Archivo de la etiqueta: sucesiones

Seminario de Resolución de Problemas: Sucesiones aritméticas y geométricas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta y las siguientes entradas platicaremos varios temas relacionados con sucesiones, y cómo se aplican a la resolución de problemas matemáticos. Comenzaremos recordando qué es una sucesión y estudiando a las sucesiones aritméticas y geométricas. Más adelante, platicaremos de los siguientes tipos de sucesiones:

  • Periódicas
  • Acotadas
  • Recursivas
  • Con recursiones lineales
  • Monótonas
  • Convergentes

Supondremos que el que lee estas notas está al menos un poco familiarizado con estos conceptos. De cualquier forma, recordaremos las definiciones que vayamos necesitando.

Recordatorio de sucesiones

Una sucesión formalmente es una función de los naturales a un conjunto $X$. Aunque esta es la definición formal, es bastante más práctico pensar a una sucesión como ciertos elementos de $X$ en donde hay uno que es el primero, después del cual aparecen más, uno tras otro.

En muchos problemas, $X$ es un conjunto de números, como los naturales, enteros, racionales o reales. Sin embargo, $X$ también puede ser un conjunto de funciones, de polinomios, de figuras geométricas o de prácticamente cualquier otra cosa. Por ejemplo, en topología algebraica son de interés ciertas sucesiones de grupos.

Usaremos la notación $\{x_n\}$ para referirnos a una sucesión. Aunque usa llaves (como si fuera conjunto), en realidad los elementos están «ordenados de izquierda a derecha», entonces se tiene que pensar como $$\{x_n\}=(x_0,x_1,x_2,x_3,\ldots).$$ El término $x_n$ es el $n$-ésimo término de la sucesión.

Podemos definir a una sucesión de manera implícita mediante una fórmula, o mediante forma explícita escribiendo algunos de sus términos cuando el patrón que sigue es muy claro (lo cual no siempre pasa). Por ejemplo, la sucesión $\{x_n\}$ tal que para todo $n\geq 0$, tenemos $x_n=1$ es explícitamente la sucesión $$1,1,1,1,1,\ldots,$$ mientras que la sucesión $\{y_n\}$ tal que para todo $n\geq 0$ se tiene $y_n=n(n+1)$ es explícitamente la sucesión $$0, 2, 6, 12, 20, \ldots.$$

A partir de la forma implícita podemos dar tantos términos como queramos de la forma explícita, pero lo contrario no es cierto. Algunos acertijos se tratan de tomar pocos términos de una sucesión dada de manera explícita, y preguntar cuál es el siguiente término, o bien cuál es la regla general.

En términos formales, la respuesta no es única, pues la sucesión, en teoría, podría continuar como sea. Sin embargo, como acertijo es divertido encontrar una regla fácil de enunciar y que funcione siempre. Algunas sucesiones en las que se puede hacer esto son las siguientes:

  • $1,1,1,1,1,1,1,\ldots$
  • $1,2,3,4,5,6,7,\ldots$
  • $2,4,6,8,10,12,14,\ldots$
  • $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32}, \frac{1}{64},\ldots$
  • $i, 1, 2, 3i, 5, 8i, 13, 21i, \ldots$
  • $1,\sqrt{2},\sqrt{3},2,\sqrt{5},\sqrt{6},\sqrt{7},\ldots$
  • $4,3,2,1,4,3,2,1,4,3,\ldots$

En todos estos ejemplos, la sucesión tiene cierto patrón u orden. Pero hay muchas otras sucesiones que no tienen un patrón claro para enunciarlas de forma implícita, o bien en las que este patrón es más difícil de encontrar:

  • $3,1,4,1,5,9,2,6,5,\ldots$
  • $4,13,0,1,7,18,54,\ldots$
  • $2,1,24,6,720,120,40320,5040,\ldots$

Como ya comentamos, la forma explícita de una sucesión tiene el problema de que no sabemos cuáles términos siguen. Si en un problema aplicamos la heurística de buscar un patrón y tenemos que los primeros términos de una sucesión son $$2,4,6,8,10,12$$ por muy tentador que sea no podemos garantizar que el siguiente será $14$, hasta que no tengamos una demostración para ello.

Es posible que resolviendo problemas, o en otro quehacer matemático, encuentres los primeros términos de una sucesión de enteros y quieras saber cuál es. Una herramienta muy útil para ello es Enciclopedia en Línea de Sucesiones en Enteros (OEIS). Tiene un buscador en el que pones los primeros términos, y de ahí te sugiere algunas sucesiones que pueden ser la que estás buscando.

Problema. Para un entero $n\geq 1$, se toman $n$ puntos distintos sobre la orilla de una circunferencia. Se dibujan todos los segmentos entre pares de esos puntos. Se sabe que no hay tres de esos segmentos que coincidan en el interior de la circunferencia. ¿En cuántas regiones queda dividida el área de la circunferencia?

Sugerencia pre-solución. Haz varias figuras para hacer casos pequeños y buscar un patrón. Ten cuidado, pues el patrón no es el que puedes deducir inmediatamente.

