Ecuaciones Diferenciales I – Videos: Introducción a sistemas de ecuaciones de primer orden

Introducción

Bienvenidos a la tercera unidad del curso de Ecuaciones diferenciales ordinarias, donde estudiaremos sistemas de ecuaciones diferenciales lineales de primer orden.

Un sistema de ecuaciones es una familia de ecuaciones diferenciales de la forma $$\begin{alignedat}{4} \dot{x_{1}} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x_{2}} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x_{n}} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde $t$ es la variable independiente, cada $x_{i}$ es una variable dependiente de $t$ y cada $F_{i}$ es una función que depende de las $n+1$ variables.

Los sistemas de ecuaciones aparecen con frecuencia en problemas de física o biología, en los que el fenómeno en cuestión involucra más de una variable. Estas variables interactúan entre sí, por lo que la razón de cambio de éstas depende tanto del tiempo como de las variables restantes.

Vamos a estudiar propiedades que cumple el conjunto de soluciones a un sistema lineal homogéneo, y posteriormente resolveremos estos sistemas desde un punto de vista matricial, por lo que tus conocimientos de Álgebra lineal serán de utilidad.

En esta entrada definiremos lo que es un sistema de ecuaciones de primer orden, así como también una solución. Hablaremos del problema de condición inicial y enunciaremos el teorema de existencia y unicidad, el cual es la base para desarrollar toda la teoría alrededor de los sistemas lineales. Escribiremos el sistema de ecuaciones en forma matricial, y finalizaremos haciendo un cambio de variable para transformar una ecuación de orden $n\geq 2$ en un sistema de $n$ ecuaciones diferenciales de primer orden. Con esta transformación podremos encontrar soluciones a ecuaciones de cualquier orden resolviendo su sistema de ecuaciones asociado.

Como te habrás dado cuenta en el sistema de ecuaciones escrito al inicio, para denotar a la derivada de una función utilizaremos la siguiente notación: $$\dot{y}=y’=\frac{dy}{dt}.$$

Además, denotaremos por $x_{1}, x_{2},…,x_{n}$ a las variables dependientes de $t$. Para los sistemas de dos o tres ecuaciones diferenciales denotaremos $x$, $y$, $z$ a las variables dependientes de $t$, salvo que esta notación cause confusión.

Vamos a comenzar.

Sistemas de ecuaciones de primer orden y ejemplos

En el primer video de esta entrada damos las definiciones de un sistema de ecuaciones diferenciales de primer orden, una solución al sistema, diremos cuándo el sistema es lineal, no lineal, homogéneo o no homogéneo. Finalizamos dando dos ejemplos de problemas donde aparecen sistemas de ecuaciones de primer orden.

Problema de condición inicial y el teorema de existencia y unicidad

En el segundo video hablamos un poco de los problemas de condición inicial y enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, tanto la versión general como la versión para sistemas lineales homogéneos. Mas adelante daremos una demostración de la segunda versión.

Sistemas de ecuaciones en forma matricial y transformación de una ecuación de orden superior en un sistema de ecuaciones de primer orden

En el último video, damos la notación matricial para los sistemas de ecuaciones de primer orden. Además transformamos una ecuación de orden $n\geq 2$ en un sistema de $n$ ecuaciones diferenciales, haciendo un sencillo cambio de variable.

Tarea moral

  • Transforma las ecuaciones $a\ddot{y}+b\dot{y}+cy=0$ y $a\dddot{y}+b\ddot{y}+c\dot{y}+dy=0$, donde $a$,$b$,$c$,$d$ son constantes y $a\neq0$ en sistemas de ecuaciones de primer orden, y escribe el sistema en forma matricial.
  • Transforma la ecuación diferencial no lineal $$\ddot{y}+\cos{y}=t$$ en un sistema de ecuaciones de primer orden.
  • Considera la ecuación $$a\ddot{y}+b\dot{y}+cy=0.$$ Prueba que si $$\textbf{X}=\begin{pmatrix} x_{1}(t) \\ x_{2}(t) \end{pmatrix}$$ es solución al sistema de ecuaciones $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} \textbf{X}$$ entonces $y(t)=x_{1}(t)$ es solución a la ecuación diferencial.
  • Prueba que si $y(t)$ es solución a la ecuación diferencial $$a\ddot{y}+b\dot{y}+cy=0$$ entonces $$\textbf{X}=\begin{pmatrix} y(t) \\ \dot{y}(t) \end{pmatrix}$$ es solución al sistema de ecuaciones $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} \textbf{X}.$$

Más adelante

Una vez que hemos establecido las definiciones básicas, la notación y el teorema de existencia y unicidad, vamos a estudiar propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones. Estas propiedades son en su mayoría, análogas a las que enunciamos y probamos para ecuaciones diferenciales de segundo orden, por lo que será fácil abordarlas.

Hasta la próxima!

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.