Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Superior II: Congruencias y el anillo de enteros módulo n

Por Leonardo Ignacio Martínez Sandoval

Introducción

En notas pasadas hemos platicado del algoritmo de la división, del máximo común divisor, del mínimo común múltiplo, de primos, del teorema fundamental de la aritmética, la infinidad del conjunto de primos y del algoritmo de Euclides para encontrar el máximo común divisor.

En esta entrada platicaremos acerca del anillo de los enteros módulo $n$. La idea de esta entrada es:

  • Dar la intuición a través de un ejemplo concreto.
  • Dar la definición formal de $a\equiv b \pmod n$.
  • Definir a $\mathbb{Z}_n$, el anillo de enteros módulo $n$, dando sus elementos y sus operaciones de suma y resta.
  • Dar ejemplos adicionales de operaciones concretas.
  • Hablar de cuáles son los elementos de $\mathbb{Z}_n$ que tienen inversos multiplicativos y cuándo $\mathbb{Z}_n$ es un campo.

A grandes rasgos, el anillo de los enteros módulo $n$ consiste en ver a los enteros «como si sólo nos importara el residuo que dejan al dividirse entre $n$».

Ejemplo introductorio

Hablemos de las horas que tiene un día. Un día tiene $24$ horas y las podemos llamar del $0$ al $24$ para no tener que hacer distinción entre AM y PM. Por ejemplo, las 4PM serían las $16$. Las 10AM simplemente las $10$. La hora $24$ vamos a pensarla más bien como la hora $0$ del siguiente día.

Si son las $8$ (de la mañana, pero ya no hace falta aclarar), entonces tres horas después serán las $11$. Si son las $10$, entonces cuatro horas después serán las $14$. Pero si son las $22$ y pasan $7$ horas, entonces van a ser las $29$, pero conviene pensar a esa hora como las $5$ (del día siguiente), pues así es más claro qué hora entre $0$ y $23$ es. Finalmente si son las $17$ y pasan $24$ horas, entonces la hora que obtenemos es la $17+24=41$, pero justo como pasan $24$ horas, siguen siendo las $17$: aunque el día cambió, la hora no.

De esta discusión recuperamos lo siguiente:

  • En «el mundo de las horas», la hora $29$ es la misma que la hora $5$. En símbolos, esto lo ponemos como $29\equiv 5 \pmod {24}$.
  • Podemos «sumar en el mundo de las horas». Ahí, $10+4$ es $14$, pero $22+7$ es $5$. Vamos a escribir $10+4\equiv 14 \pmod {24}$ y $22+7\equiv 5 \pmod {24}$.
  • En «el mundo de las horas», si sumamos $24$ horas no pasa nada.

Definición del anillo $\mathbb{Z}_n$

En el ejemplo de motivación trabajamos con horas, que «se ciclan cada 24». Pero aquí el $24$ no tiene nada de especial y de hecho lo podemos hacer con cualquier número $n$. Comencemos definiendo qué quiere decir que dos enteros sean iguales «en el mundo de $n$».

Definición. Sea $n$ un entero positivo. Sean $a$ y $b$ enteros. Vamos a decir que $a$ es congruente con $b$ módulo $n$ si $n$ divide a $a-b$. En símbolos: $$ a\equiv b \pmod n \quad \iff \quad n\mid b-a.$$

Proposición. Para todo entero positivo $n$ la relación en $\mathbb{Z}$ de «ser congruente módulo $n$ » es una relación de equivalencia.

Demostración. Tenemos que probar que dicha relación es reflexiva, simétrica y transitiva.

Para ver que la relación es reflexiva, tomemos $a$ en $\mathbb{Z}$. Tenemos que $n$ divide a $0=a-a$, pues $n\cdot 0 =0$ (dicho de otra forma, $0$ está en $n\mathbb{Z}$). Así, $a\equiv a \pmod n$.

Veamos ahora que la relación es simétrica. Si $a\equiv b \pmod n$, entonces $n$ divide a $a-b$, pero entonces también divide a su inverso aditivo $b-a$ (aquí estamos usando que $n\mathbb{Z}$ es ideal, y que los ideales son cerrados bajo inversos aditivos), de modo que $b\equiv a \pmod n$.

Finalmente, veamos que la relación es transitiva. Para ello, a partir de enteros $a$, $b$ y $c$ tales que $a\equiv b \pmod n$ y $b\equiv c \pmod n$ tenemos que mostrar que $a\equiv c \pmod n$. Por definición, las primeras dos congruencias quieren decir que $n$ divide a $a-b$ y a $b-c$. Pero sabemos que si un entero divide a dos enteros, entonces divide a su suma. Así, $n\mid (a-b)+(b-c)=a-c$, que por definición quiere decir que $a\equiv c \pmod n$.

$\square$

Ya que «ser congruente módulo $n$» es una relación de equivalencia, entonces podemos dividir a todo $\mathbb{Z}$ en las clases de equivalencia de esta relación, y escribir como $[a]_n$ a la clase de equivalencia que tiene al entero $a$. La siguiente proposición muestra que para cada clase de equivalencia siempre podemos encontrar un representante chiquito.

Proposición. Sea $n$ un entero positivo. Se tiene que $a\equiv b \pmod n$ si y sólo si $a$ y $b$ dejan el mismo residuo al dividirse entre $n$ en el algoritmo de la división. En particular, para cada $a$ siempre existe un entero $r$ en $\{0,1,\ldots,n-1\}$ tal que $a\equiv r \pmod n$.

Demostración. Usemos el algoritmo de la división para escribir $a=qn+r$ y $b=pn+s$ con $r$ y $s$ los residuos de la división, que el algoritmo de la división garantiza que están en $\{0,1,\ldots,n-1\}$.

Si $r=s$, entonces $a-b=(q-p)n$, así que $n\mid a-b$ y así $a\equiv b \pmod n$. Si $a\equiv b \pmod n$, entonces $$n\mid a-b= (q-p)n+(r-s).$$ Como $n\mid (q-p)n$, entonces $n\mid r-s$. Sin embargo, usando que $r$ y $s$ están en $\{0,1,\ldots,n-1\}$, tenemos que $r-s$ es un número entre $-(n-1)$ y $n-1$, de modo que la única posibilidad es $r-s=0$, es decir, $r=s$. Esto prueba la primer parte de la proposición.

Como $a$ y $r$ dejan el mismo residuo $r$ al dividirse entre $n$, entonces $a\equiv r \pmod n$.

$\square$

Ejemplo. Fijemos $n=7$. Tenemos que las siguientes clases de equivalencia son la misma: $[13]_7$, $[20]_7$, $[-1]_7$. Esto es ya que, por ejemplo, $7$ divide a $20-13=14$ y $7$ divide a $20-(-1)=21$. De hecho, todas estas clases son iguales a la clase $[6]_7$, pues tanto $-1$, $6$, $13$ como $20$ son números que al dividirse entre $7$ dejan residuo $6$.

Estamos listos para presentar a los elementos del anillo de enteros módulo $n$.

Definición. Para $n$ un entero positivo, definimos a $Z_n$ como el conjunto de clases de equivalencia de la relación «ser congruente módulo $n$». Por la proposición anterior, tenemos entonces que $$Z_n=\{[0]_n, [1]_n, \ldots, [n-1]_n\}$$

Nota que $Z_n$ tiene exactamente $n$ elementos, uno por cada uno de los posibles residuos de dividir un número entre $n$. Nota también que $\mathbb{Z}_n$ no es lo mismo que el ideal $n\mathbb{Z}$, y que hay que ser cuidadosos con la notación. De hecho, el ideal $n\mathbb{Z}$ es uno de los elementos de $\mathbb{Z}_n$.