Solución. Veamos qué sucede con casos pequeños. Cuando tenemos un punto, no hay segmentos y sólo queda $1$ región. Si tenemos dos puntos, se hace un segmento y tenemos $2$ regiones. Para tres puntos, queda un triángulo y tres regiones a sus lados, así que son $4$ regiones en total. Las siguientes figuras muestran que para cuatro y cinco puntos tenemos $8$ y $16$ regiones en total:

Casos de cuatro y cinco puntos

Así, la sucesión de cuántas regiones hay hasta ahora va así de manera explícita: $$1,2,4,8,16$$

Parecería que es la sucesión de potencias de dos, y que la respuesta sería entonces $2^{n-1}$. Pero esto es incorrecto. Al hacer un caso más, nos damos cuenta de esto, pues para seis puntos tenemos únicamente $31$ regiones:

Caso de seis puntos

Cuando estamos haciendo matemáticas, o resolviendo un problema con acceso a internet, podemos poner esta sucesión en la OEIS para ver si hay algo que nos pueda ayudar.

Realizando la búsqueda, obtenemos varios resultados, y el segundo resultado tiene exactamente la descripción que queremos. La OEIS tiene una sección de fórmulas que podemos usar.

Ahí, dice que la cantidad de regiones es $$\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{2}+\binom{n-1}{3}+\binom{n-1}{4},$$ (lo cual se puede probar usando inducción) y de hecho, usando la definición de coeficientes binomiales, se puede ver que la expresión anterior es igual a $$\frac{n^4 – 6n^3 + 23n^2 – 18n + 24}{24}.$$

$\square$

Sucesiones aritméticas

Una sucesión aritmética es una sucesión en la cual de un término al siguiente siempre hay una misma diferencia. Un ejemplo es la sucesión $$1,4,7,10,13,16,19,\ldots,$$ que construimos de modo que la diferencia de un término al siguiente siempre sea $3$.

Si conocemos el término inicial $a_0=a$ de una sucesión aritmética y la diferencia $d$, entonces conocemos todos los términos. En efecto, se puede probar inductivamente que $a_n=a+nd$.

Esta fórmula es muy útil para trabajar con sucesiones aritméticas. Por ejemplo, si sabemos que $\{a_n\}$ es una sucesión aritmética tal que $a_5=30$ y $a_7=48$, entonces por un lado $$a_7-a_5=48-30=18,$$ y por otro $$a_7-a_5=(a+7d)-(a+5d)=2d.$$ De este modo, la diferencia es $d=9$, y el término inicial es $a=a_7-7\cdot 9=48-63=-15$.

Problema. Muestra que en cualquier sucesión aritmética de enteros con diferencia $d>0$ que tenga al menos un número al cubo $k^3$, tiene una infinidad de cubos.

Sugerencia pre-solución. Usa una identidad algebraica.

Solución. Podemos suponer sin perder generalidad que $k>0$. Para que una sucesión aritmética sea de enteros, su diferencia tiene que ser un número entero. Así, $d$ es un entero positivo.

Como $k^3$ es uno de los términos y la diferencia es $d$, entonces $k^3+nd$ también es un término para cualquier entero positivo $n$. En particular, lo es para los enteros de la forma $n=3mk^2+3m^2dk+m^3d^2$, con $m$ un entero positivo. De esta forma, $$k^3+3mdk^2+3m^2d^2k+m^3d^3=(k+md)^3$$ es un término de la sucesión para todo entero positivo $m$, así que la sucesión tiene una infinidad de cubos.

$\square$

Una observación sencilla, pero útil, es que si $\{a_n\}$ es una sucesión aritmética de enteros con término inicial $a$ y diferencia $d>0$, entonces los términos de $a$ son exactamente los números $m\geq a$ tales que $m\equiv a \pmod d$. Las sucesiones aritméticas juegan un papel importante en algunos resultados de teoría de números, por ejemplo, el siguiente teorema.

Teorema de Dirichlet. Sean $a$ y $b$ enteros primos relativos. En la sucesión de enteros $\{a+bn\}$ hay una infinidad de primos. De manera equivalente, hay una infinidad de primos $p$ tales que $p\equiv a \pmod b$.

Sucesiones geométricas

Si tenemos una sucesión en la cual para pasar de un término al siguiente siempre multiplicamos por un mismo número, entonces tenemos una sucesión geométrica. Estos son tres ejemplos:

  • $1,2,4,816,32,64,\ldots$
  • $2020,0,0,0,0,0,\ldots$
  • $64,96,144,216,324,486,729,\ldots$

La primera está construida de modo que hay que multiplicar por $2$ para pasar de un término al siguiente. La segunda de modo que hay que multiplicar por $0$. En la última se multiplica por $\frac{3}{2}$. Parece que la última sucesión es de enteros, pero el siguiente término ya no es entero, pues es $\frac{2187}{2}$.

