Archivo de la etiqueta: integral

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\triangle$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\triangle$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ángulos, norma, distancia y desigualdad de Minkowski

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para hablar de varias nociones geométricas como ángulo, norma, distancia y de la desigualdad de Minkowski. Antes de hacer eso, hagamos un breve repaso de qué hemos hecho en estas últimas entradas.

Primero, hablamos de formas bilineales y de su formas cuadráticas asociadas. Segundo, vimos cómo a través de la identidad de polarización podemos asignar una única forma bilineal simétrica a una forma cuadrática. Finalmente, en la última entrada nos enfocamos en las formas bilineales simétricas que cumplían cierta condición de positividad.

En esa misma entrada definimos producto interior, que simplemente es una forma bilineal simétrica y positiva definida. También definimos la norma de un vector en un espacio con producto interior $\langle \cdot, \cdot \rangle$, que era $$\Vert x \Vert = \sqrt{\langle x, x \rangle}.$$

Finalmente, en la entrada anterior probamos la siguiente versión general de la desigualdad de Cauchy-Schwarz:

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se da la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Ángulos

Fijemos $V$ un espacio vectorial sobre los reales con producto interior. En la entrada anterior vimos que la desigualdad de Cauchy-Schwarz implica que para cualesquiera vectores $x$ y $y$ en $V$ tenemos que $$|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert.$$

Si $x$ y $y$ son vectores distintos de cero, podemos reescribir la desigualdad anterior como $$-1\leq \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}\leq 1.$$ Esto justifica la siguiente definición.

Definición. Sean $x$ y $y$ vectores no nulos. Definimos al ángulo entre $x$ y $y$ como el único ángulo $\theta$ en el intervalo $[0,\pi]$ tal que $$\cos \theta = \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}.$$

Observa que $\theta=\frac{\pi}{2}$ si y sólo si $\frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}=0$. Esto ocurre si y sólo si $\langle x, y \rangle=0$. Este caso es particularmente importante, y por ello recibe una definición especial.

Definición. Decimos que $x$ y $y$ son ortogonales si $\langle x, y \rangle=0$.

Para empezar, veamos un ejemplo sencillo de ortogonalidad.

Ejemplo 1. Tomemos $\mathbb{R}^5$ con el producto interior canónico, es decir, el producto punto. Los vectores $u=(1,0,-4,0,5)$ y $v=(0,3,0,-2,0)$ tienen producto punto $$\langle u, v \rangle=1\cdot 0 + 0\cdot 3 + (-4)\cdot 0 + 0 \cdot (-2) + 5 \cdot 0=0,$$ así que son ortogonales.

$\triangle$

Ahora, veamos un ejemplo un poco más elaborado, del cálculo de un ángulo en un espacio vectorial de funciones.

Ejemplo 2. Anteriormente vimos que $\mathcal{C}[0,1]$ tiene un producto interior $$\langle f, g \rangle=\int_0^1 f(x)g(x)\, dx.$$ Calculemos el ángulo entre $f(x)=x^2$ y $g(x)=x^3$ con este producto interior. Primero, calculamos $\Vert f \Vert$ y $\Vert g \Vert$ como sigue
\begin{align*}
\Vert f \Vert^2 &= \int_0^1 x^4 \,dx = \frac{1}{5}\\
\Vert g \Vert^2 &= \int_0^1 x^6 \,dx = \frac{1}{7},
\end{align*}

de donde $\Vert f \Vert = \frac{1}{\sqrt{5}}$ y $\Vert g \Vert = \frac{1}{\sqrt{7}}$.

Luego, calculamos
\begin{align*}
\langle f,g \rangle &=\int_0^1 f(x)g(x) \, dx\\
&=\int_0^1 x^5 \, dx\\
&=\frac{1}{6}.
\end{align*}

Como esperaríamos por la desigualdad de Cauchy-Schwarz, tenemos la siguiente desigualdad:
\begin{align*}
\langle f,g \rangle &= \frac{1}{6}\leq \frac{1}{\sqrt{35}}=\Vert f \Vert \Vert g \Vert.
\end{align*}

El ángulo entre $f$ y $g$ es entonces
\begin{align*}
\theta &= \arccos\left(\frac{\langle f, g \rangle}{\Vert f \Vert \cdot \Vert g \Vert}\right)\\
&=\arccos\left(\frac{1/6}{1/\sqrt{35}}\right)\\
&=\arccos\left(\frac{\sqrt{35}}{6}\right).
\end{align*}

$\triangle$

Desigualdad de Minkowski

Hay una forma un poco distinta de escribir la desigualdad de Cauchy-Schwarz. La enunciamos a continuación.

Teorema (desigualdad de Minkowski). Sean $x$ y $y$ vectores de un espacio vectorial $V$ con una forma cuadrática positiva $q$. Entonces $$\sqrt{q(x)}+\sqrt{q(y)}\geq \sqrt{q(x+y)}.$$

Demostración. Sea $b$ la forma polar de $q$. Recordemos que $$q(x+y)=q(x)+2b(x,y)+q(y).$$

Como $q$ es forma cuadrática positiva, la desigualdad que queremos mostrar es equivalente a la siguiente desigualdad obtenida de elevar ambos lados al cuadrado:

\begin{align*}
q(x)+2\sqrt{q(x)q(y)}+q(y)&\geq q(x+y)\\
&=q(x)+2b(x,y)+q(y).
\end{align*}

Cancelando $q(x)+q(y)$ de ambos lados y dividiendo entre $2$, obtenemos la desigualdad equivalente
\begin{align*}
\sqrt{q(x)q(y)}\geq b(x,y).
\end{align*}

Si $b(x,y)<0$, esta desigualdad es claramente cierta. Si $b(x,y)\geq 0$, esta desigualdad es equivalente a la obtenida de elevarla al cuadrado, es decir, $$q(x)q(y)\geq b(x,y)^2,$$ que es precisamente la desigualdad de Cauchy-Schwarz.