Ejemplo. $Z_4=\{[0]_4,[1]_4, [2]_4,[3]_4\}$ tiene $4$ elementos. El elemento $[3]_4$ consiste de todos los enteros que dejan residuo $3$ al dividirse entre $4$, es decir, $[\ldots,-5,-1,3,7,\ldots]$.

Definición. Sea $n$ un entero positivo y $[a]_n$ y $[b]_n$ clases de equivalencia de la relación «ser congruentes módulo $n$». Definimos las siguientes operaciones de suma y producto:

  • $[a]_n + [b]_n = [a+b]_n$, y
  • $[a]_n [b]_n = [ab]_n$.

Estas operaciones es decir, esta suma y producto «están bien definidas» y no dependen de los representantes elegidos, como muestra la siguiente proposición:

Proposición. Sea $n$ un entero positivo. Si $a\equiv a’ \pmod n$ y $b\equiv b’ \pmod n$, entonces $a+b \equiv a’+b’ \pmod n$ y $ab\equiv a’b’ \pmod n$.

Demostración. De la primer congruencia tenemos $n\mid a-a’$ y de la segunda $n\mid b-b’$. Como $n$ divide a estos dos números, divide a su suma, y reacomodando tenemos que $n\mid (a+b) – (a’+b’)$, que es equivalente a $a+b\equiv a’+b’ \pmod n$, una de las congruencias que queríamos.

Para el producto, de $n\mid a-a’$ podemos obtener $$n\mid (a-a’)b=ab-a’b$$ y de $n\mid b-b’$ podemos obtener $$n\mid a'(b-b’)=a’b-a’b’.$$ Así, $$n\mid (ab-a’b)+(a’b-a’b’)=ab-a’b’.$$ De aqui, $ab\equiv a’b’ \pmod n$, la otra congruencia que queríamos.

$\square$

El anillo de enteros módulo $n$ es precisamente $\mathbb{Z}_n$ equipado con las operaciones de suma y producto que acabamos de definir.

Ejemplos de operaciones en $\mathbb{Z}_n$

Estos son algunos ejemplos básicos de operaciones en $\mathbb{Z}_7$ y en $\mathbb{Z}_{11}$:

  • $[8]_7+[4]_7=[12]_7=[5]_7$
  • $[4]_{11}[8]_{11}=[32]_{11}=[21]_{11}=[10]_{11}$

En una siguiente entrada, preparada por Clau, verán más ejemplos de operaciones en $\mathbb{Z}_n$.

Inversos multiplicativos en $\mathbb{Z}_n$

El cero del anillo de enteros módulo $n$ es $[0]_n$, pues para cualquier entero $a$ se tiene que $[a]_n+[0]_n=[a+0]_n=[a]_n$. Como $[0]_n$ consiste precisamente de los múltiplos de $n$, tenemos entonces que $[a]_n+[kn]_n=[a]_n$.

La multiplicación en este anillo tiene como identidad a $[1]_n$, de lo cual te puedes convencer con una cuenta similar.

La suma de este anillo tiene inversos aditivos pues para cualquier entero $a$ se tiene que la clase de $a$ y la de $-a$ cumplen $$[a]_n+[-a]_n=[a+(-a)]_n=[0]_n.$$

Sin embargo, no es cierto que para cualquier clase $[a]_n$ esta tenga un inverso multiplicativo. A los números que sí tienen un inverso multiplicativo se les conoce como unidades del anillo.

Problema: Muestra que $[4]_{12}$ no tiene inverso multiplicativo en $\mathbb{Z}_{12}$

Intenta resolver este problema antes de ver la solución.

Solución. Procedamos por contradicción. Si $[a]_{12}$ fuera el inverso multiplicativo de $[4]_{12}$, tendríamos que $[1]_{12}=[4a]_{12}$ y por lo tanto que $4a\equiv 1 \pmod {12}$, es decir, que $12\mid 4a-1$. Como $4\mid 12$ y $4\mid 4a$, tendríamos entonces que $4\mid (4a-1)-4a = -1$. Esto es una contradicción.

La siguiente proposición dice exactamente quienes son los elementos en $\mathbb{Z}_n$ que tienen inversos multiplicativos en $\mathbb{Z}_n$.

Teorema. Sea $n$ un entero positivo. La clase $[a]_n$ de $\mathbb{Z}_n$ tiene inverso multiplicativo si y sólo si $a$ y $n$ son primos relativos.

Demostración. Recordemos que por definición $a$ y $n$ son primos relativos si su máximo común divisor $MCD(a,n)$ es igual a $1$. Recordemos también que $MCD(a,n)$ puede escribirse como combinación lineal entera de $a$ y $n$.

Si $a$ y $n$ son primos relativos, entonces existen $p$ y $q$ enteros tales que $1=ap+nq$. Así, $$[ap]_n=[ap+nq]_n=[1]_n,$$ de modo que la clase $[a]_n$ tiene como inverso multiplicativo a la clase $[p]_n$.

Si $a$ y $n$ no son primos relativos y suponemos que $[a]_n$ tiene inverso multiplicativo, entonces llegaremos a una contradicción similar a la del problema anterior. Verifica los detalles.

$\square$

Recuerda que un campo es un anillo conmutativo en el cual todo elemento distinto de cero tiene un inverso multiplicativo. Terminamos esta sesión con un resultado que nos dice cuándo $\mathbb{Z}_n$ es un campo.

Proposición. Sea $n$ un entero. El conjunto $\mathbb{Z}_n$ con las operaciones de suma y producto que definimos es un campo si y sólo si $n$ es un número primo.

Demostración. Como ya sabemos que es un anillo conmutativo, basta con determinar cuándo sucede que todos los elementos distintos de cero tienen un inverso multiplicativo. Estos elementos son son $[1]_n, \ldots, [n-1]_n$. Por la proposición anterior, estos tienen inversos si y sólo si cada uno de los números $1,2,\ldots,n-1$ es primos relativos con $n$.

Si $n$ es primo, entonces todos esos números son primos relativos con $n$ pues el único factor en común que tienen con $n$ es $1$. Si $n$ no es primo, entonces tiene un divisor $d$ que satisface $1<d<n$, y por lo tanto $n$ y $d$ no son primos relativos, así que $[d]_n$ no tiene inverso multiplicativo.

De esta forma, $\mathbb{Z}_n$ es un campo si y sólo si $n$ es primo.

$\square$

Más adelante…

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Argumenta por qué «el mundo de los minutos» también es un ejemplo de enteros módulo $n$.
  2. Muestra que $n\mathbb{Z}$ es uno de los elementos de $\mathbb{Z}_n$.
  3. Muestra que las operaciones de suma y producto en $\mathbb{Z}_n$ en efecto satisfacen la definición de anillo conmutativo. Sugerencia: aprovecha que $\mathbb{Z}$ es un anillo conmutativo con sus operaciones de suma y producto.
  4. Muestra que $[1]_n$ es identidad para el producto en $\mathbb{Z}_n$.
  5. Completa la prueba del teorema de inversos multiplicativos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas pasadas ya platicamos de espacios vectoriales y de subespacios. También desarrollamos teoría de dimensión para espacios vectoriales de dimensión finita. Para ello, hablamos de conjuntos generadores, de independientes y de bases. Esto nos ayuda a entender a los espacios vectoriales «uno por uno». Lo que queremos entender ahora es cómo interactúan los espacios vectoriales entre sí. Para ello, hablaremos de transformaciones lineales entre espacios vectoriales.