De nuevo, si el término inicial es $a_0=a$ y la razón (el número por el que se multiplica en cada paso) es $r$, entonces una sencilla inducción muestra que el término $a_n$ es $ar^n$. Si $a=0$, la sucesión es toda igual a $0$. Si $r=0$, a partir del segundo término la sucesión es $0$. En otro caso, conociendo dos valores de una sucesión geométrica podemos conocer información acerca de $r$.

Problema. La sucesión de números complejos $\{a_n\}$ es geométrica y cumple que $a_6=a_{24}=2020$. ¿Qué posibles valores puede tener $a_0$?

Sugerencia pre-solución. Usa la fórmula para sucesiones geométricas. Como estás trabajando en $\mathbb{C}$, recuerda considerar todas las posibilidades que te da la aritmética de complejos.

Solución. Si el término inicial de la sucesión es $a_0=a$ y la razón es $r$, sabemos que $ar^6=2020=ar^{24}$. La primer igualdad implica $r\neq 0$ y $a=2020r^{-6}\neq 0$. La igualdad entre la primera y última igualdad implica que $r^{18}=1$, que podemos escribir como $(r^6)^3=1$. De aquí, $r^6$ puede ser cualquier cúbica de la unidad, y por lo tanto $r^{-6}$ también. De esta forma, $a=2020\omega$, con $\omega$ cualquier raíz cúbica de la unidad.

$\square$

Un problema de sucesiones geométricas y aritméticas

En el siguiente problema se mezclan los dos tipos de sucesiones de los que hemos hablado.

Problema. La sucesión $\{x_n\}$ es aritmética. La sucesión $\{y_n\}$ es geométrica. Tenemos que

\begin{align*}
x_1+y_1&=1\\
x_2+y_2&=8\\
x_3+y_3&=10\\
x_4+y_4&=32.
\end{align*}

Determina el valor de $x_5+y_5$.

Sugerencia pre-solución. Modifica el problema a encontrar los términos iniciales, diferencia y razón de las sucesiones. Usa las fórmulas para cada tipo de sucesión.

Solución. Supongamos que $\{x_n\}$ tiene término inicial $x_0=a$ y diferencia $d$. Supongamos que $\{y_n\}$ tiene término inicial $y_0=s$ y razón $r$. Vamos a determinar $a,d,r,s$. Usando las fórmulas para sucesiones aritmétricas y geométricas, las ecuaciones de la hipótesis se pueden reescribir como sigue:

\begin{align*}
a+d + rs&=1\\
a+2d + r^2s&=8\\
a+3d + r^3s&=10\\
a+4d + r^4s&=32.
\end{align*}

Restando la primera ecuación de la segunda, la segunda de la tercera, y la tercera ecuación de la cuarta, tenemos las siguientes tres ecuaciones:

\begin{align*}
d + r(r-1) s &= 7\\
d+r^2(r-1)s &= 2\\
d + r^3(r-1)s &= 22.
\end{align*}

Restando la primer ecuación de la segunda, y la segunda ecuación de la tercera, tenemos las siguientes dos ecuaciones:

\begin{align*}
r(r-1)^2 s &= -5\\
r^2(r-1)^2 s &= 20.
\end{align*}

De aquí, $s\neq 0$, $r\neq 0$ y $r\neq 1$. Multiplicando la primer ecuación por $-4$, tenemos que $$-4r(r-1)^2s=20=r^2(r-1)^2s.$$ Cancelando $r(r-1)^2s$ (pues no es cero) de ambos lados, obtenemos que $r=-4$. Así, la primera ecuación se transforma en $-4(25)s=-5$, por lo que $s=1/20$.

De la ecuación $d+r(r-1)s=7$, obtenemos entonces $d=7-1=6$. Finalmente, de la ecuación $a+d+rs=1$, obtenemos $a=1-6+1/5=-\frac{24}{5}$.

En resumen, $$a=-\frac{24}{5}, d=6, s=\frac{1}{20}, r=-4.$$

De esta forma,
\begin{align*}
x_5+y_5&=a+5d+rs^5\\
&=-\frac{24}{5}+30-\frac{4^5}{20}\\
&=-26.
\end{align*}

$\square$

Más problemas

Esta entrada es una extensión de las secciones 1, 2 y 3 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema 1. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\triangle$

Problema 2. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\triangle$

Problemas de formas bilineales y cuadráticas

Problema 1. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema 2. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Problemas de cálculo variados

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores ya tratamos varios temas de cálculo y cómo se combinan con heurísticas para resolver problemas de cálculo. Veremos ahora otros problemas para repasar las técnicas que hemos aprendido hasta ahora y explorar algunas nuevas ideas.

Los primeros dos ejemplos son del libro Problem Solving through Problems de Loren Larson. Los últimos dos son de un concurso universitario: la Competencia Iberoamericana Interuniversitaria de Matemáticas.