$\square$

De producto interior a norma

Estamos listos para mostrar algunas propiedades importantes de la noción de norma que definimos para espacios vectoriales reales con producto interior.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior con norma asociada $\Vert \cdot \Vert$. Se cumple que

  1. $\Vert v \Vert \geq 0$ para todo $v$ en $V$, con igualdad si y sólo si $v=0$.
  2. $\Vert cv \Vert =|c|\Vert v \Vert$ para todo $v$ en $V$ y real $c$.
  3. (Desigualdad del triángulo) $\Vert v \Vert + \Vert w \Vert \geq \Vert v+w \Vert$ para todo par de vectores $v$ y $w$ en $V$.

Demostración. Sea $b$ el producto interior de $V$. El punto 1 se sigue de que $b$ es positiva definida. El punto 2 se sigue de que $b$ es bilineal, pues $b(cv,cv)=c^2b(v,v)$, de modo que $$\Vert cv \Vert = \sqrt{c^2} \Vert v \Vert =|c| \Vert v \Vert.$$ El punto 3 es la desigualdad de Minkowski.

$\square$

En general, si tenemos un espacio vectorial $V$ sobre los reales y una función $\Vert \cdot \Vert:V \to \mathbb{R}$ que satisface los puntos 1 a 3 de la proposición anterior, decimos que $\Vert \cdot \Vert$ es una norma para $V$. Hay algunas normas que no se pueden obtener a través de un producto interior.

Ejemplo. Consideremos $V=M_n(\mathbb{R})$. El producto de Frobenius de las matrices $A$ y $B$ está dado por $$\langle A,B\rangle = \text{tr}(^tA B).$$ Se puede mostrar que el producto de Frobenius es un producto interior. La norma de Frobenius es la norma inducida por este producto, es decir, $$\Vert A \Vert = \sqrt{\text{tr}(^tAA)}.$$

Por la desigualdad de Minkowski, tenemos que para cualesquiera dos matrices $A$ y $B$ tenemos que $$\sqrt{\text{tr}(^t(A+B)(A+B))}\leq \sqrt{\text{tr}(^tAA)} + \sqrt{\text{tr}(^tBB)}.$$

En particular, si tomamos a la identidad $I$, tenemos que su norma de Frobenius es $\sqrt{n}$. Esto muestra la siguiente desigualdad, válida para cualquier matriz $A$ en $M_n(\mathbb{R})$:

$$\sqrt{\text{tr}((^tA+I)(A+I))}\leq \sqrt{\text{tr}(^tAA)}+ \sqrt{n}.$$

$\triangle$

De norma a distancia

Podemos pensar a la norma de un vector $v$ como qué tan lejos está del vector $0$. También nos gustaría poder hablar de qué tan lejos están cualesquiera dos vectores de un espacio vectorial con producto interior. Por esta razón, introducimos la siguiente definición.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior de norma $\Vert \cdot \Vert$. La distancia asociada a este producto interior es la función $d:V\times V\to \mathbb{R}$ tal que $d(x,y)=\Vert x-y\Vert.$ A $d(x,y)$ le llamamos la distancia entre $x$ y $y$.

El siguiente resultado se sigue de las propiedades de la norma de un producto interior. Su demostración queda como tarea moral.

Proposición. Si $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior de distancia $d$, entonces:

  1. $d(x,y)\geq 0$ para todos $x$ y $y$ en $V$ y es igual a $0$ si y sólo si $x=y$.
  2. $d(x,y)=d(y,x)$ para todos $x$ y $y$ en $V$.
  3. $d(x,z)+d(z,y)\geq d(x,y)$ para todos $x$, $y$ y $z$ en $V$.

En general, si tenemos cualquier conjunto $X$ (no hace falta que sea un espacio vectorial), a una función $d$ que satisface los puntos 1 a 3 de la proposición anterior se le conoce como una métrica para $X$. Cualquier norma en un espacio vectorial $V$ (no sólo las de producto interior) induce una métrica en $V$. Sin embargo, hay métricas de espacios vectoriales que no vienen de una norma.

Más adelante…

Retomando conceptos ya definidos como la norma de un vector, en esta entrada vimos cómo encontrar el ángulo entre dos vectores no-nulos y se llegó a una forma natural de introducir la ortogonalidad entre dos vectores. Así mismo, se demostraron algunas propiedades de la norma asociada a un producto interior, siendo la última una forma distinta de expresar la desigualdad de Cauchy-Schwarz, usando la desigualdad de Minkowski. Finalmente, se definió el concepto de distancia entre dos vectores.