Ya platicamos un poco de transformaciones lineales cuando estudiamos $F^n$ a detalle. En esa parte del curso, vimos cómo cualquier matriz en $M_{m,n}(F)$ se podía ver como una transformación lineal de $F^n$ a $F^m$ y viceversa. Retomaremos varias de estas ideas, pues son fundamentales para esta unidad y las siguientes.

La idea de esta entrada es:

  • Dar la intuición y definición de transformaciones lineales en general.
  • Probar propiedades básicas de las transformaciones lineales.
  • Dar varios ejemplos de transformaciones lineales.
  • Dar las definiciones de kernel (o núcleo) y de imagen para una transformación lineal.
  • Ver un ejemplo que abarque ambas definiciones.
  • Finalmente, probar que el kernel y la imagen son subespacios vectoriales.

A grandes rasgos, las transformaciones lineales se pueden pensar como «funciones bonitas» entre espacios vectoriales que «preservan las operaciones de suma y multiplicación por escalar».

Definición de transformaciones lineales

Definición. Para $V$ y $W$ espacios vectoriales sobre un campo $F$, una transformación lineal entre $V$ y $W$ es una función $T:V\to W$ tal que:

  • Para todo $v_1$ y $v_2$ en $V$ se tiene que $T(v_1+v_2)=T(v_1)+T(v_2)$. Esto informalmente se le conoce como que «$T$ abre sumas».
  • Para todo $v$ en $V$ y $c$ en el campo $F$ se tiene que $T(cv)=cT(v)$. A esto se le conoce como que «$T$ saca escalares».

En la primer condición la suma de la izquierda (dentro del paréntesis) es «la suma de $V$» y la suma de la derecha es «la suma de $W$». De manera similar, en la segunda condición el producto por escalar de la izquierda (dentro del paréntesis) es el de $V$ y el de la derecha es el de $W$.

En lo que resta de esta entrada, supondremos que los espacios vectoriales son sobre un mismo campo $F$.

Ejemplos de tranformaciones lineales

Ejemplo 1. La función $T:\mathbb{R}^2 \to \mathbb{R}$ dada por $T(x,y)=x+y+1$ no es una transformación lineal. De hecho falla en ambas condiciones. Falla en abrir sumas pues, por ejemplo, $T(1,1)=3$, $T(2,2)=5$, pero $(1,1)+(2,2)=(3,3)$ y $$T(3,3)=7\neq 5 = T(1,1)+T(2,2.)$$ También falla en sacar escalares pues, por ejemplo $$T(4,2)=7\neq 8 = 2T(2,1).$$

$\triangle$

Ejemplo 2. La función $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x,y,z)=(2x,2y,2z)$ es una transformación lineal.

Para convencernos de que esto es cierto, notemos que si $v=(x,y,z)$ entonces la transformación está dada por $T(v)=2v$. Ahora, tomemos dos vectores $v_1$ y $v_2$ en $V$, y un real $c$. Tenemos por la asociatividad y conmutatividad de multiplicar por escalares en $\mathbb{R}^3$ que: \begin{align*}T(v_1+v_2)&=2(v_1+v_2)\\&=2v_1+2v_2\\&=T(v_1)+T(v_2),\end{align*} y que $$T(cv_1)=2(cv_1)=c(2v_1)=cT(v_1).$$ Esto muestra que $T$ es transformación lineal.

$\triangle$

Ejemplo 3. De hecho, para cualquier espacio vectorial $V$ sobre el campo $F$ y $c$ un escalar de $F$, la función $T:V\to V$ dada por $T(v)=cv$ es una transformación lineal. El argumento es similar.

$\triangle$

Recuerda que $F_n[x]$ es el espacio vectorial de polinomios con coeficientes en $F$ y grado a lo más $n$. Recuerda también que hemos visto muchos tipos de espacios vectoriales, los $F^n$, los de polinomios, los de matrices, etc. Entre cualesquiera de ellos se pueden tener transformaciones lineales. La única condición es que sean espacios vectoriales sobre el mismo campo $F$.

Ejemplo 4. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $x^2+(a-b)x+ab$ no es una transformación lineal. Esto lo podemos verificar viendo que falla la parte de sacar escalares. Por un lado $$2(T(1,1))=2(x^2+1)=2x^2+2,$$ mientras que por otro lado $$T(2,2)=x^2+4,$$ así que $2(T(1,1))\neq T(2,2)$, de modo que $T$ no saca escalares.

$\triangle$

En cambio, si tomamos la función que manda al vector $(a,b)$ al polinomio $ax^2+(a-b)x+a+b$, puedes verificar por tu cuenta que sí es una transformación lineal.

Ejemplo 5. La función $T:M_{2,3}(\mathbb{R})\to \mathbb{R}^3$ que manda a la matriz $$M=\begin{pmatrix}
a & b & c\\
d & e & f
\end{pmatrix}$$ al vector $$T(M):= (a-d, b-e, c-f)$$ es una transfomación lineal.

Veamos que $T$ abre sumas. Tomemos dos matrices $M_1=\begin{pmatrix}
a_1 & b_1 & c_1\\
d_1 & e_1 & f_1
\end{pmatrix}$ y $M_2=\begin{pmatrix}
a_2 & b_2 & c_2\\
d_2 & e_2 & f_2
\end{pmatrix}.$ Por un lado \begin{align*}T(M_1)&=(a_1-d_1,b_1-e_1,c_1-f_1)\\T(M_2)&=(a_2-d_2,b_2-e_2,c_2-f_2),\end{align*} de modo que sumando los vectores y reacomodando tenemos que $$T(M_1)+T(M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$

Por otro lado, si primero sumamos las matrices, obtenemos la matriz $$M_1+M_2=\begin{pmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2\\
d_1+d_2 & e_1+e_2 & f_1+f_2
\end{pmatrix}.$$

Así, $$T(M_1+M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$ Esto muestra que $T(M_1+M_2)=T(M_1)+T(M_2)$, es decir, que $T$ abre sumas. Con un argumento parecido se puede mostrar que saca escalares.

$\triangle$

Ejemplo 6. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $T(a,b)=(a+b)x^2+(a-b)x+b$ es una transformación lineal.

$\triangle$

Recuerda que $C[0,1]$ es el espacio vectorial de funciones $f:[0,1]\to \mathbb{R}$ continuas.

Ejemplo 7. La función $T:C[0,1]\to \mathbb{R}$ que manda a la función $f$ al real $$T(f):=\int_0^1 f(x)\, dx$$ es una transformación lineal. En efecto, para dos funciones $f$ y $g$ continuas en el $[0,1]$ y un real $c$ se tiene por definición de suma de funciones, de multiplicación por escalar y de propiedades de la integral que \begin{align*}\int_0^1 (f+g)(x)\, dx&=\int_0^1 f(x)+g(x)\, dx\\&=\int_0^1 f(x) \, dx+\int_0^1 g(x)\, dx\end{align*} y que \begin{align*}\int_0^1 (cf)(x)\, dx &= \int_0^1 cf(x)\, dx \\&=c \int_0^1 f(x)\, dx.\end{align*}

En otras palabras, $T(f+g)=T(f)+T(g)$ y $T(cf)=cT(f)$.

