Ecuaciones Diferenciales I – Videos: Método de eliminación de variables

Por Eduardo Vera Rosales

Introducción

En la entrada anterior revisamos las principales propiedades que satisface el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden de la forma $$\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}.$$ En particular vimos que el conjunto de soluciones al sistema homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices. Gracias a esta propiedad logramos encontrar la solución general a dichos sistemas, tanto homogéneos como no homogéneos.

Con esto en mente, podemos comenzar a resolver algunos sistemas lineales. Los más sencillos son los sistemas con coeficientes constantes, es decir, sistemas donde la matriz $\textbf{A}$ es una matriz conformada por constantes. En esta entrada revisaremos el método más sencillo disponible para resolver dichos sistemas, que será el de eliminación de variables.

El método de eliminación de variables consiste, como su nombre lo indica, en tratar de eliminar las variables dependientes $x_{i}(t)$ hasta quedarnos únicamente con una de ellas dentro de una ecuación diferencial de orden superior con coeficientes constantes. Para eliminar las variables utilizaremos la linealidad del sistema, por lo que podremos realizar operaciones elementales entre las ecuaciones del sistema, es decir, podremos sumar ecuaciones y multiplicar por escalares.

Una vez que llegamos a la ecuación diferencial de orden superior con coeficientes constantes, debemos resolverla para encontrar la función $x_{i}(t)$ con la que nos quedamos. Con esta función conocida, podremos ir encontrando las demás funciones que resuelven el problema. Además, como $x_{i}(t)$ es solución general a la ecuación diferencial de orden superior, entonces todas las soluciones involucrarán constantes arbitrarias $c_{1}, c_{2},…,c_{n}$. Por lo tanto, $$\textbf{X}=\begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \notag \\ x_{n}(t) \end{pmatrix}$$ será la solución general al sistema.

Antes de comenzar debemos advertir que, dado que el método depende de la resolución de una ecuación diferencial de orden superior, no es conveniente utilizarlo para resolver sistemas de más de tres ecuaciones diferenciales.

Método de eliminación de variables

En el primer video resolvemos de forma general el sistema lineal de dos ecuaciones diferenciales con coeficientes constantes por el método de eliminación de variables. Luego, en el segundo video utilizamos el método desarrollado en el primer video para resolver un par de ejemplos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Resuelve los siguientes sistemas de ecuaciones:

  • $\begin{alignedat}{4} \dot{x} &= 7x+3y \\ \dot{y} &= 2x-y \end{alignedat}$
  • $\begin{alignedat}{4} \dot{x} &= x-5y \\ \dot{y} &= y \end{alignedat}$

Resuelve los siguientes problemas de condición inicial:

  • $\begin{alignedat}{4} \dot{x} &= 2x+10y \\ \dot{y} &= -x-y \end{alignedat} \, \, \, \, ; \, \, \, \, \begin{alignedat}{4} x(0) &= 0 \\ y(0) &= 1 \end{alignedat}.$
  • $\begin{alignedat}{4} \dot{x} &= 3x-4y+e^{t} \\ \dot{y} &= x-y-e^{t} \end{alignedat} \, \, \, \, ; \, \, \, \, \begin{alignedat}{4} x(0) &= 1 \\ y(0) &= -1 \end{alignedat}.$

Resuelve el siguiente sistema de tres ecuaciones:

  • $\begin{alignedat}{4} \dot{x} &= 2x+y+z \\ \dot{y} &= x-y-z \\ \dot{z} &= 3x+y-2z \end{alignedat}$

Recuerda que aunque no resolvimos ecuaciones diferenciales de tercer orden, los métodos que desarrollamos para ecuaciones de segundo orden se pueden extender a ecuaciones de orden superior.

Más adelante

Ya hemos resuelto algunos sistemas lineales con coeficientes constantes, aunque su solución dependió de nuestros conocimientos acerca de las ecuaciones de orden superior con coeficientes constantes. Necesitamos nuevas herramientas para poder resolver los mismos sistemas sin tener que resolver una ecuación de orden superior.

En la próxima entrada hablaremos de la exponencial de una matriz, veremos cómo definir este nuevo término y por supuesto estudiaremos sus principales propiedades. La exponencial de una matriz estará fuertemente relacionada con la forma como resolveremos más adelante los sistemas lineales con coeficientes constantes.

¡Hasta la próxima entrada!

Notas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.