En entradas posteriores, usaremos estos conceptos para estudiar bases ortogonales, que tienen usos en conceptos matemáticos más avanzados como el análisis de Fourier o la teoría de polinomios ortogonales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Toma $\mathbb{R}^4$ con el producto interior canónico (producto punto). Determina la norma de $(3,4,0,1)$. Encuentra el ángulo entre los vectores $(1,0,2,5)$ y $(4,5,0,-3)$.
  • Muestra que el producto de Frobenius es un producto interior en $M_n(\mathbb{R})$.
  • Demuestra la proposición de propiedades de la distancia

Considera $V=\mathbb{R}_3[x]$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $3$. Definimos $$\langle p,q \rangle = \sum_{j=1}^5 p(j)q(j).$$

  • Muestra que $\langle \cdot, \cdot \rangle$ así definido es un producto interior.
  • Encuentra el ángulo entre los polinomios $1+x^2$ y $2x-3x^3$.
  • Para cada entero positivo $n$, determina la norma del polinomio $1+nx^3$.
  • Determina la distancia entre los polinomios $1$ y $1+x+x^2+x^3$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: El teorema fundamental del cálculo

Por Fabian Ferrari

Introducción

Ya platicamos de continuidad, diferenciabilidad e integrales, así como de otros temas de cálculo. En esta sección reuniremos varias de estas ideas a través de uno de los resultados más importantes: el teorema fundamental del cálculo. Este teorema nos exhibe la relación que hay entre la derivada y la integral, distinguiéndolas como procedimientos inversos el uno del otro.

El teorema nos dice que si tenemos una función $F(x)$ derivable sobre un intervalo $[a, b]$, entonces

\begin{equation*}
\int_{a}^{b} \! F^\prime(t) \, dt = F(b)-F(a).
\end{equation*}

Ahora bien, si nuestra función $F(t)$ es derivable en $[0,x]$, tenemos que

\begin{equation*}
\int_{0}^{x} \! F^\prime(t) \, dt = F(x)-F(0),
\end{equation*}

a lo que le sigue que

\begin{equation*}
F(x)=\int_{0}^{x} \! F^\prime(t) \, dt + F(0).
\end{equation*}

Esto nos recuerda a la constante de integración

\begin{equation*}
F(x)=\int_{0}^{x} \! F^\prime(t) \, dt + C.
\end{equation*}

Es decir, tenemos que $C=F(0)$.

Aquí en el blog, en la entrada «Teoremas fundamentales de los cuadraditos» damos la intuición acerca de este teorema, comenzando con el caso discreto. Puedes leerlo antes de continuar.

Usar el teorema fundamental del cálculo para obtener una identidad trigonométrica

Veamos un ejemplo. Tenemos que la derivada de la función $F(t)=\sin^2 t$ es $F^\prime (t)=2\cos t\sin t$. Por el teorema fundamental del cálculo, la integral de $F'(t)$ en el intervalo $[0,x]$ está dada por

\begin{equation*}
\int_{0}^{x}\! 2 \sin t \cos t \, dt=\sin^2x,
\end{equation*}

en donde usamos que $F(0)=\sin^2(0)=0$.

Por otro lado, resolviendo la integral utilizando el cambio de variable $u=\cos t$, tenemos que $$\int_{0}^{x}\! 2 \sin t \cos t \, dt= \left. -\cos^2t \right |_0^x= -\cos^2x+1.
$$

Igualando ambos valores de la integral, tenemos que $\sin^2x=-\cos^2 x+1$. De aquí obtenemos la identidad trigonométrica pitagórica $\sin^2 x+\cos^2x=1$ para toda $x$.

Veamos ahora un problema en el que, mediante el problema fundamental del cálculo,

Problema. Aplicando el teorema fundamental del calculo halla $$\int_{a}^{b}\! \sec x\, dx.$$

Sugerencia pre-solución. Formula un problema equivalente multiplicando y dividiendo la expresión por $\sec x + \tan x$. Intenta identificar la expresión resultante como la derivada de otra función.

Solución. Para resolver este problema tenemos que hallar una función $F(x)$ de tal forma que $F^\prime (x)= \sec x$.

Para ello, tenemos que notar que

\begin{align*}
\sec x &=\sec x \left(\frac{ \sec x + \tan x}{\sec x+ \tan x}\right)\\ &=\frac{\sec^2x+\sec x \tan x}{\sec x+\tan x}.
\end{align*}

Y entonces la derivada de $\ln (\sec x + \tan x)$ es igual a

\begin{align*}
\left(\frac{1}{\sec x + \tan x}\right)&(\sec^2x+\sec x \tan x)\\
&=\frac{\sec^2x+\sec x \tan x}{\sec x+\tan x}\\&=\sec x.
\end{align*}

Proponemos a la función

\begin{equation*}
F(x)=\ln (\sec x + \tan x)
\end{equation*}

dado que

\begin{equation*}
F^\prime (x)=\sec x.
\end{equation*}

Ahora, aplicando el teorema fundamental del cálculo tenemos que

\begin{align*}
\int_{a}^{b}\! \sec x\, dx&=F(b)-F(a)\\&=\ln (\sec b + \tan b)-\ln (\sec a + \tan a)
\end{align*}

$\square$

Segundo teorema fundamental del cálculo

Veamos una implicación del teorema fundamental del cálculo, que también se le conoce como el «segundo teorema fundamental del cálculo».

Para una función $f: [a,b] \to \mathbb{R}$ continua en el intervalo $[a,b]$ se tiene que:

\begin{equation*}
\frac{d}{dx}\left(\int_{a}^{x}\! f(t)\, dt\right)=f(x)
\end{equation*}

Problema. Determina $$\frac{d}{dx}\left(\int_{3x-1}^{0} \! \frac{1}{t+4}\, dt\right).$$

Sugerencia pre-solución. Usa el segundo teorema fundamental del cálculo y la regla de la cadena.