$\triangle$

Propiedades básicas de transformaciones lineales

La definición de «transformación lineal» pide dos cosas por separado: abrir sumar y sacar escalares. Es bueno tenerlas por separado para referirnos a ellas individualmente. Sin embargo, la siguiente proposición nos ayuda a probar de manera más práctica que $T$ es una transformación lineal.

Proposición (verificación abreviada). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo $F$. $T:V\to W$ es una transformación lineal si y sólo si para todo $v_1,v_2$ en $V$ y $c$ en $F$ se tiene que $$T(cv_1+v_2)=cT(v_1)+T(v_2).$$

Demostración. En efecto, si $T$ es transformación lineal, entonces $T(cv_1)=cT(v_1)$ porque $T$ saca escalares y así \begin{align*}T(cv_1+v_2)&=T(cv_1)+T(v_2)\\&=cT(v_1)+T(v_2).\end{align*} Por otro lado, si se cumple $T(cv_1+v_2)=cT(v_1)+T(v_2)$ para todos $v_1$ y $v_2$ vectores en $V$ y $c$ escalar en $F$, entonces con $v_2=0$ recuperamos que $T$ saca escalares y con $c=1$ recuperamos que $T$ abre sumas.

$\square$

Las transformaciones lineales mandan al cero de un espacio vectorial al cero del otro.

Proposición (cero va a cero). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(0)=0$.

Demostración. El truco es encontrar $T(0+0)$ de dos formas distintas. Por un lado, como $0+0=0$, tenemos que $T(0+0)=T(0)$. Por otro lado, como $T$ abre sumas, tenemos que $T(0+0)=T(0)+T(0)$. Así, tenemos que $$T(0)+T(0)=T(0).$$ Restando $T(0)$ de ambos lados obtenemos $T(0)=0$.

$\square$

De hecho, hay otra forma de probar la proposición anterior usando que $T$ saca escalares: $T(0)=T(0\cdot 0)=0T(0)=0$. Piensa en por qué cada una de estas igualdades se vale y por qué adentro del paréntesis que hay dos ceros, uno de ellos es vector y el otro escalar.

Las transformaciones lineales también «respetan» inversos aditivos.

Proposición (inversos aditivos van a inversos aditivos). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(-v)=-T(v)$.

La demostración es sencilla y la puedes pensar por tu cuenta.

El haber enunciado estas proposiciones nos puede ayudar para decir, de golpe, que algunas funciones no son transformaciones lineales: si una función falla en tener alguna de las propiedades anteriores, entonces no es transformación lineal.

Ejemplo 1. Sea $V$ el espacio vectorial $\mathbb{R}^2$ y $W$ el espacio vectorial de matrices de $2\times 2$ con entradas complejas, pero visto como espacio vectorial sobre $\mathbb{R}$ (sólo se permite usar reales para la multiplicación escalar).

La transformación $T:V\to W$ que manda al vector real $(a,b)$ a la matriz de entradas complejas $T(a,b)=\begin{pmatrix}
a+ib & a-ib \\
a-ib & 1+abi\end{pmatrix}$ no es una transformación lineal pues manda al $(0,0)$ a la matriz $\begin{pmatrix}
0 & 0 \\
0 & 1\end{pmatrix},$ la cual no es la matriz $0$.

$\triangle$

Sin embargo, una pequeña advertencia. Es posible que $T$ sí mande el $0$ al $0$, pero que de cualquier forma no sea una transformación lineal, debido a que falle por otras razones.

Ejemplo 2. La transformación $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(x+y+z,xy+yz+zx,xyz)$$ cumple que $T(0,0,0)=(0,0,0)$, pero no es una transformación lineal pues no saca escalares. Por ejemplo, $$T(3,3,3)=(9,27,27)\neq 3(3,3,1)= 3T(1,1,1).$$

$\triangle$

Kernel e imagen de una transformación lineal

Tomemos $T:V\to W$ una transformación lineal. Hay dos conjuntos muy importantes relacionados con $T$.

El kernel (o núcleo) de $T$ es el conjunto de vectores en $V$ que se van al vector $0$ de $W$ cuando les aplicamos $T$. En símbolos, $$\ker(T)=\{v\in V: T(v)=0\}.$$

La imagen de $T$ son los vectores en $W$ que se pueden escribir de la forma $T(v)$ para algún $v$ en $V$, es decir, es la imagen en el sentido clásico de teoría de conjuntos o de cálculo. En símbolos, $$\Ima(T)=\{T(v): v\in V\}.$$

Haciendo énfasis de nuevo: $\ker(T)$ es un subconjunto de vectores de $V$ e $\Ima(T)$ es un subconjunto de vectores de $W$. Veamos un ejemplo que nos ayudará a repasar varios de los conceptos clave de esta entrada.

Problema. Consideremos la transformación $T:M_2(\mathbb{R})\to M_{2,3}(\mathbb{R})$ dada por $$T\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}a & b \\ c & d \end{pmatrix} \begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}.$$

Muestra que $T$ es una transformación lineal y determina $\ker(T)$ e $\Ima(T)$.

Intenta resolver este problema por tu cuenta antes de seguir.

Solución. Sean $A$ y $B$ matrices de $2\times 2$ con entradas reales y $r$ un real. Nombremos $C=\begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}$. Por propiedades de producto de matrices, tenemos que \begin{align*}T(rA+B)&=(rA+B)C \\ &=r(AC)+BC\\ &=rT(A)+T(B),\end{align*} así que por la proposición de verificación abreviada, tenemos que $T$ es una transformación lineal.

Ahora, tomemos una matriz $A=\begin{pmatrix}
a & b \\
c & d \end{pmatrix}$ y notemos al hacer la multiplicación de manera explícita, obtenemos que $T(A)$ es la matriz $$\begin{pmatrix}
a+b & a+b & a+b\\
c+d & c+d & c+d \end{pmatrix}.$$

Determinemos quién es $\Ima(T)$. Para que una matriz $M:=\begin{pmatrix}
e & f & g\\
h & i & j \end{pmatrix}$ esté en la imagen de $T$, se tiene que cumplir que $e=f=g$ y que $h=i=j$.

Y viceversa, si $e=f=g$ y $h=i=j$, entonces $M$ está en la imagen de $T$ pues, por ejemplo $$T\begin{pmatrix}
e & 0\\
h & 0 \end{pmatrix}=\begin{pmatrix}
e & e & e\\
h & h & h\end{pmatrix}=M.$$

Esto muestra que $$\Ima (T) = \left\{\begin{pmatrix}
e & e & e\\
h & h & h \end{pmatrix}: e,h \in \mathbb{R}\right\}.$$

Ahora determinemos quién es $\ker(T)$. Para que $A$ esté en el kernel de $T$, necesitamos que todas las entradas de $T(A)$ sean $0$. Para esto es suficiente y necesario que $a+b=0$ y que $c+d=0$, o dicho de otra forma, que $A$ sea de la forma $A=\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}$. Así, concluimos que $$\ker(T)=\left\{\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}: a,c \in \mathbb{R}\right\}.$$

$\square$

Con esto ya terminamos lo que pide el problema. Sin embargo, hagamos una observación clave. En el problema anterior, $\ker(T)$ e $\Ima(T)$ no solamente son subconjuntos de $M_2(\mathbb{R})$ y de $M_{2,3}(\mathbb{R})$ respectivamente, sino que además son subespacios. Esto no es casualidad.