El método del factor de integración

Para resolver problemas de cálculo, también es útil tener algunas ideas de ecuaciones diferenciales. Un método muy útil en la resolución de problemas es el método de factor de integración, que ayuda a resolver ecuaciones diferenciales de la forma $$y’+a(x)y=b(x).$$

La idea para resolver esta ecuación diferencial en $y$ (es decir, despejar a $y$ en términos de $a$ y $b$) es multiplicar ambos lados de la ecuación por $I(x)=e^{\int a(x)\, dx$ y observar que por regla de la cadena, la regla del producto y el teorema fundamental del cálculo, tenemos la ecuación diferencial equivalente $$(yI(x))’ =I(x)b(x).$$

De aquí, podemos integrar de ambos lados en un intervalo $[c,x]$. Por el teorema fundamental del cálculo, existe una constante $C$ tal que $$yI(x)=\int_{c}^x I(t) b(t)\, dt + C,$$ y ya de aquí podemos despejar $$y=I(x)^{-1}\left( \int_{c}^x I(t) b(t)\, dt + C\right).$$

A $I(x)$ se le conoce como el factor de integración.

Problema. Sea $f:(0,\infty)\to \mathbb{R}$ una función diferenciable y supongamos que $$\lim_{x\to \infty} f(x)+f'(x) = 0.$$ Muestra que $$\lim_{x\to 0} f(x) = 0.$$

Sugerencia pre-solución. Define $g(x)=f(x)+f'(x)$ y usando el método de integración «despeja» a $f$ en términos de $g$.

Solución. Definamos $g(x)=f(x)+f'(x)$. La hipótesis dice que $\lim_{x\to 0} g(x) = 0$, así que para obtener información de $f$ en términos de $g$, podemos usar el método de factor de integración. Por la discusión antes de este párrafo, tenemos que $$f(x)=e^{-x}\int_a^x e^t g(t) \,dt + Ce^{-x}.$$

Tomemos un $\epsilon>0$. Como $g(x)\to 0$ cuando $x\to \infty$, podemos tomar un $a$ tal que $|g(x)|<\epsilon$ para todo $x>a$. Usando desigualdad del triángulo en sumas e integrales, tenemos que para $x>a$
\begin{align*}
|f(x)|&\leq e^{-x}\left|\int_a^x e^t g(t)\right|+|Ce^{-x}|\\
&\leq e^{-x}\int_a^x e^t|g(t)|\, dt + |C|e^{-x}\\
&\leq \epsilon e^{-x}\int e^t\, dt + |C|e^{-x}\\
&=\epsilon e^{-x}(e^x-e^a)+|C|e^{-x}\\
&=\epsilon(1-e^{a-x})+|C|e^{-x}
\end{align*}

Tenemos que $\lim_{x\to \infty} e^{a-x} = 0$ y que $\lim_{x\to \infty} e^{-x}=0$, de modo que si $x$ es suficientemente grande, la expresión anterior nos dice $|f(x)|<2\epsilon$. En otras palabras, $f(x)\to 0$ cuando $x\to \infty$, como queríamos.

$\square$

Una integral con doble derivada

Problema. Sea $f:[0,1]\to \mathbb{R}$ una función dos veces diferenciable que cumple $f(0)=f(1)=0$ y tal que $f(x)>0$ para $x$ en $(0,1)$. Muestra que $$\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| > 4.$$

Sugerencia pre-solución. Tenemos ya varias técnicas para evaluar o estimar integrales. Si con un método llegas a una pared, intenta usar otro método. Necesitarás el teorema del valor extremo, el teorema del valor medio y el teorema fundamental del cálculo.

Solución. Por el teorema del valor extremo, existe un valor $c$ en $(0,1)$ tal que $y=f(c)$ es un máximo de $f$. Por el teorema del valor medio, existen puntos $a$ en $(0,c)$ y $b$ en $(c,1)$ tales que $$f'(a)=\frac{f(c)-f(0)}{c}=\frac{y}{c}$$ y $$f'(b)=\frac{f(1)-f(c)}{1-c}=\frac{-y}{1-c}.$$

Usando que $f$ alcanza su máximo $y$ en $c$

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right|&\geq \int_a^b \left| \frac{f»(x)}{f(x)} \, dx \right| \\
&\geq \frac{1}{y} \int_a^b \left| f»(x) \, dx \right|,
\end{align*}

de modo que aplicando el teorema fundamental del cálculo a la última integral, obtenemos que

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| &\geq \frac{1}{y} \int_0^1 \frac{1}{y}|f'(b)-f'(a)|\\
&=\frac{1}{y} \left|\frac{-y}{1-c}-\frac{y}{c}\right|\\
&=\left|\frac{1}{c(1-c)}\right|.
\end{align*}

Para terminar, notamos que la función $h(x)=x(1-x)$ es diferenciable en $(0,1)$ y continua en $[0,1]$, de modo que alcanza su máximo en $0$, en $1$ o en donde la derivada $h'(x)=1-2x$ es $0$, es decir, en $1/2$. Tenemos que $h(1/2)=1/4$ y que $h(0)=h(1)=0$, de modo que el máximo es $1/4$. Con esto, concluimos que $$\left|\frac{1}{c(1-c)}\right| \geq 4,$$ de donde se completa la cadena de desigualdades que queremos.