Solución. Como $$\int_{3x-1}^{0} \! \frac{1}{t+4}\, dt=-\int_{0}^{3x-1} \! \frac{1}{t+4}\, dt,$$ tenemos entonces que

$$\frac{d}{dx}\left(\int_{3x-1}^0 \frac{1}{t+4} \, dt\right)= – \frac{d}{dx}\left(\int_{0}^{3x-1} \frac{1}{t+4} \, dt\right).$$

Por otro lado, consideremos las funciones

\begin{align*}
f(x)&=\int_{0}^{x} \! \frac{1}{t+4}\, dt \quad \text{y}\\
g(x)&=3x-1.
\end{align*}

Aplicando el teorema fundamental del cálculo y derivando tenemos que

\begin{align*}
f^\prime (x)&=\frac{1}{x+4} \quad \text{y}\\
g^\prime (x)&=3.
\end{align*}

Notemos que

\begin{align*}
(f \circ g)(x)&=f( g(x) )\\&=f(3x-1)\\&=\int_{0}^{3x-1}\! \frac{1}{t+4}\, dt.
\end{align*}

Así, aplicando la regla de la cadena, tenemos que

\begin{align*}
-\frac{d}{dx}\left(\int_{0}^{3x-1} \! \frac{1}{t+4}\, dt\right)&=-\frac{d}{dx}(f(g(x))\\&=-f^\prime (g(x)) g^\prime(x)\\
&=-\frac{1}{(3x-1)+4}\cdot 3\\
&=-\frac{1}{x+1}.
\end{align*}

$\square$

Veamos un último problema en el que se usa la segunda forma del teorema fundamental del cálculo.

Problema: Supongamos que $f$ es una función continua para toda $x$, la cual satisface la ecuación

\begin{equation}
\int_{0}^{x} \! f(t)\, dt= \int_{x}^{1} \! t^2f(t) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C,
\end{equation}

donde $C$ es una constante. Encuentra la forma explícita de la función $f(x)$ y determina el valor de la constante $C$.

Sugerencia pre-solución.

Solución. De la ecuación, tenemos lo siguiente

\begin{equation*}
\frac{d}{dx}\left(\int_{0}^{x} \! f(t)\, dt\right)= \frac{d}{dx}\left(\int_{x}^{1} \! t^2f(t) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C \right)
\end{equation*}

Como $f$ es continua para toda $x$, por el teorema fundamental del cálculo en su segunda forma tenemos que

\begin{equation*}
\frac{d}{dx} \left( \int_{0}^{x} \! f(t)\, dt \right)= f(x)
\end{equation*}

y

\begin{align*}
\frac{d}{dx} \left( \int_{x}^{1} \! t^2f(t)\, dt \right)&= – \frac{d}{dx} \left( \int_{1}^{x} \! t^2f(t)\, dt \right)\\&= -x^2f(x).
\end{align*}

Entonces, derivando ambos lados de la expresión original nos resulta la ecuación

\begin{equation*}
f(x)=-x^2f(x)+2x^{15}+2x^{17},
\end{equation*}

de la cual se obtiene

\begin{align*}
f(x) (x^2+1)&=2x^{15}+2x^{17}\\
&=2x^{15}(x^2+1)
\end{align*}

Así, tenemos que

\begin{equation*}
f(x)=2x^{15}.
\end{equation*}

Sustituyendo $f(t)=2t^{15}$ en la ecuación (1), tenemos que

\begin{equation*}
\int_{0}^{x} \! 2t^{15}\, dt= \int_{x}^{1} \! t^2(2t^{15}) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C
\end{equation*}

Así,

\begin{align*}
\int_{0}^{x} \! 2t^{15}\, dt&= \int_{x}^{1} \! t^2(2t^{15}) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\
\int_{0}^{x} \! 2t^{15}\, dt &= -\int_{1}^{x} \! 2t^{17} \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\
\left. \frac{2t^{16}}{16} \right|_{0}^{x} &= – \left. \left(\frac{2t^{18}}{18} \right) \right|_{1}^{x}+\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\
\frac{x^{16}}{8} &= – \left( \frac{x^{18}}{9}-\frac{1}{9}\right)+\frac{x^{16}}{8}+\frac{x^{18}}{19}+C\\
\end{align*}

Con ello, tenemos que

\begin{equation*}
C+\frac{1}{9}=0.
\end{equation*}

Por lo tanto la función que satisface la ecuación es $f(x)=2x^{15}$ y el valor de la constante es $C= – \frac{1}{9}$.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la aplicación del teorema fundamental del cálculo en la Sección 6.9 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Problemas de cálculo variados

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores ya tratamos varios temas de cálculo y cómo se combinan con heurísticas para resolver problemas de cálculo. Veremos ahora otros problemas para repasar las técnicas que hemos aprendido hasta ahora y explorar algunas nuevas ideas.

Los primeros dos ejemplos son del libro Problem Solving through Problems de Loren Larson. Los últimos dos son de un concurso universitario: la Competencia Iberoamericana Interuniversitaria de Matemáticas.

El método del factor de integración

Para resolver problemas de cálculo, también es útil tener algunas ideas de ecuaciones diferenciales. Un método muy útil en la resolución de problemas es el método de factor de integración, que ayuda a resolver ecuaciones diferenciales de la forma $$y’+a(x)y=b(x).$$

La idea para resolver esta ecuación diferencial en $y$ (es decir, despejar a $y$ en términos de $a$ y $b$) es multiplicar ambos lados de la ecuación por $I(x)=e^{\int a(x)\, dx$ y observar que por regla de la cadena, la regla del producto y el teorema fundamental del cálculo, tenemos la ecuación diferencial equivalente $$(yI(x))’ =I(x)b(x).$$

De aquí, podemos integrar de ambos lados en un intervalo $[c,x]$. Por el teorema fundamental del cálculo, existe una constante $C$ tal que $$yI(x)=\int_{c}^x I(t) b(t)\, dt + C,$$ y ya de aquí podemos despejar $$y=I(x)^{-1}\left( \int_{c}^x I(t) b(t)\, dt + C\right).$$

A $I(x)$ se le conoce como el factor de integración.