Los kernels e imágenes de transformaciones lineales son subespacios

Teorema. Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $\ker(T)$ es un subespacio de $V$ e $\Ima(T)$ es un subespacio de $W$.

Demostración. Demostraremos primero que $\ker(T)$ es un subespacio de $V$. Para ello basta con tomar $v_1,v_2$ en $\ker(T)$ y $c$ en el campo $F$ y mostrar que $cv_1+v_2$ también está en $\ker(T)$, es decir, que también sucede que $T(cv_1+v_2)=0$. Esto se debe a la siguiente cadena de igualdades, que justificamos abajo \begin{align*}
T(cv_1+v_2)&=T(cv_1)+T(v_2)\\
&=cT(v_1)+T(v_2)\\
&=c\cdot 0 + 0 \\
&= 0.
\end{align*}

La primera igualdad se debe a que $T$ abre sumas. La segunda a que $T$ saca escalares. La tercera a que $v_1$ y $v_2$ están en el kernel de $T$ y por lo tanto sabemos que $T(v_1)=T(v_2)=0$. La última es simplemente hacer la operación. Con esto mostramos que $\ker(T)$ es un subespacio de $V$.

Ahora, veremos que $\Ima(T)$ es un subespacio de $W$. Tomemos $w_1$ y $w_2$ en $\Ima(T)$, y un escalar $c$ en el campo $F$. De nuevo, basta mostrar que $cw_1+w_2$ está en $\Ima(T)$. Como $w_1$ y $w_2$ están en la imagen de $T$, esto quiere decir que existen vectores $v_1$ y $v_2$ en $V$ tales que $T(v_1)=w_1$ y $T(v_2)=w_2$. Notemos que entonces:
\begin{align*}
cw_1+w_2&=cT(v_1)+T(v_2)\\
&=T(cv_1)+T(v_2)\\
&=T(cv_1+v_2).
\end{align*}

La segunda y tercera igualdad vienen de que $T$ saca escalares y abre sumas respectivamente. Esta cadena de igualdades muestra que podemos poner a $cw_1+w_2$ como imagen de alguien en $V$ bajo $T$, es decir, que $cw_1+w_2$ pertenece a $\Ima(T)$. Esto es lo que queríamos mostrar.

$\square$

Más adelante…

En esta entrada definimos los conceptos de transformación lineal, de imagen y de kernel. También vimos que la imagen y kernel de transformaciones lineales son subespacios. Más adelante veremos que $\ker(T)$ e $\Ima(T)$ están de hecho relacionados más profundamente.

Por ahora, nota que en el ejemplo antes del teorema tenemos que $\begin{pmatrix}
1 & 1 & 1\\
0 & 0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 & 0\\
1 & 1 & 1 \end{pmatrix}$ forman una base de $\Ima(T)$ pues son linealmente independientes y todo elemento en la imagen es combinación lineal de estas matrices. Además, nota que de manera similar $\begin{pmatrix}
1 & -1 \\
0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 \\
1 & -1 \end{pmatrix}$ forman una base de $\ker(T)$.

Esto nos dice que $\dim(\Ima(T))=2$ y que $\dim(\ker(T))=2$. Si sumamos ambos, nos da la dimensión de $M_2(\mathbb{R})$. ¿Será casualidad?

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que las transformaciones lineales que se pusieron como ejemplo en efecto abren sumas y sacan escalares.
  • Asegúrate de entender los detalles de la prueba de la proposición de la verificación abreviada. Úsala para mostrar que la función que manda al vector $(a,b,c)$ a la matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$ es una transformación lineal de $\mathbb{R}^3$ a $M_3(\mathbb{R})$.
  • Muestra la proposición de que inversos aditivos van a inversos aditivos.
  • Determina el kernel y la imagen de las transformaciones lineales $T:V\to W$ que se dieron como ejemplo.
  • Para cada kernel e imagen que encuentres, convéncete de que son subespacios. Determina si tienen dimensión finita y, en ese caso, determina la dimensión. Para estos casos, ¿cómo están relacionados $\dim(\Ima(T)),\dim(\ker(T)),\dim(V)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

COVID 2019 – Reflexión y estrategia sobre clases a distancia

Por Leonardo Ignacio Martínez Sandoval

Es fundamental durante la crisis del COVID implementar estrategias de distanciamiento social que eviten la propagación del virus. Si bien el virus tiene efectos tenues en el 80% de la población, queremos alentar lo más posible la propagación del virus para que el 20% restante pueda ser atendido sin rebasar la capacidad del sistema de salud.

Con esto en mente, la UNAM ya anunció la suspensión gradual de clases. La Facultad de Ciencias suspende clases ya desde mañana martes.

En estos días he estado pensando bastante en cómo enfrentar la situación como profesor universitario en la UNAM. Tomando en cuenta lo que les he preguntado por acá y pláticas que he tenido con otros colegas, me convencido de que:

  • No podemos asumir que los estudiantes tendrán acceso a computadora o a un buen internet continuamente.
  • No podemos asumir que los estudiantes estarán disponibles exactamente a la hora en la que usualmente es la clase.
  • No a todos los profesores se les hará fácil impartir de improvisto una versión de su clase de manera inmediata.
  • El material que se prepare debe ser gratuito, de libre acceso y de calidad.
  • Hay herramientas maravillosas como Google Classroom, Moodle y otras más. Pero desde mi perspectiva, no cumplen con los estándares de universalidad y libre acceso que este caso requiere.

Debido a esto, he decidido enfrentar a la crisis mediante la siguiente estrategia:

  • No usaré streamings o «medios en vivo» como chats para impartir la clase.
  • Para cada sesión, indicaré exactamente qué contenido de la bibliografía veríamos durante la clase.
  • Para cada sesión prepararé, además, con apoyo de los ayudantes del curso, una entrada aquí en el blog para que los estudiantes tengan ejemplos y explicaciones adicionales.
  • Acabo de avisar a la Coordinación de la Carrera de Matemáticas que ayudaré a los colegas del Departamento de Matemáticas que así lo requieran en orientarlos en escribir entradas de blog (con LaTeX y todo).
  • Así mismo, ofreceré de manera gratuita espacio de almacenamiento aquí en el blog para los colegas que requieran subir entradas o tareas. Esto con el fin de que no tengan que abrir cuentas de WordPress o buscar un servidor, y puedan dedicarse a escribir material para su curso de manera inmediata.

Si eres uno de estos colegas, o cualquier otro profesor, me puedes contactar por aquí o por FB para detalles.

El lema de intercambio de Steinitz

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada platicaré de un lema muy útil en álgebra lineal, sobre todo cuando se están definiendo las nociones de base y de dimensión para espacios vectoriales de dimensión finita. Se trata del lema de intercambio de Steinitz.

Supondré que el lector ya sabe un poco de álgebra lineal, pero muy poquito. Basta con saber la definición de espacio vectorial. Lo demás lo definiremos sobre el camino.

