

Como $\{a_n \}$ converge a $L$, entonces existe $n_1 \in \mathbb{N}$ tal que si $n \geq n_1$ tal que
\begin{gather*}
|a_n – L| < \epsilon \\
\Rightarrow – \epsilon < a_n – L < \epsilon \\
\Rightarrow L – \epsilon < a_n < L + \epsilon
\end{gather*}

De igual forma, como $\{c_n \}$ converge a $L$, entonces existe $n_2 \in \mathbb{N}$ tal que si $n \geq n_2$ tal que

\begin{gather*}
|c_n – L| < \epsilon \\
\Rightarrow – \epsilon < c_n – L < \epsilon \\
\Rightarrow L – \epsilon < c_n < L + \epsilon
\end{gather*}

Sea $n_0 = max \{ n_1, n_2 \}$. Si $n \geq n_0$

\begin{gather*}
L – \epsilon < a_n \leq b_n \quad \text{ y } \quad b_n \leq c_n < \epsilon + L \\ \\
\Rightarrow L – \epsilon < b_n < \epsilon + L \\ \\
\Rightarrow -\epsilon < b_n – L < \epsilon \\ \\
\therefore |b_n – L | < \epsilon \\ \\
\therefore \lim_{n \to \infty} b_n = L
\end{gather*}


$\square$

Ahora veremos un ejemplo donde podemos aplicar el teorema del sándwich.

Ejemplo. Determina el límite de la sucesión $\left\lbrace \frac{n}{n^2+1} \right\rbrace$.

Consideremos la sucesiones $\{a_n \} = 0$ y $ \{b_n \} = \frac{1}{n}$. Podemos observar que para todo $n \in \mathbb{N}$ se tiene que

$$\{a_n \} = 0 \leq \frac{n}{n^2+1} \leq \frac{n}{n^2} = \frac{1}{n} = \{b_n \}$$

Y $\{a_n \}$ y $ \{b_n \}$ convergen a $0$ por lo visto en una entrada anterior. Por el teorema del sándwich, podemos concluir que

$$\lim_{n \to \infty} \frac{n}{n^2+1} = 0$$

Tarea moral

  1. Prueba que si las sucesiones $\{ a_n \}$ y $\{ b_n \}$ están acotadas, entonces $c_n = 5a_n+8b_n$ también está acotada.
  2. Sea $\{a_n \}$ una sucesión en $\mathbb{R}$ que converge a $L$, si $a_n \geq 0$ para toda $n \in \mathbb{N}$, entonces $$\lim_{n \to \infty} a_n = L \geq 0 $$
  3. Sea $\{a_n \}$ una sucesión en $\mathbb{R}$ que converge a $L$ y, además, $a_n \geq 0$ para todo $n \in \mathbb{N}$. Entonces la sucesión $\{ \sqrt{a_n} \}$ converge y lo hace a $\sqrt{L}$
  4. Demuestra que si $\{ a_n \}$ es una sucesión que converge a $L$, entonces $$\lim_{n \to \infty} \sqrt{(a_n)^2 +12} = \sqrt{L^2 +12}$$
  5. Considera la sucesión $\{ \frac{2n}{3n+1} \}$.
    i) Prueba que $\frac{1}{2} \leq \frac{2n}{3n+1} \leq \frac{2}{3}$
    ii) Usando el teorema del sándwich, calcula el límite de $a_n = \left( \frac{2n}{3n+1} \right)^n$.

Más adelante…

En esta entrada vimos algunas de las propiedades que tienen las sucesiones convergentes. En la siguiente entrada revisaremos propiedades de las sucesiones que divergen a infinito. Una vez que hayamos dominado todas estas propiedades estaremos listos para dar el siguiente paso y llegar a uno de los conceptos frecuentemente usados en cálculo: límite de una función.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.