Problema. Sea $f:(0,\infty)\to \mathbb{R}$ una función diferenciable y supongamos que $$\lim_{x\to \infty} f(x)+f'(x) = 0.$$ Muestra que $$\lim_{x\to 0} f(x) = 0.$$

Sugerencia pre-solución. Define $g(x)=f(x)+f'(x)$ y usando el método de integración «despeja» a $f$ en términos de $g$.

Solución. Definamos $g(x)=f(x)+f'(x)$. La hipótesis dice que $\lim_{x\to 0} g(x) = 0$, así que para obtener información de $f$ en términos de $g$, podemos usar el método de factor de integración. Por la discusión antes de este párrafo, tenemos que $$f(x)=e^{-x}\int_a^x e^t g(t) \,dt + Ce^{-x}.$$

Tomemos un $\epsilon>0$. Como $g(x)\to 0$ cuando $x\to \infty$, podemos tomar un $a$ tal que $|g(x)|<\epsilon$ para todo $x>a$. Usando desigualdad del triángulo en sumas e integrales, tenemos que para $x>a$
\begin{align*}
|f(x)|&\leq e^{-x}\left|\int_a^x e^t g(t)\right|+|Ce^{-x}|\\
&\leq e^{-x}\int_a^x e^t|g(t)|\, dt + |C|e^{-x}\\
&\leq \epsilon e^{-x}\int e^t\, dt + |C|e^{-x}\\
&=\epsilon e^{-x}(e^x-e^a)+|C|e^{-x}\\
&=\epsilon(1-e^{a-x})+|C|e^{-x}
\end{align*}

Tenemos que $\lim_{x\to \infty} e^{a-x} = 0$ y que $\lim_{x\to \infty} e^{-x}=0$, de modo que si $x$ es suficientemente grande, la expresión anterior nos dice $|f(x)|<2\epsilon$. En otras palabras, $f(x)\to 0$ cuando $x\to \infty$, como queríamos.

$\square$

Una integral con doble derivada

Problema. Sea $f:[0,1]\to \mathbb{R}$ una función dos veces diferenciable que cumple $f(0)=f(1)=0$ y tal que $f(x)>0$ para $x$ en $(0,1)$. Muestra que $$\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| > 4.$$

Sugerencia pre-solución. Tenemos ya varias técnicas para evaluar o estimar integrales. Si con un método llegas a una pared, intenta usar otro método. Necesitarás el teorema del valor extremo, el teorema del valor medio y el teorema fundamental del cálculo.

Solución. Por el teorema del valor extremo, existe un valor $c$ en $(0,1)$ tal que $y=f(c)$ es un máximo de $f$. Por el teorema del valor medio, existen puntos $a$ en $(0,c)$ y $b$ en $(c,1)$ tales que $$f'(a)=\frac{f(c)-f(0)}{c}=\frac{y}{c}$$ y $$f'(b)=\frac{f(1)-f(c)}{1-c}=\frac{-y}{1-c}.$$

Usando que $f$ alcanza su máximo $y$ en $c$

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right|&\geq \int_a^b \left| \frac{f»(x)}{f(x)} \, dx \right| \\
&\geq \frac{1}{y} \int_a^b \left| f»(x) \, dx \right|,
\end{align*}

de modo que aplicando el teorema fundamental del cálculo a la última integral, obtenemos que

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| &\geq \frac{1}{y} \int_0^1 \frac{1}{y}|f'(b)-f'(a)|\\
&=\frac{1}{y} \left|\frac{-y}{1-c}-\frac{y}{c}\right|\\
&=\left|\frac{1}{c(1-c)}\right|.
\end{align*}

Para terminar, notamos que la función $h(x)=x(1-x)$ es diferenciable en $(0,1)$ y continua en $[0,1]$, de modo que alcanza su máximo en $0$, en $1$ o en donde la derivada $h'(x)=1-2x$ es $0$, es decir, en $1/2$. Tenemos que $h(1/2)=1/4$ y que $h(0)=h(1)=0$, de modo que el máximo es $1/4$. Con esto, concluimos que $$\left|\frac{1}{c(1-c)}\right| \geq 4,$$ de donde se completa la cadena de desigualdades que queremos.

$\square$

En el problema anterior usamos el teorema del valor medio como paso intermedio. Es recomendable que pienses qué hubiera pasado si nos hubiéramos saltado este paso y hubiéramos usado el mínimo directamente, sin limitarnos primero al intervalo $[a,b]$. En los problemas de cálculo a veces es muy importante el orden en el que se hacen las cosas.

Dos problemas de cálculo de competencias

Veamos ahora algunos problemas de cálculo que han aparecido en concursos a nivel universitario. El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2015, como Problema 4.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua y $\alpha$ un número real. Sabemos que $\lim_{x\to \infty} f(x) = \lim_{x\to -\infty} = \alpha$. Muestra que para cualquier real positivo $r$ existen reales $x$ y $y$ tales que $y-x=r$ y $f(x)=f(y)$.

Sugerencia pre-solución. Modifica el problema, construyendo una función que te ayude a resolverlo. Necesitarás el teorema del valor intermedio. También, una parte de la solución necesita que se use inducción.

Solución. Tomemos cualquier valor $r$ y consideremos la función $h(x)=f(x+r)-f(x)$. Como $f$ es continua, la función $h$ es continua. Si $h(x)>0$ para todo real, entonces podemos mostrar inductivamente que para cualesquiera enteros positivos $m$ y $n$ tenemos que $$f(x-mr)<f(x)<f(x+r)<f(x+nr).$$

Haciendo $n$ y $m$ ir a infinito, tendríamos que $$\alpha\leq f(x) < f(x+r) \leq \alpha,$$ lo cual es una contradicción.