El nombre del lema es en honor al matemático alemán Ernst Steinitz. Sin embargo, personalmente a mi me gusta pensarlo como el lema del «regalo de vectores», por razones que ahorita platicaremos. El enunciado es el siguiente:

Teorema (Lema de intercambio de Steinitz). Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

En pocas palabras, «cualquier conjunto linealmente independiente tiene a lo mucho tantos elementos como cualquier conjunto generador y, además, cualquier generador le puede regalar vectores al linealmente independiente para volverlo generador».

De manera esquemática, está pasando lo siguiente:

Diagrama del lema de intercambio de Steinitz
Diagrama del lema de intercambio de Steinitz

Lo que haremos es hablar de las definiciones necesarias para entender el lema, hablar de la intuición detrás, dar un par de ejemplos y luego dar la demostración. La presentación está ligeramente basada en el libro de álgebra lineal de Titu Andreescu.

Definiciones e intuición

Sea $V$ un espacio vectorial sobre un campo $F$.

Si tenemos vectores $v_1,\ldots,v_n$ de $V$ y escalares $a_1,\ldots,a_n$ en $F$, podemos considerar al vector formado por multiplicar los vectores por los escalares correspondientes y sumarlos todos, es decir al vector $v$ dado por la expresión $a_1v_1+\cdots+a_nv_n$ . En este caso, decimos que $v$ es una combinación lineal de $v_1,\ldots,v_n$, o a veces que $v_1,\ldots,v_n$ generan a $v$.

Un conjunto $S=\{v_1,v_2,\ldots,v_n\}$ de vectores de $V$ es generador si para cualquier $v$ de $V$ existen escalares $a_1,\ldots,a_n$ en $F$ para los cuales $v=a_1v_1+\cdots+a_nv_n$. Dicho de otra forma, «$S$ es generador si cualquier vector del espacio vectorial es combinación lineal de vectores de $S$».

De esta definición es fácil ver que si $S$ es un conjunto generador y $T$ es un conjunto que contiene a $S$ (es decir, $T\supset S$), entonces $T$ también es generador: simplemente para cualquier $v$ usamos la combinación lineal que tenemos en $S$ y al resto de los vectores (los de $T\setminus S$) les ponemos coeficientes cero.

Un conjunto $L=\{w_1,w_2,\ldots,w_m\}$ de vectores de $V$ es linealmente independiente si la única combinación lineal de vectores de $L$ que da $0$ es aquella en la que todos los escalares son $0$. Dicho de otra forma, «$L$ es linealmente independiente si $a_1w_1+\ldots+a_mw_m=0$ implica que $a_1=a_2=\ldots=a_m=0$.»

Con los conjuntos linealmente independientes pasa lo contrario a lo de los generadores. Si $L$ es un conjunto linealmente independiente y $M$ está contenido en $L$ (es decir, ahora $M\subset L$), entonces $M$ es linealmente independiente. Esto sucede pues cualquier combinación lineal de $M$ también es una combinación lineal de $L$. Como no hay ninguna combinación lineal no trivial de elementos de $L$ que sea igual a cero, entonces tampoco la hay para $M$.

Los párrafos anteriores dejan la idea de que «los conjuntos generadores tienen que ser grandes» y que «los conjuntos linealmente independientes tienen que ser chiquitos». El lema de intercambio de Steinitz es una manera en la que podemos formalizar esta intuición.

Como los conjuntos generadores son «grandes», entonces son bien buena onda y bien generosos. Tienen muchos elementos. Como los conjuntos linealmente independientes son «chiquitos», entonces necesitan elementos. Lo que dice el lema de intercambio de Steinitz es que si tenemos a un generador $S$ y a un linealmente independiente $L$, entonces $S$ tiene más elementos y que puede regalar al linealmente independiente $L$ algunos elementos $T$ para que ahora $L\cup T$ tenga tantos elementos como tenía $S$ y además se vuelva generador. Una cosa importante es que no cualquier subconjunto $T$ funciona. Este tiene que estar bien elegido.

Ejemplo concreto del lema de intercamio de Steinitz

Veamos un ejemplo muy concreto. Supongamos que nuestro espacio vectorial es $\mathbb{R}^3$, osea, los vectores con $3$ entradas reales. Tomemos a los siguientes conjuntos de vectores:

  • $L=\{(1,2,3), (0,3,0)\}$
  • $S=\{(0,1,0), (1,0,0), (0,0,-1), (2,4,6)\}$

Por un lado, el conjunto $L$ es linealmente idependiente. Una combinación lineal $a(1,2,3)+b(0,3,0)=(0,0,0)$ implica de manera directa que $a=0$ (por la primer o tercer coordenadas) y de ahí $b=0$ (por la segunda coordenada).

Por otro lado, el conjunto $S$ es generador, pues con $(0,0,-1)$ podemos obtener a $(0,0,1)$ como combinación lineal, de modo que $S$ genera a los tres de la base canónica y por tanto genera a todo $\mathbb{R}^3$.

Notemos que en efecto $L$ tiene menos elementos que $S$. Además, el lema de intercambio de Steinitz garantiza que $S$ puede pasarle $|S|-|L|=4-2=2$ elementos a $L$ para volverlo generador. Pero hay que ser cuidadosos. Si le regala los elementos $(0,1,0)$ y $(2,4,6)$, entonces no funciona (se puede verificar que este conjunto no genera a $\mathbb{R}^3$). Pero si le regala, por ejemplo, los elementos $(1,0,0)$ y $(0,0,-1)$ entonces ahora sí generará (se puede argumentar viendo que entonces ahora genera a los tres de la base canónica).

Demostración del lema de intercambio de Steinitz

Pasemos ahora a la demostración del lema de Steinitz. Lo demostraremos por inducción en la cantidad de elementos que tiene $L$, el linealmente independiente. Si $|L|=m=0$, entonces claramente $m=0\leq n$, y además $S$ le puede pasar $n-0=n$ elementos (todos) a $L$ y volverlo generador.

Supongamos entonces que es cierta la siguiente afirmación.

Hipótesis inductiva Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

Para el paso inductivo, tomemos $L=\{w_1,w_2,\ldots,w_m,w_{m+1}\}$ un linealmente independiente de $V$ y $S=\{v_1,v_2,\ldots,v_n\}$ un generador de $V$. Aplicándole la hipótesis inductiva al linealmente independiente $L’=L\setminus \{w_{m+1}\}=\{w_1,\ldots,w_m\}$ y al generador $S$, tenemos que:

  • $m\leq n$
  • Se puede tomar un subconjunto $T’=\{s_1,s_2,\ldots,s_{n-m}\}$ de $S$ tal que $L’\cup T’= \{w_1,w_2,\ldots,w_m,s_1,\ldots,s_{n-m}\}$ sea generador de $V$.

Como $L’\cup T’$ es generador, entonces podemos poner a $w_{m+1}$ como combinación lineal de elementos de $L’\cup T’$, es decir, existen $a_1,\ldots, a_m, b_1,\ldots,b_{n-m}$ tales que $$w_{m+1}=a_1w_1+\ldots+a_mw_m+b_1s_1+\ldots+b_{n-m}s_{n-m}.$$

Ya sabemos que $m\leq n$. Si $m=n$, la combinación lineal anterior no tendría ningún $s_i$, y entonces sería una combinación lineal no trivial para los elementos de $L$, lo cual es una contradicción pues $L$ es linealmente independiente. Entonces $m\neq n$ y $m\leq n$, así que $m+1\leq n$, que era el primer punto que queríamos probar.