$\square$

En el problema anterior usamos el teorema del valor medio como paso intermedio. Es recomendable que pienses qué hubiera pasado si nos hubiéramos saltado este paso y hubiéramos usado el mínimo directamente, sin limitarnos primero al intervalo $[a,b]$. En los problemas de cálculo a veces es muy importante el orden en el que se hacen las cosas.

Dos problemas de cálculo de competencias

Veamos ahora algunos problemas de cálculo que han aparecido en concursos a nivel universitario. El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2015, como Problema 4.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua y $\alpha$ un número real. Sabemos que $\lim_{x\to \infty} f(x) = \lim_{x\to -\infty} = \alpha$. Muestra que para cualquier real positivo $r$ existen reales $x$ y $y$ tales que $y-x=r$ y $f(x)=f(y)$.

Sugerencia pre-solución. Modifica el problema, construyendo una función que te ayude a resolverlo. Necesitarás el teorema del valor intermedio. También, una parte de la solución necesita que se use inducción.

Solución. Tomemos cualquier valor $r$ y consideremos la función $h(x)=f(x+r)-f(x)$. Como $f$ es continua, la función $h$ es continua. Si $h(x)>0$ para todo real, entonces podemos mostrar inductivamente que para cualesquiera enteros positivos $m$ y $n$ tenemos que $$f(x-mr)<f(x)<f(x+r)<f(x+nr).$$

Haciendo $n$ y $m$ ir a infinito, tendríamos que $$\alpha\leq f(x) < f(x+r) \leq \alpha,$$ lo cual es una contradicción.

Así, $h(x)$ toma valores menores o iguales a $0$. De modo similar, podemos mostrar que $h(x)$ toma valores mayores o iguales a $0$. Como $h$ es continua, por el teorema del valor intermedio debe tomar el valor $0$ para algún $c$, de modo que $f(c+r)-f(c)=h(c)=0$ y así, tomando $x=c$ y $y=c+r$ tenemos $y-x=r$ y $$f(y)=f(c+r)=f(c)=f(x).$$

$\square$

El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2010, como Problema 4.

Problema. Sea $f:[0,1]\to [0,1]$ una función continua, creciente, diferenciable en $[0,1]$ y tal que $f'(x)<1$ en cada punto. La sucesión de conjuntos $A_1, A_2, \ldots$ se define recursivamente como $A_1=f([0,1])$ y para $n\geq 2$, $A_n=f(A_{n-1})$. Muestra que el diámetro de $A_n$ converge a $0$ conforme $n\to \infty$.

El diámetro de un conjunto $X$ es $\sup_{x,y \in X} |x-y|$.

Sugerencia pre-solución. Para una primer parte del problema que te ayudará a entender a los $A_i$, necesitarás el teorema del valor intermedio y el principio de inducción. Luego, necesitarás usar el teorema del valor medio y que las funciones continuas preservan límites de sucesiones convergentes.

Solución. Por conveniencia, nombramos $A_0=[0,1]$. Sea $d_n$ el diámetro de $A_n$. Tenemos $d_0=1$. Como $f$ es creciente, tenemos que $f(0)<f(1)$ y que no hay ningún valor fuera del intervalo $[f(0),f(1)]$ que se tome. Como $f$ es continua, se toman todos esos valores. Así, $A_1=[f(0),f(1)]$ y su diámetro es $d_1=f(1)-f(0)$. Inductivamente, podemos mostrar que $A_n= [f^n(0),f^n(1)]$ y que $d_n=f^{n}(1)-f^{n}(0)$.

Notemos que la sucesión $f^{n}(0)$ es creciente y acotada, de modo que converge a un real $a$. Como $f$ es contínua, tenemos que \begin{align*}f(a)&=f(\lim_{n\to \infty} f^{n}(0)) \\&= \lim_{n\to \infty} f^{n+1}(0) \\&= a.\end{align*} Análogamente, $f^n(1)$ converge a un real $b$ tal que $f(b)=b$. Como $f^n(0)\leq f^n(1)$, tenemos que $a\leq b$. Afirmamos que $a=b$. Si no, por el teorema del valor medio existiría un $c\in[a,b]$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1,$$ contradiciendo la hipótesis de la cota de la derivada.

Esto muestra que $a=b$, y por lo tanto
\begin{align*}
\lim_{n\to \infty} d_n &= \lim_{n\to \infty} f^n(1)-f^n(0) \\
&=b-a\\
&= 0.
\end{align*}

$\square$

En este problema es muy importante primero mostrar que los extremos de los intervalos convergen a puntos fijos de $f$ y después usar el teorema del valor intermedio. Podría ser tentador usar el teorema del valor intermedio en cada intervalo $[f^n(0),f^n(1)]$, pero con ello no se llega al resultado deseado.

Más problemas

En todas estas entradas hemos platicado acerca de problemas de temas de cálculo. Se pueden encontrar muchos más problemas de este tema en el Capítulo 6 del libro Problem Solving through Problems de Loren Larson.