Así, $h(x)$ toma valores menores o iguales a $0$. De modo similar, podemos mostrar que $h(x)$ toma valores mayores o iguales a $0$. Como $h$ es continua, por el teorema del valor intermedio debe tomar el valor $0$ para algún $c$, de modo que $f(c+r)-f(c)=h(c)=0$ y así, tomando $x=c$ y $y=c+r$ tenemos $y-x=r$ y $$f(y)=f(c+r)=f(c)=f(x).$$

$\square$

El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2010, como Problema 4.

Problema. Sea $f:[0,1]\to [0,1]$ una función continua, creciente, diferenciable en $[0,1]$ y tal que $f'(x)<1$ en cada punto. La sucesión de conjuntos $A_1, A_2, \ldots$ se define recursivamente como $A_1=f([0,1])$ y para $n\geq 2$, $A_n=f(A_{n-1})$. Muestra que el diámetro de $A_n$ converge a $0$ conforme $n\to \infty$.

El diámetro de un conjunto $X$ es $\sup_{x,y \in X} |x-y|$.

Sugerencia pre-solución. Para una primer parte del problema que te ayudará a entender a los $A_i$, necesitarás el teorema del valor intermedio y el principio de inducción. Luego, necesitarás usar el teorema del valor medio y que las funciones continuas preservan límites de sucesiones convergentes.

Solución. Por conveniencia, nombramos $A_0=[0,1]$. Sea $d_n$ el diámetro de $A_n$. Tenemos $d_0=1$. Como $f$ es creciente, tenemos que $f(0)<f(1)$ y que no hay ningún valor fuera del intervalo $[f(0),f(1)]$ que se tome. Como $f$ es continua, se toman todos esos valores. Así, $A_1=[f(0),f(1)]$ y su diámetro es $d_1=f(1)-f(0)$. Inductivamente, podemos mostrar que $A_n= [f^n(0),f^n(1)]$ y que $d_n=f^{n}(1)-f^{n}(0)$.

Notemos que la sucesión $f^{n}(0)$ es creciente y acotada, de modo que converge a un real $a$. Como $f$ es contínua, tenemos que \begin{align*}f(a)&=f(\lim_{n\to \infty} f^{n}(0)) \\&= \lim_{n\to \infty} f^{n+1}(0) \\&= a.\end{align*} Análogamente, $f^n(1)$ converge a un real $b$ tal que $f(b)=b$. Como $f^n(0)\leq f^n(1)$, tenemos que $a\leq b$. Afirmamos que $a=b$. Si no, por el teorema del valor medio existiría un $c\in[a,b]$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1,$$ contradiciendo la hipótesis de la cota de la derivada.

Esto muestra que $a=b$, y por lo tanto
\begin{align*}
\lim_{n\to \infty} d_n &= \lim_{n\to \infty} f^n(1)-f^n(0) \\
&=b-a\\
&= 0.
\end{align*}

$\square$

En este problema es muy importante primero mostrar que los extremos de los intervalos convergen a puntos fijos de $f$ y después usar el teorema del valor intermedio. Podría ser tentador usar el teorema del valor intermedio en cada intervalo $[f^n(0),f^n(1)]$, pero con ello no se llega al resultado deseado.

Más problemas

En todas estas entradas hemos platicado acerca de problemas de temas de cálculo. Se pueden encontrar muchos más problemas de este tema en el Capítulo 6 del libro Problem Solving through Problems de Loren Larson.

Además, puedes encontrar otros problemas resueltos en la sección de Material para practicar de este blog, que ayuda a prepararse para competencias internacionales de matemáticas a nivel universitario.

Álgebra Lineal I: Formas bilineales, propiedades, ejemplos y aclaraciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado de dualidad, ortogonalidad y transformaciones transpuestas. Es importante que repases esas entradas y nos escribas si tienes dudas, pues ahora pasaremos a un tema un poco diferente: formas bilineales y cuadráticas. Estas nociones nos permitirán seguir hablando acerca de la geometría de espacios vectoriales en general.

Para esta parte del curso, nos vamos a enfocar únicamente en espacios vectoriales sobre $\mathbb{R}$. Se pueden definir los conceptos que veremos para espacios vectoriales en otros campos. Sobre todo, es posible definir conceptos análogos en $\mathbb{C}$ y obtener una teoría muy rica. Pero por ahora consideraremos sólo el caso de espacios vectoriales reales.

Aunque hablaremos de formas bilineales en general, una subfamilia muy importante de ellas son los productos interiores, que nos permiten hablar de espacios euclideanos. El producto interior es el paso inicial en una cadena muy profunda de ideas matemáticas:

  • Un producto interior nos permite definir la norma de un vector.
  • Con la noción de norma, podemos definir la distancia entre dos vectores.
  • A partir de un producto interior y su norma podemos mostrar la desigualdad de Cauchy-Schwarz, con la cual podemos definir ángulos entre vectores (por ejemplo, ¡podremos definir el ángulo entre dos polinomios!).
  • De la desigualdad de Cauchy-Schwarz, podemos probar que la noción de norma satisface la desigualdad del triángulo, y que por lo tanto la noción de distancia define una métrica.
  • Aunque no lo veremos en este curso, más adelante verás que una métrica induce una topología, y que con una topología se puede hablar de continuidad.

En resumen, a partir de un producto interior podemos hacer cálculo en espacios vectoriales en general.

Una forma bilineal con la cual probablemente estés familiarizado es el producto punto en $\mathbb{R}^n$, que a dos vectores $(x_1,x_2,\ldots,x_n)$ y $(y_1,y_2,\ldots,y_n)$ los manda al real $$x_1y_1+x_2y_2+\ldots+x_ny_n.$$ Este es un ejemplo de una forma bilineal que es un producto interior. También puede que estés familiarizado con la norma en $\mathbb{R}^n$, que a un vector $(x_1,\ldots,x_n)$ lo manda al real $$\sqrt{x_1^2+x_2^2+\ldots+x_n^2}.$$ Lo que está dentro de la raíz es un ejemplo de una forma cuadrática positiva definida. Incluyendo la raíz, este es un ejemplo de norma en espacios vectoriales.

Hay muchas otras formas bilineales y formas cuadráticas, pero los ejemplos mencionados arriba te pueden ayudar a entender la intuición detrás de algunos de los conceptos que mencionaremos. Para marcar algunas cosas en las que la intuición puede fallar, pondremos algunas «Aclaraciones» a lo largo de esta entrada.

En el futuro, tener una buena noción de la geometría de espacios vectoriales te ayudará a entender mucho mejor los argumentos de cursos de análisis matemático, de variable compleja y de optativas como geometría diferencial. Dentro de este curso, entender bien el concepto de forma bilineal te será de gran utilidad para cuando más adelante hablemos de formas multilineales y determinantes.

Formas bilineales

La definición fundamental para los temas que veremos en estas entradas es la siguiente, así que enunciaremos la definición, veremos varios ejemplos y haremos algunas aclaraciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b:V\times V \to \mathbb{R}$ tal que:

  • Para todo $x$ en $V$, la función $b(x,\cdot):V\to \mathbb{R}$ que manda $v\in V$ a $b(x,v)$ es una forma lineal.
  • Para todo $y$ en $V$, la función $b(\cdot, y):V\to \mathbb{R}$ que manda $v\in V$ a $b(v,y)$ es una forma lineal.

Ejemplo 1. Considera el espacio vectorial de polinomios $\mathbb{R}_3[x]$ y considera la función $$b(p,q)=p(0)q(10)+p(1)q(11).$$ Afirmamos que $b$ es una forma bilineal. En efecto, fijemos un polinomio $p$ y tomemos dos polinomios $q_1$, $q_2$ y un real $r$. Tenemos que
\begin{align*}
b(p,q_1+rq_2)&=p(0)(q_1+rq_2)(10)+p(1)(q_1+rq_2)(11)\\
&= p(0)q_1(10)+p(1)q_1(11) + r ( p(0)q_2(10)+p(1)q_2(11))\\
&= b(p,q_1)+rb(p,q_2),
\end{align*}

De manera similar se puede probar que para $q$ fijo y $p_1$, $p_2$ polinomios y $r$ real tenemos que $$b(p_1+rp_2,q)=b(p_1,q)+rb(p_2,q).$$ Esto muestra que $b$ es una forma bilineal.

$\triangle$

Si $v=0$, entonces por el primer inciso de la definición, $b(x,v)=0$ para toda $x$ y por el segundo $b(v,y)=0$ para toda $y$, en otras palabras:

Proposición. Si $b$ es una forma bilineal en $b$, y alguno de $x$ o $y$ es $0$, entonces $b(x,y)=0$.

De la linealidad de ambas entradas de $b$, se tiene la siguiente proposición.

Proposición. Tomemos $b:V\times V\to \mathbb{R}$ una forma bilineal, vectores $x_1,\ldots,x_n$, $y_1,\ldots,y_m$ y escalares $a_1,\ldots,a_n,c_1,\ldots,c_m$. Tenemos que $$b\left(\sum_{i=1}^n a_ix_i, \sum_{j=1}^m c_j y_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j).$$

La proposición anterior muestra, en particular, que para definir una forma bilineal en un espacio vectorial $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ de $V$ y definir $b(e_i,e_j)$ para toda $1\leq i,j \leq n$.

Hagamos algunas aclaraciones acerca de las formas bilineales.

Aclaración 1. No es lo mismo una forma bilineal en $V$, que una transformación lineal de $V\times V$ a $\mathbb{R}$.

Ejemplo 2. La transformación $b((w,x),(y,z))=w+x+y+z$ sí es una transformación lineal de $\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$, lo cual se puede verificar fácilmente a partir de la definición. Sin embargo, no es una forma bilineal. Una forma de verlo es notando que $$b((0,0),(1,1))=0+0+1+1=2.$$ Aquí una de las entradas es el vector cero, pero el resultado no fue igual a cero.

$\triangle$

Aclaración 2. Puede pasar que ninguna de las entradas de la forma bilineal sea $0$, pero que evaluando en ella sí de $0$.

Ejemplo 3. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wy-xz.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Además, se tiene que $b((1,0),(0,1))=0$.

$\triangle$

Más adelante, cuando definamos producto interior, nos van a importar mucho las parejas de vectores $v$, $w$ para las cuales $b(v,w)=0$.

Aclaración 3. Si $b$ es una forma bilineal, no necesariamente es cierto que $b(x,y)=b(y,x)$.

Ejemplo 4. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wz-xy.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Notemos que $b((2,1),(2,3))=6-2=4$, mientras que $b((2,3),(2,1))=2-6=-4$.

$\triangle$

Aquellas formas para las que sí sucede que $b(x,y)=b(y,x)$ son importantes y merecen un nombre especial.

Definición. Una forma bilineal $b:V\times V\to \mathbb{R}$ es simétrica si $b(x,y)=b(y,x)$ para todo par de vectores $x,y$ en $V$.

Para definir una forma bilineal $b$ simétrica en un espacio $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ y definir $b$ en aquellas parejas $b(e_i,e_j)$ con $1\leq i \leq j \leq n$.

Más ejemplos de formas bilineales

A continuación enunciamos más ejemplos de formas bilineales, sin demostración. Es un buen ejercicio verificar la definición para todas ellas.

Ejemplo 1. Si $a_1, a_2,\ldots, a_n$ son números reales y $V=\mathbb{R}^n$, entonces podemos definir $b:V\times V \to \mathbb{R}$ que manda a $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$ a $$b(x,y)=a_1x_1y_1+\ldots+a_nx_ny_n.$$

Este es un ejemplo de una forma bilineal simétrica. Si todos los $a_i$ son iguales a $1$, obtenemos el producto punto o producto interior canónico de $\mathbb{R}^n$.

Ejemplo 2. Tomemos $V$ como el espacio vectorial de matrices $M_n(\mathbb{R})$. La transformación $b:V\times V\to \mathbb{R}$ tal que $b(A,B)=\text{tr}(AB)$ es una forma bilineal. Además, es simétrica, pues la traza cumple la importante propiedad $\text{tr}(AB)=\text{tr}(BA)$, cuya verificación queda como tarea moral.

Ejemplo 3. Tomemos $V$ el conjunto de funciones continuas y de periodo $2\pi$ que van de $\mathbb{R}$ a sí mismo. Es decir, $f:\mathbb{R}\to \mathbb{R}$ está en $V$ si es continua y $f(x)=f(x+2 \pi)$ para todo real $x$. Se puede mostrar que $V$ es un subespacio del espacio de funciones continuas, lo cual es sencillo y se queda como tarea moral. La transformación $b:V\times V \to \mathbb{R}$ tal que $$b(f,g)=\int_{-\pi}^\pi f(x) g(x)\, dx$$ es una forma bilineal.

Ejemplo 4. Consideremos $V=\mathbb{R}[x]$, el espacio vectorial de polinomios con coeficientes reales. Para $P$ y $Q$ polinomios definimos $$b(P,Q)=\sum_{n=1}^\infty \frac{P(n)Q(2n)}{2^n}.$$

La serie de la derecha converge absolutamente, de modo que esta expresión está bien definida. Se tiene que $b$ es una forma bilineal, pero no es simétrica.

Formas cuadráticas

Otra definición fundamental es la siguiente

Definición. Una forma cuadrática es una transformación $q:V\to \mathbb{R}$ que se obtiene tomando una forma bilineal $b:V\times V \to \mathbb{R}$ y definiendo $$q(x)=b(x,x).$$

Aclaración 4. Es posible que la forma bilineal $b$ que define a una forma cuadrática no sea única.

Ejemplo. Consideremos a la forma bilineal de $\mathbb{R}^2$ tal que $$b((x,y),(w,z))=xz-yw.$$ La forma cuadrática dada por $b$ es $$q(x,y)=b((x,y),(x,y))=xy-yx=0.$$ Esta es la misma forma cuadrática que la dada por la forma bilineal $$b'((x,y),(w,z))=yw-xz.$$ Pero $b$ y $b’$ son formas bilineales distintas, pues $b((1,0),(0,1))=1$, mientras que $b'((1,0),(0,1))=-1$.

$\triangle$

La aclaración anterior dice que puede que haya más de una forma bilineal que de una misma forma cuadrática. Sin embargo, resulta que la asignación es única si además pedimos a la forma bilineal ser simétrica. Este es el contenido del siguiente resultado importante.

Teorema (identidad de polarización). Sea $q:V\to \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b:V\times V \to \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo vector $x$. Esta forma bilineal está determinada mediante la identidad de polarización $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

En la siguiente entrada mostraremos el teorema de la identidad de polarización. Por el momento, para tomar más intuición, observa como la identidad se parece mucho a la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ en números reales.

Más adelante…

En esta entrada estudiamos una extensión de la noción de transformaciones lineales que ya habíamos discutido en la unidad anterior. Enunciamos algunos teoremas muy importantes sobre las transformaciones bilineales e hicimos algunos ejemplos de cómo podemos verificar si una transformación es bilineal. La noción de transformación bilineal, nos permitirá abordar un concepto muy importante: el producto interior.

En las siguientes entradas hablaremos del producto interior y cómo éste nos ayuda a definir ángulos y distancias entre vectores de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Completa los detalles de la segunda parte del primer ejemplo.
  • Verifica que en efecto las transformaciones de los ejemplos de las aclaración 2 y 3 son formas bilineales.
  • Muestra que el subconjunto de funciones continuas $\mathbb{R}$ a $\mathbb{R}$ y de cualquier periodo $p$ es un subespacio del espacio vectorial $\mathcal{C}(\mathbb{R})$ de funciones continuas reales.
  • Demuestra que para $A$ y $B$ matrices en $M_{n}(F)$ se tiene que $\text{tr}(AB)=\text{tr}(BA)$.
  • Encuentra una forma cuadrática en el espacio vectorial $\mathbb{R}_3[x]$ que venga de más de una forma bilineal.
  • Muestra que el conjunto de formas bilineales de $V$ es un subespacio del espacio de funciones $V\times V \to \mathbb{R}$. Muestra que el conjunto de formas bilineales simétricas de $V$ es un subespacio del espacio de formas bilineales de $V$.
  • Piensa en cómo la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ de números reales está relacionada con la identidad de polarización para el producto punto en $\mathbb{R}^n$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»