También, como $L$ es linealmente independiente, no se vale que todos los $b_i$ sean iguales a cero. Sin perder generalidad, podemos suponer que $b_1\neq 0$. Así, $s_1$ se puede despejar como combinación lineal en términos de $w_1,\ldots,w_n,w_{n+1}, s_2,\ldots,s_{n-m}$ y por lo tanto $L\cup (T’\setminus \{s_1\})$ genera lo mismo que $L’\cup T’$, que era todo $V$. Así, $T:=T’\setminus \{s_1\}$ es el subconjunto de $S$ de tamaño $n-(m+1)$ tal que $L\cup T$ es generador. Esto termina la prueba del lema.

Algunas aplicaciones

El lema de intercambio de Steinitz se puede utilizar para probar varias afirmaciones con respecto a bases de un espacio vectorial de dimensión finita.

Un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos. Una base de un espacio vectorial es un conjunto que sea simultáneamente generador y linealmente independiente.

Las siguientes afirmaciones se siguen directamente del lema de Steinitz.

  1. Todas las bases de un espacio vectorial finito tienen la misma cantidad de elementos.
  2. En un espacio vectorial de dimensión $d$:
    • Todo conjunto linealmente independiente tiene a lo más $d$ elementos.
    • Todo conjunto generador tiene al menos $d$ elementos.
  3. Si $S$ es un conjunto con $n$ vectores de un espacio vectorial de dimensión $n$, entonces las siguientes tres afirmaciones son equivalentes:
    • El conjunto $S$ es base.
    • $S$ es linealmente independiente.
    • $S$ es generador.

Como primer ejemplo, haremos (1). Tomemos $B_1$ y $B_2$ bases de un espacio vectorial de dimensión finita $B$. Pensando a $B_1$ como linealmente independiente y a $B_2$ como generador, tenemos $|B_1|\leq |B_2|$. Pensando a $B_2$ como linealmente independiente y a $B_1$ como generador, tenemos $|B_2|\leq |B_1|$. Así, $|B_1|=|B_2|$.

Como segundo ejemplo, haremos una parte de (3). Suponiendo que $S$ es un conjunto de $n$ vectores de un espacio vectorial de dimensión $n$, veremos que su independencia lineal implica $S$ es base. Sea $B$ una base de $V$. Por el lema de Steinitz, podemos pasar $|B|-|S|=n-n=0$ elementos de $B$ a $S$ para volverlo generador. Es decir, $S$ ya es generador. Como además es linealmente independiente, entonces es base.

El resto de las demostraciones son igual de sencillas, como puedes verificar.

Más adelante…

El lema de Steinitz es la herramienta clave para definir dar la definición de dimensión de espacios vectoriales en el caso de dimensión finita. Lo usaremos una y otra vez. Por esta razón, es muy recomendable repasar su demostración y entender a profundidad qué dice.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Replica por tu cuenta la demostración del lema de Steinitz hasta que te sientas cómodo con los argumentos.
  • En el ejemplo que se dio de la aplicación del lema de Steinitz, ¿cuáles son todas las posibilidades de $2$ elementos que se pueden pasar para que $L$ se convierta en generador?
  • Usa el lema de Steinitz para demostrar el resto de consecuencias que mencionamos.
  • ¿Qué te dice el lema de Steinitz cuando $L$ y $S$ son inicialmente del mismo tamaño?
  • Muestra que en el lema de Steinitz la hipótesis de que $L$ sea finito no es necesaria, es decir, que incluso sin esta hipótesis se pueden mostrar todas las conclusiones.

Entradas relacionadas

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Mariposa de 7 equivalencias de matrices invertibles

Por Leonardo Ignacio Martínez Sandoval

Introducción

Una de las nociones más importantes en álgebra lineal es la de «matriz invertible». Llamemos $I_n$ a la matriz identidad de $n\times n$, es decir, a la que tiene $1$ en cada entrada de la diagonal principal, y $0$ en las demás.

Una matriz $A$ de $n\times n$ es invertible si existe una matriz $B$ de $n\times n$ tal que $AB=I_n=BA$.

Una consecuencia rápida es que dicha matriz $B$ es única, así que le podemos dar la notación $A^{-1}$. De la definición (y asociatividad) se puede ver rápido que si $A_1$ y $A_2$ son invertibles, entonces su producto $A_1A_2$ también, con inversa $A_2^{-1}A_1^{-1}$, en otras palabras, «producto de invertibles es invertible».

Un detalle curioso de la definición es que pide no sólo que $AB=I_n$, sino que para la misma matriz $B$ también se tenga que $BA=I_n$. Por un lado, a priori esto tiene sentido pues el producto de matrices no es conmutativo, es decir, ocurre a veces que $AB\neq BA$. Sin embargo, como veremos más adelante en esta entrada, en la definición de matriz invertible basta con tener una de estas igualdades.

De hecho, la idea de esta entrada es presentar y demostrar varias equivalencias a la afirmación «$A$ es una matriz invertible». La presentación sigue un poco el orden de ideas del capítulo 3.4 del libro Essential Linear Algebra with Applications: A Problem-Solving Approach de Titu Andreescu. La idea es explicar el siguiente diagrama, en donde agrupamos a las equivalencias en grupitos que corresponden a partes de una mariposa:

Algunas definiciones

Antes de enunciar el resultado principal, conviene recordar algunas definiciones y un par de resultados importantes.

Una operación elemental es aplicar a una matriz de las siguientes operaciones:

  • Intercambio de dos filas.
  • Multiplicar todas las entradas de alguna de sus filas por un elemento $c$ no cero.
  • Sumar a una fila un múltiplo de otra fila.

Una matriz elemental es una matriz obtenida de aplicar a $I_n$ exactamente una operación elemental.

Una fila de una matriz es una fila cero si todas sus entradas son iguales a cero. A la primer entrada no cero (de izquierda a derecha) de una fila que no sea fila cero se le llama pivote. Una matriz es escalonada reducida si cumple las siguientes tres propiedades:

  1. Todas las filas cero están hasta abajo.
  2. En todas las filas no cero los pivotes son iguales a $1$.
  3. Si una fila no cero $F_1$ está arriba de otra fila no cero $F_2$, entonces el pivote de $F_1$ está estrictamente a la izquierda del pivote de $F_2$.
  4. Si una entrada tiene al pivote de una fila, entonces todas las demás entradas de la columna son iguales a $0$.

Un resultado (no trivial) es que cualquier matriz se puede llevar a una (y sólo una) matriz escalonada reducida $A_{\text{red}}$ usando únicamente operaciones elementales, a la cual le llamamos su forma escalonada reducida. Estas son todas las definiciones que necesitamos. Estamos listos para pasar al enunciado del teorema principal.

Teorema de la mariposa de equivalencias

Teorema: Sea $A$ una matriz de $n\times n$ con entradas en un campo $F$. Entonces, todas las siguientes afirmaciones son equivalentes:

  1. $A$ es una matriz invertible.
  2. La forma escalonada reducida $A_{\text{red}}$ de $A$ es $I_n$.
  3. $A$ es producto de matrices elementales.
  4. Para todo $b\in F^n$, el sistema de ecuaciones $Ax=b$ tiene una única solución $x\in F^n$.
  5. Para todo $b\in F^n$, el sistema de ecuaciones $Ax=b$ tiene una solución $x\in F^n$.
  6. Existe una matriz $B$ de $n\times n$ tal que $AB=I_n$.
  7. Existe una matriz $B$ de $n\times n$ tal que $BA=I_n$.