Además, puedes encontrar otros problemas resueltos en la sección de Material para practicar de este blog, que ayuda a prepararse para competencias internacionales de matemáticas a nivel universitario.

Un problema de saltamontes en cuarentena

Por Adán Medrano

Nota de Leo: Esta es una entrada invitada de Adán Medrano Martín del Campo. Nos platicará de un problema de saltamontes (de hecho, de dos) y de funciones en los enteros.

$$\text{Tu}\in \text{Casa}$$

$$\text{Tu}\in \text{Casa}$$

$$\text{Tu}\in \text{Casa}$$

Esto nos aconsejó muy atinadamente el Dr. Hugo López-Gatell Ramírez hace unos pocos días, ya que México y la mayoría del mundo está en cuarentena a causa de la enfermedad COVID19.

Cada vez más y más personas buscamos nuevas actividades para hacer en casa. Junto con Leo Martínez, David Torres (aka Gato) y Pablo Meré, administro el grupo de facebook InsOMMnia, el cual sirve de plataforma para discutir y realizar actividades olímpicamente productivas. A modo de amenizar la cuarentena, hice un video en vivo explicando la solución a un problema que me pareció particularmente agradable por varias razones:

En esta entrada, quisiera platicarles el problema y su solución. Antes de esto, recordemos el problema que apareció en la OMM 2019.

La Momia: OMM 2019

Problema 5. Sean $a>b$ dos números enteros positivos, primos relativos entre sí. En un camino recto, en el cual está marcado cada centímetro $n$, para todo entero $n$, un saltamontes hará algunos saltos comenzando en la marca de $0$ cm y siguiendo las siguientes reglas:

  • Cuando cierto minuto sea múltiplo de $a$ y no múltiplo de $b$, saltará $a$ centímetros hacia adelante.
  • Cuando cierto minuto sea múltiplo de $b$ y no múltiplo de $a$, saltará $b$ centímetros hacia atrás.
  • Cuando cierto minuto sea múltiplo de $a$ y múltiplo de $b$, saltará $a-b$ centímetros hacia adelante.
  • Cuando un minuto no es múltiplo de $a$ ni de $b$, el saltamontes no se mueve del lugar en el que está.

Determina todas las marcas a las que puede llegar el saltamontes.

Nota de Leo: Este es un excelente problema para explorarse buscando un patrón.

Sin dar un spoiler de la solución a dicho problema, el enunciado puede traducirse al siguiente problema de equivalente.

Problema 5′: Sean $a>b$ enteros primos positivos primos relativos entre sí y sea $f:\mathbb{N}\to\mathbb{Z}$ la función dada por
$$f(n)=a\left\lfloor\frac{n}{a}\right\rfloor-b\left\lfloor\frac{n}{b}\right\rfloor.$$
Determina la imagen de $f$.

Uno puede jugar un poco con la función definida arriba, y llegar a la respuesta usando propiedades de dicha función. El objetivo de mostrarles este enunciado equivalente, es que muchas veces ciertos problemas que hablan de ciertos procesos pueden describirse (y resolverse) en términos de funciones construidas apropiadamente.

El problema que resolveremos cae en la categoría opuesta, pues es un problema sobre una función, al cual se le puede dar una interpretación de un saltamontes haciendo… algo.

El Vampiro: Romania TST 2019

Problema: Sean $a<b<c$ enteros positivos y sea $f:\mathbb{N}\to \mathbb{N}$ una función dada por
$$f(n)=\begin{cases}
n-a & n>c \\
f(f(n+b)) & n\leq c
\end{cases}$$
Determina la cantidad de enteros positivos $n$ tales que $f(n)=n$.

«Y eso qué tiene que ver con un saltamontes?» podrías pensar en este momento. ¡Ha ha! Mira ahora este problema de saltamontes.

Problema’: Sean $a<b<c$ enteros positivos. Un saltamontes se encuentra sobre un entero $n>0$ en la recta real positiva, donde hay pasto en los enteros positivos menores o iguales que $c$, y lava en los enteros mayores a $c$. Inicialmente, el saltamontes tiene una vida, y mientras el saltamontes tenga al menos una vida, se dispondrá a saltar de la siguiente manera:

  • Si el saltamontes se encuentra en el pasto, el saltamontes gana una vida y salta $b$ enteros hacia adelante.
  • Si el saltamontes se encuentra en la lava, el saltamontes pierde una vida y salta $a$ enteros hacia atrás.

Cuando el saltamontes tiene $0$ vidas, este muere y deja de moverse. Determina todas las posiciones iniciales del saltamontes tal que el saltamontes morirá en su posición inicial.

Saltamontes, lava, pasto y vidas
Problema visto como vidas, pasto, lava y saltamontes.

A que no se lo esperaban. (Honestamente yo tampoco, pero últimamente tengo más tiempo libre). Tal vez este problema inspire algún mini juego en alguna entrega futura de The Legend of Zelda.

Y, ¿cómo resolvemos algo así?

El Santo: venciendo a la momia y al vampiro

Spoiler Alert:

A continuación resolveremos los problemas, en caso que estés intentándolos y no quieras ver sus soluciones

La clave para ambos problemas es: ¡usar residuos y propiedades de las funciones en juego!

Solución al problema 5 del nacional

Notemos que al dividir $n$ entre $a$ y entre $b$, obtenemos
$$n=a\left\lfloor \frac{n}{a}\right\rfloor+r_{a}$$ y $$n=b\left\lfloor \frac{n}{b}\right\rfloor+r_{b}$$
donde

$$0\leq r_{a}\leq a-1$$ y $$0\leq r_{b}\leq b-1$$
son precisamente los residuos que resultan de la división. Notemos entonces que

\begin{align*}
f(n)&=a\left\lfloor\frac{n}{a}\right\rfloor-b\left\lfloor\frac{n}{b}\right\rfloor\\
&=\left(n-b\left\lfloor \frac{n}{b}\right\rfloor\right)-\left(n-a\left\lfloor \frac{n}{a}\right\rfloor\right)\\
&=r_{b}-r_{a}
\end{align*}

por lo que $f(n)$ simplemente depende de la diferencia entre $r_{b}$ y $r_{a}$. Por el Teorema Chino del Residuo, o simplemente mirando exclusivamente a los múltiplos de $a$ y de $b$ entre $1$ y $ab$, aparecen como diferencia todos los posibles enteros en el intervalo

$$[-a+1, b-1]$$
lo cual compone la imagen de $f$, que es lo que buscábamos.

$\square$

¡Genial! Mirar los residuos fue clave en el problema de saltamontes del nacional. En particular, no lo usamos en nuestra solución, pero $f$ resulta ser una función periódica, con periodo $ab$. Esto es gracias a que $a$ y $b$ son primos relativos, y por lo tanto cada pareja de residuos $r_{a}, r_{b}$ se repiten exactamente cada $ab$ enteros.

La periodicidad será una propiedad clave en la solución del problema del selectivo rumano. Comenzamos mostrando una exploración del problema.

Exploración del problema del selectivo rumano

Los puntos $n$ tales que $f(n)=n$ son llamados puntos fijos. En la formulación como problema de saltamontes, corresponden a que el saltamontes muera justo donde empezó: «muera» es que ya no haya $f$, empieza con una vida, osea una $f$.

Notemos que si $n>c$, entonces $n$ no es un punto fijo, pues

$$f(n)=n-a\neq n.$$
Esto nos dice que los puntos fijos son menores o iguales que $c$. Ahora, notemos que (recordemos que $a<b<c$)

\begin{align*}
f(c)&=f(f(c+b))\\
&=f(c+b-a)=c+b-2a
\end{align*}

y esto nos lleva a considerar que números cercanos a $c$, dentro de un intervalo de tamaño $b-a$, tendrán un valor similar. En efecto, si $0\leq r<b-a$ entonces

\begin{align*}f(c-r)&=f(f(c-r+b))\\&=f(c-r+b-a)\\&=c-r+b-2a.\end{align*}
Ahora, veamos que restando $b-a$ a $c$, perdemos este patrón, pues

\begin{align*}f(c-b+a)&=f(f(c+a))\\&=f(c)\\&=c+b-2a\end{align*}
¡Hemos regresado a un valor ya conocido! Esto nos lleva a la hipótesis de que $f$ es periódica con periodo $b-a$ en el intervalo $[1, c]$. Formalicemos estas observaciones.

Un par de lemas para el problema rumano

La manera de enunciar formalmente las observaciones anteriores esto es, por ejemplo, via el siguiente lema:

Lema 1: Sea $n=c-r-k(b-a)$ un entero positivo menor o igual que $c$ donde $k\geq 0$ y $0\leq r<b-a$. Entonces
$$f(n)=c-r+b-2a.$$

(Prueba del lema 1): Procederemos por descenso en los enteros positivos. Construiremos una secuencia de valores iguales, con distinta cantidad de $f$’s compuestas, de la siguiente manera: comenzamos con
$$z_{0}=n=c-r-k(b-a)$$
y definimos

$$z_{i+1}=\begin{cases}
z_{i}-a & z_{i}>c \\
z_{i}+b & z_{i}\leq c
\end{cases}$$

para todo $i\geq 0$. Además, escribiremos

$$z_{i}=c-r-y_{i}b+x_{i}a$$
donde $x_{0}=y_{0}=k$, y ambas secuencias $\left\{x_{i}\right\}$ y $\left\{y_{i}\right\}$ decrecen, definiendo

$$x_{i+1}=\begin{cases}
x_{i}-1 & z_{i}>c \\
x_{i} & z_{i}\leq c
\end{cases}$$ y

$$y_{i+1}=\begin{cases}
y_{i} & z_{i}>c \\
y_{i}-1 & z_{i}\leq c
\end{cases}$$
Habiendo definido esto, tenemos que

$$f(n)=f^{(1+x_{i}-y_{i})}(z_{i})$$
para todo $i\geq 0$.


Observemos que si $y_{i}=-1$ entonces $z_{i}=c-r+b+x_{i}a>c$ si se cumple que $x_{i}\geq -1$. Más aún, observemos el siguiente lema:

Lema 2: Para todo $i\geq 0$, tenemos que $y_{i}\geq 0$ implica que $y_{i+1}\leq x_{i+1}$.

(Prueba del lema 2): Procedemos por inducción. Para $i=0$ esto es claro, pues
$$y_{1}=k-1<k=x_{1}.$$
Ahora, supongamos que $x_{i}\geq y_{i}\geq 0$. Si $x_{i}>y_{i}$ entonces

$$x_{i+1}\geq x_{i}-1\geq y_{i}\geq y_{i+1}.$$
Si $x_{i}=y_{i}$ entonces tenemos que

$$z_{i}=c-r-y_{i}(b-a)\leq c$$
por lo que $z_{i+1}=z_{i}+b$ y esto implica que

$$x_{i+1}=x_{i}>y_{i}-1=y_{i+1}.$$

$\square$

Hemos probado pues que las secuencias $\left\{x_{i}\right\}$ y $\left\{y_{i}\right\}$ decrecen, y mientras $y_{i}\geq 0$, tendremos que $x_{i+1}\geq y_{i+1}$. ¿Cómo hemos de proseguir con esto?

La clave es notar la existencia de la menor $m$ tal que $y_{m}=-1$, donde es claro que $y_{m-1}=0$. Si $m=1$ entonces $y_{0}=x_{0}=k=0$, y ya hemos cubierto ese caso arriba, así que asumiremos que $m>1$. Tenemos que $y_{m-2}\geq 0$ por lo que, por el lema 2,

$$x_{m-1}\geq y_{m-1}=0$$
y como $y_{m}=y_{m-1}-1$ entonces $x_{m}=x_{m-1}\geq 0$. Esto implica que

\begin{align*}z_{m}&=c-r+b+x_{m}a\\&\geq c-r+b\\&>c\end{align*}
por lo que para todo $j>m$ se tiene que $x_{j+1}=x_{j}-1$

$$z_{m+x_{m}+1}=c-r+b-a$$
y tenemos que $y_{m+x_{m}+1}=x_{m+x_{m}+1}=-1$, lo que muestra que

\begin{align*}f(n)&=f(z_{m+x_{m}+1})\\&=f(c-r+b-a)\\&=c-r+b-2a.\end{align*}

$\square$

Juntando todo

Vaya, después de arduo trabajo hemos mostrado la periodicidad de $f$. Lo que falta únicamente, es usar esto para hacer una conclusión sobre los puntos fijos. Notemos que los únicos valores de $f$ en el dominio $[1, c]$ son $c-r+b-2a$ para $0\leq r<b-a$, así que solo estos valores pueden ser puntos fijos de $f$. De hecho, cada uno de esos valores es un punto fijo si y solo si podemos encontrar una $k\geq 0$ tal que

$$c-r-k(b-a)=c-r+b-2a$$, lo cual sucede si y sólo si $(k+1)(b-a)=a$, o bien justo cuando $b-a\mid a$, por lo que si $b-a$ divide a $a$, todos nuestros $b-a$ valores son puntos fijos, y si $b-a$ no divide a $a$, ningún valor es un punto fijo. Hemos concluido entonces.

$\square$

Antes de regresar a la cuarentena

Espero que hayan pasado un rato agradable pensando en este problema, y espero que hayan entendido 4 lecciones:

  • Quédate en casa
  • Quédate en casa
  • Quédate en casa
  • Es una buena idea usar residuos y secuencias jugando con enteros.

Con esto me despido y, ¡hasta la próxima!

1TFC

Los TFC (Teoremas Fundamentales de los Cuadraditos)

Por Leonardo Ignacio Martínez Sandoval

Esta entrada está motivada por una pregunta en el grupo de Matemáticos de Facebook. Palabras más, palabras menos, alguien preguntaba por qué «derivar es el inverso de integrar», si uno tiene que ver con sacar un área y el otro tiene que ver con sacar una pendiente.

La idea formal que está detrás de esto de que sean «inversas» son los teoremas fundamentales del cálculo (TFC). Pero en esta entrada no me quiero meter con definiciones de límite ni cosas por el estilo. A fin de cuentas es un blog y estamos navegando tranquilos. Así que déjenme trabajar «al ahí se va», osea, informalmente. La idea es entender por qué derivar e integrar son operaciones inversas «con dibujitos» y en un caso más sencillo: el caso discreto. Veremos los teoremas fundamentales de los cuadraditos (TFC). ¡Oh no! ¡Se confunden las siglas! Bueno, ni modo.

Los cuadraditos

Todo empieza con algunos cuadraditos ordenados en columnas. De izquierda a derecha, tenemos 1, 2, 5, 3, 2, 4 y 2 cuadraditos en cada columna. Le voy a llamar $C_j$ a la cantidad de cuadraditos en la columna $j$. Por ejemplo, $C_3=5$.

Funcion

Seguir leyendo…