Por supuesto, estas no son todas las formas de caracterizar una matriz invertible. Hay otras formas de hacerlo en términos de determinantes, por ejemplo. En el camino recordaremos varias de las definiciones que están en este teorema.

Le llamo el teorema de la mariposa de equivalencias porque podemos agrupar a estos números en tres «grupos» principales de equivalencias «parecidas», que además nos van a recordar cómo va la prueba.

Primero veremos la equivalencia entre 1, 2 y 3 (un ala). Luego, entre 1,4,5 (otra ala). Después, entre 1 y 6 (antena derecha). Finalmente, entre 1 y 7 (antena izquierda).

Un par de lemas auxiliar

Antes de demostrar el teorema de equivalencias, enunciamos y argumentamos dos resultados útiles

Es fácil convencerse de que aplicar una operación elemental a una matriz $A$ es lo mismo que multiplicar a $A$ por la izquierda por la matriz elemental correspondiente a la operación. Como toda matriz $A$ se puede llevar a su forma escalonada reducida mediante operaciones elementales, concluimos lo siguiente.

Lema 1: Para toda matriz $A$ existe una matriz $E$ que es producto de matrices elementales tal que $EA$ es la forma escalonada reducida de $A$, es decir $EA=A_{\text{red}}$.

También es fácil convencerse de que cada matriz elemental es invertible, pues las operaciones elementales se pueden revertir, y la inversa de la matriz elemental $M$ es precisamente la matriz elemental correspondiente a la operación inversa. Además, producto de matrices invertibles es invertible. De este modo, concluimos lo siguiente:

Lema 2: Si $E$ es una matriz que es producto de matrices elementales, entonces $E$ es invertible y también es producto de matrices elementales.

La demostración del teorema de la mariposa

Usaremos el diagrama de la mariposa para demostrar todas las equivalencias. Lo que haremos es probar una implicación por cada una de las siguientes flechas:


Empezamos con el ala izquierda de la mariposa.

(1) implica (2): Tomemos una matriz invertible $A$. Por el Lema 1, existe una matriz producto de elementales tal que $EA=A_{\text{red}}$. Como $E$ y $A$ son invertibles, entonces $A_{\text{red}}$ también es invertible.

Si $A_{\text{red}}$ tuviera una fila cero, digamos la $j$, no sería invertible. Esto sucede ya que para cualquier matriz $B$ de $n\times n$ tendríamos que la fila $j$ de $AB$ también sería cero, y entonces $AB$ nunca sería $I_n$. Como sabemos que $A_{\text{red}}$ es invertible, entonces todas sus filas no son cero y por lo tanto todas tienen pivote. Así, tenemos $n$ pivotes y por lo tanto tiene que haber exactamente un pivote por columna. Como $A_{\text{red}}$ es escalonada reducida, estos pivotes tienen que estar exactamente uno en cada entrada de la diagonal principal. Como además cada pivote es la única entrada no cero de su columna, concluimos que $A_{\text{red}}$ es la identidad.

(2) implica (3): Tomemos una matriz $A$ cuya forma escalonada reducida es la identidad. Por el Lema 1, existe una matriz producto de elementales tal que $EA=A_{\text{red}}=I_n$. Por el Lema 2, $E$ es invertible y $E^{-1}$ es producto de matrices elementales. Multiplicando por $E^{-1}$ a la izquierda a la identidad $EA=I_n$ obtenemos $A=E^{-1}$, es decir, $A$ es producto de matrices elementales.

(3) implica (1): Finalmente, si $A$ es producto de matrices elementales, por el Lema 2 tenemos que $A$ es invertible.

Con esto terminamos la primer ala de la mariposa. Notemos que cierran un ciclo, así que a partir de ahora podemos usar libremente la equivalencia entre 1, 2 y 3. Hagamos la segunda ala.

(1) implica (4): Supongamos que $A$ es invertible y tomemos cualquier $b$ en $F^n$. Notemos que $A^{-1}b$ es solución de $Ax=b$ pues satisface $A(A^{-1}b)=I_n b=b$. Además, si $x$ y $y$ son soluciones de $Ax=b$, tendríamos que $Ax=Ay$ y mutiplicando por $A^{-1}$ a la izquierda tendríamos que $x=y$. De este modo, $Ax=b$ tiene una única solución para todo $b$ en $F^n$.

(4) implica (5): Esta demostración es inmediata. Si $Ax=b$ tiene una única solución, en particular tiene una solución.

(5) implica (1): Supongemos que $Ax=b$ tiene una solución $x$ en $F^n$ para todo $b$ en $F^n$. Afirmamos que esto implica que $A_{\text{red}}x=b$ tiene solución para para todo $b$ en $F^n$. Tomemos una $b$ en $F^n$. Por el Lema 1, hay una matriz invertible $E$ tal que $A_{\red}=EA$. Por hipótesis, existe una solución $x$ para $Ax=E^{-1}b$. Tomemos esa $x$. Notemos que $A_{\text{red}}x=(EA)x=E(Ax)=E(E^{-1}b)=b$. Es decir, justo esa $x$ es solución para $A_{\text{red}}x=b$.

En particular, $A_{\text{red}}x=e_j$ tiene solución para cuando $e_j$ es el vector cuya $j$-ésima entrada es $1$ y las demás cero. Así, es imposible que la $j$-ésima fila de $A_{\text{red}}$ sea cero, ya que en caso contrario $Ax$ siempre tendría $j$-ésima entrada cero y $Ax=e_j$ no tendría solución. Como ya vimos antes, si $A_{\text{red}}$ no tiene filas cero, entonces es la identidad. Por la equivalencia entre (1) y (2) concluimos que $A$ es invertible.

Esto termina las equivalencias en la segunda ala, así que ahora podemos usar libremente las implicaciones entre 1, 2, 3, 4 y 5. Ya nada más nos faltan las antenas.

Por supuesto, las implicaciones (1) implica (6) y (1) implica (7) son triviales, pues la matriz de (1) en particular funciona para (6) y (7). Lo que falta ver son los regresos de estas implicaciones.

(6) implica (1): Supongamos que existe una matriz $B$ tal que $AB=I_n$. Tomemos $b$ en $F^n$. Notemos que $Bb$ es solución de $Ax=b$ pues $A(Bb)=(AB)b=I_nb=b$. De este modo, $Ax=b$ tiene solución para todo $b$ en $F^n$ y por la equivalencia entre (1) y (5) tenemos que $A$ es invertible. Si tomamos a su inversa $A^{-1}$ y la multiplicamos a la izquierda en la hipótesis, obtenemos $B=A^{-1}$, de modo que también $BA=I_n$.

(7) implica (1): Supongamos que existe una matriz $B$ tal que $BA=I_n$. Por la equivalencia entre (1) y (6), tenemos que $B$ es invertible, de inversa $B^{-1}$. De este modo, $A=(B^{-1}B)A=B^{-1}(BA)=B^{-1}I_n=B^{-1}$. De este modo, $A$ es la inversa de una matriz invertible y por tanto es invertible, y por lo tanto $AB=B^{-1}B=I_n$.

¡Listo! Con esto tenemos la equivalencia entre todas las afirmaciones.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario: