Archivo de la etiqueta: anillos

Variable Compleja I: Series de Taylor y series de Laurent

Por Pedro Rivera Herrera

Introducción

En la entrada anterior cerramos la cuarta unidad del curso y vimos algunos técnicas para construir funciones analíticas. Por otra parte, en la entrada 39 de la unidad anterior vimos algunos resultados que establecen la relación que existe entre las sucesiones y series de funciones convergentes y la integración compleja, los cuales nos serán de mucha utilidad en esta entrada.

Considerando los resultados de la tercera unidad y el teorema 39.1 vimos que toda serie de potencias define a una función analítica en su disco de convergencia, corolario 39.1. En esta entrada demostraremos un recíproco de este resultado, conocido como el teorema de Taylor de una función analítica, es decir, veremos que cada función analítica en un dominio puede expandirse en series de potencias sobre cada punto del dominio. Más aún, veremos que en una región anular es posible expandir a una función analítica, en dicho dominio, en una serie doblemente infinita llamada serie de Laurent.

Definición 42.1. (Serie de Taylor.)
Sean $D\subset\mathbb{C}$ y $f:D\to\mathbb{C}$ una función. Si $f$ es analítica en $z_0\in D$, entonces la serie:
\begin{equation*}
\sum_{n=0}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^n = f(z_0) + f'(z_0) (z-z_0) + \frac{f^{(2)}(z_0)}{2!}(z-z_0)^2 + \frac{f^{(3)}(z_0)}{3!}(z-z_0)^3 + \cdots,
\end{equation*}es llamada la serie de Taylor de $f$ alrededor de $z_0$. Si $z_0 = 0$, entonces la serie es llamada la serie de Maclaurin de $f$.

Observación 42.1.
Claramente una serie de Taylor es una serie de potencias centrada en $z_0$ cuyos coeficientes $c_n$, para toda $n\geq 1$, son las derivadas de la función $f$.

Teorema 42.1. (Teorema de Taylor.)
Sean $D\subset\mathbb{C}$ un dominio, $z_0\in D$, $f:D\to\mathbb{C}$ una función analítica en $D$ y $B(z_0,R)$ un disco abierto contenido en $D$. Entonces $f$ tiene una expansión en serie de Taylor alrededor de $z_0$, es decir:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^n, \quad \forall z\in B(z_0, R).
\end{equation*}

En particular, dicha convergencia de la serie de Taylor a la función $f(z)$ es única y se mantiene si $B(z_0,R)$ es el mayor disco abierto contenido en $D$. Más aún, la convergencia es uniforme en todo subdisco cerrado $\overline{B}(z_0,r)$, con $0<r<R$.

Demostración. Dadas las hipótesis, basta probar que la serie de Taylor converge a la función $f(z)$ para todo $z\in B(z_0, R)$, pues la unicidad se sigue del corolario 30.2 y la convergencia uniforme de la proposición 29.2.

Sea $z \in B(z_0, R)$. Definimos a $\rho:=|z-z_0|$, entonces $0\leq \rho < R$. Tomamos a $r$ tal que $0 \leq \rho < r < R$ y consideremos a la circunferencia $C(z_0, r)$ con centro en $z_0$ y radio $r$, orientada positivamente, figura 147.

Como $f$ es analítica en $D$ y por construcción $C(z_0, r)$ está completamente contenido en $D$, por la fórmula integral de Cauchy, proposición 36.3, tenemos que:
\begin{equation*}
f(z)=\frac{1}{2\pi i } \int_{C(z_0, r)} \frac{f(\zeta)}{\zeta-z}d\zeta, \quad \forall z\in B(z_0,r).
\end{equation*}

Figura 147: Circunferencia $C(z_0,r)$ orientada positivamente contenida en el disco abierto $B(z_0,R)$.

Dado que $\rho = |z-z_0| < |\zeta-z_0| = r$, tenemos que:
\begin{equation*}
\left|\frac{z-z_0}{\zeta – z_0}\right| < 1,
\end{equation*}por lo que la siguiente serie geométrica es convergente:
\begin{equation*}
\sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta – z_0}\right)^n = \dfrac{1}{1-\dfrac{z-z_0}{\zeta – z_0}}.
\end{equation*}

Entonces, para $|z-z_0| < |\zeta-z_0|$ se cumple que:
\begin{align*}
\frac{1}{\zeta – z} & = \frac{1}{(\zeta-z_0) – (z-z_0)}\\
& = \left(\dfrac{1}{\zeta-z_0}\right) \dfrac{1}{1-\dfrac{z-z_0}{\zeta – z_0}}\\
& = \left(\dfrac{1}{\zeta-z_0}\right) \sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta – z_0}\right)^n\\
& = \sum_{n=0}^\infty \dfrac{(z-z_0)^n}{\left(\zeta – z_0\right)^{n+1}}.
\end{align*}

Es claro que $f$ es una función continua y acotada en $C(z_0, r)$, por lo que existe $M>0$ tal que $|f(\zeta)|\leq M$ para todo $\zeta\in C(z_0,r)$. Entonces:
\begin{equation*}
\left|\frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta)\right| \leq M \frac{\rho^n}{r^{n+1}} = \frac{M}{r}\left(\frac{\rho}{r}\right)^n := M_n,
\end{equation*}para todo $\zeta \in C(z_0,r)$.

Como $\rho<r$, tenemos que la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge para todo $n\in\mathbb{N}$, entonces, del criterio $M$ de Weierstrass, proposición 28.3, se sigue que la serie:
\begin{equation*}
\sum_{n=0}^\infty \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta) = \frac{f(\zeta)}{\zeta – z},
\end{equation*}converge uniformemente para todo $\zeta\in C(z_0,r)$.

Entonces, por el teorema de Weierstrass sobre integración término a término de una serie de funciones uniformemente convergente, proposición 39.1, y la fórmula integral de Cauchy para derivadas, proposición 36.5, tenemos que:
\begin{align*}
f(z) & =\frac{1}{2\pi i } \int_{C(z_0,r)} \frac{f(\zeta)}{\zeta-z}d\zeta\\
& = \frac{1}{2\pi i } \int_{C(z_0,r)} \sum_{n=0}^\infty \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta) d\zeta\\
& = \sum_{n=0}^\infty (z-z_0)^n \frac{1}{2\pi i } \int_{C(z_0,r)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta\\
& = \sum_{n=0}^\infty (z-z_0)^n \frac{f^{(n)}(z_0)}{n!}\\
& = \sum_{n=0}^\infty \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.
\end{align*}

Dado que $C(z_0,r)$ y $C(z_0,R)$ son dos contornos cerrados homotópicos en $D$, del teorema integral de Cauchy, versión homotópica (teorema 38.3), se tiene que:
\begin{equation*}
\int_{C(z_0,r)} \frac{f(\zeta)}{\zeta-z}d\zeta = \int_{C(z_0, R)} \frac{f(\zeta)}{\zeta-z}d\zeta,
\end{equation*}de donde se sigue el resultado.

$\blacksquare$

Observación 42.2.
De acuerdo con la proposición 30.2 y el corolario 30.1, es claro que la serie de Taylor de $f$, alrededor de un punto $z_0$, puede ser diferenciada término a término dentro de su disco de convergencia, es decir:
\begin{equation*}
f^{(n)}(z) = \sum_{k=n}^\infty \frac{f^{(k)}(z_0)}{(k-n)!} (z-z_0)^{k-n}, \quad \forall z\in B(z_0,R).
\end{equation*}

Ejemplo 42.1.
Determinemos a la función analítica $f$ tal que satisface la ecuación diferencial:
\begin{equation*}
\frac{d f(z)}{dz} = 3i f(z) \tag{42.1}
\end{equation*}en el disco abierto $B(0,r)$, para algún $r>0$ y cumple que $f(0)=1$.

Solución. Dado que $f$ es analítica en $z=0$, entonces $f$ tine expansión en serie de Maclaurin. De acuerdo con (42.1) y $f(0)=1$ tenemos que:
\begin{align*}
f'(0) & = 3i(1) = 3i,\\
f^{(2)}(0) & = 3i f'(0) = (3i)^2,\\
f^{(3)}(0) & = 3i f^{(2)}(0) = (3i)^3,
\end{align*}en general:
\begin{equation*}
f^{(n)}(0) = 3i f^{(n-1)}(0) = (3i)^2 f^{(n-2)}(0) = \cdots = (3i)^n.
\end{equation*}

Por lo tanto, podemos escribir la solución de la ecuación diferencial como:
\begin{equation*}
f(z) = 1 + 3iz + \frac{(3i)^2 z^2}{2!} + \cdots = \sum_{n=0}^{\infty} \frac{(3iz)^n}{n!}.
\end{equation*}

Sabemos que:
\begin{equation*}
e^{w} = \sum_{n=0}^{\infty} \frac{w^n}{n!},
\end{equation*}por lo que:
\begin{equation*}
f(z) = e^{i3z},
\end{equation*}es la función analítica buscada.

Ejemplo 42.2.
Determinemos la exapansión en serie de Taylor de la función $\operatorname{Log}(1+z)$ alrededor de $z_0=0$ y obtengamos la región de convergencia de la serie resultante.

Solución. Sea $f(z)=\operatorname{Log}(1+z)$. Por el ejercicio 10 de la entrada 21 sabemos que $f$ es analítica en $\mathbb{C}\setminus(-\infty,-1]$.

Tenemos que $f^{(0)}(z) = f(z)$ y:
\begin{equation*}
f'(z) = \frac{1}{1+z}, \quad f^{(2)}(z) = -\frac{1}{(1+z)^2}, \quad f^{(3)}(z) = \frac{2!}{(1+z)^3}, \quad f^{(4)}(z) = -\frac{3!}{(1+z)^4},
\end{equation*}en general:
\begin{equation*}
f^{(n)}(z) = \frac{(-1)^{n-1} (n-1)!}{(1+z)^{n}}, \quad n\geq 1.
\end{equation*}

Entonces, del teorema de Taylor, para $z_0 = 0$ tenemos que:
\begin{align*}
f(z) = \operatorname{Log}(1+z) & = \operatorname{Log}(1+0) + \sum_{n=1}^\infty \frac{ f^{(n)}(0)}{n!} (z-0)^n\\
& = 0 + \sum_{n=1}^\infty \frac{(-1)^{n-1} (n-1)!}{(1+0)^{n} n!} z^n\\
& = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} z^n.
\end{align*}

Sea:
\begin{equation*}
c_n = \frac{(-1)^{n-1}}{n} z^n,
\end{equation*}entonces, del criterio del cociente tenemos que:
\begin{equation*}
\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n\to\infty} \left|-\dfrac{nz}{(n+1)}\right| = |z| <1,
\end{equation*}es decir, la serie que define a $f$ converge para $|z|<1$. No es difícil verificar que la serie anterior también converge para los $z\in\mathbb{C}$ tales que $|z|=1$ y $z\neq -1$, por lo que se deja como ejercicio al lector.

Ejemplo 42.3.
Encontremos la expansión en serie de Taylor de la función $f(z)=(1-z)^{-1}$ alrededor del punto $z_0=i$ y determinemos su radio de convergencia.

Solución. Primeramente, es claro que la función racional $f$ es analítica en $D=\mathbb{C}\setminus\{1\}$. De acuerdo con el teorema de Taylor, la expansión en serie de potencias de $f$ es válida en el mayor disco abierto, contenido en $D$, donde $f$ es analítica, por lo que, podemos determinar el radio de convergencia del desarrollo en serie de Taylor de $f$ considerando la distancia que hay de $z_0 = i$ a la singularidad $z=1$, es decir:
\begin{equation*}
R = |i – 1| = \sqrt{2}.
\end{equation*}

Por otra parte, notemos que para $z\in B(i,\sqrt{2})$ se cumple que $|z-i|<\sqrt{2} = |1-i|$, entonces:
\begin{equation*}
\left|\frac{z-i}{1-i}\right|<1
\end{equation*}por lo que:
\begin{align*}
f(z) & = \frac{1}{1-z}\\
& = \frac{1}{1-i-(z-i)}\\
& = \left(\frac{1}{1-i}\right) \dfrac{1}{1-\dfrac{z-i}{1-i}}\\
& = \left(\frac{1}{1-i}\right) \sum_{n=0}^\infty \left(\frac{z-i}{1-i}\right)^n\\
& = \sum_{n=0}^\infty \frac{(z-i)^n}{\left(1-i\right)^{n+1}}.
\end{align*}

Ejemplo 42.4.
Dado que las funciones complejas $f(z)=e^{z}$, $g(z)=\operatorname{cos}(z)$ y $h(z)=\operatorname{sen}(z)$ son enteras, entonces tienen una expansión como serie de Maclaurin, la cual converge para todo $z\in\mathbb{C}$, es decir, $R=\infty$ para las tres funciones.

Es claro que:
\begin{equation*}
f^{(n)}(z) = f(z), \quad \Longrightarrow \quad f^{(n)}(0) = e^0 = 1.
\end{equation*}

Mientras que:
\begin{align*}
g(z) & = \operatorname{cos}(z), \quad \Longrightarrow \quad g(0) = \operatorname{cos}(1) = 1,\\
g'(z) & = -\operatorname{sen}(z), \quad \Longrightarrow \quad g'(0) = -\operatorname{sen}(0) = 0,\\
g^{(2)}(z) & = -\operatorname{cos}(z), \quad \Longrightarrow \quad g^{(2)}(0) = -\operatorname{cos}(0) = 1,\\
g^{(3)}(z) & = \operatorname{sen}(z), \quad \Longrightarrow \quad g^{(3)}(0) = \operatorname{sen}(0) = 0,\\
g^{(4)}(z) & = \operatorname{cos}(z), \quad \Longrightarrow \quad g^{(4)}(0) = \operatorname{cos}(0) = 1.
\end{align*}

Entonces, para todo $z\in\mathbb{C}$ se cumple que:
\begin{equation*}
e^{z} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (z-0)^n = \sum_{n=0}^{\infty} \frac{z^n}{n!}.
\end{equation*}
\begin{align*}
\operatorname{cos}(z) & = g(0) + \frac{g'(0)}{1!} (z-0) + \frac{g^{(2)}(0)}{2!} (z-0)^2 + \frac{g^{(3)}(0)}{3!} (z-0)^3 + \frac{g^{(4)}(0)}{4!} (z-0)^4 + \cdots\\
& = 1 – \frac{z^2}{2!} + \frac{z^4}{4!} + \cdots\\
& = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}.
\end{align*}

Dado que $g'(z) = – \operatorname{sen}(z) = – h(z)$, entonces, por la proposición 30.2, tenemos que:
\begin{align*}
\operatorname{sen}(z) & = – g'(z)\\
& = – \frac{d}{dz} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}\\
& = – \sum_{n=1}^{\infty} \frac{(-1)^n 2n z^{2n-1}}{(2n)!}\\
& = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}z^{2n-1}}{(2n-1)!}\\
& = \sum_{n=0}^{\infty} \frac{(-1)^{n}z^{2n+1}}{(2n+1)!}.
\end{align*}

Proposición 42.1.
Sean $D\subset\mathbb{C}$ un dominio, $z_0\in D$ y $f:D\to\mathbb{C}$ una función analítica en $D$. Sea $g:D\to\mathbb{C}$ dada por:
\begin{equation*}
g(z) = \left\{ \begin{array}{lcc} \dfrac{f(z)-f(z_0)}{z-z_0} & \text{si} & z\neq z_0, \\ \\ f'(z_0) & \text{si} & z = z_0. \end{array} \right.
\end{equation*}Entonces $g$ es analítica en $D$.

Demostración. Dadas las hipótesis, es claro que $g$ es analítica en $D\setminus\{z_0\}$. Veamos que $g$ es analítica en $z_0$. Como $D$ es abierto, entonces existe $R>0$ tal que $B(z_0,R)\subset{D}$. Por el teorema de Taylor, sabemos que en el disco abierto $B(z_0,R)$ la función $f$ tiene una expansión en serie de Taylor alrededor de $z_0$, es decir:
\begin{equation*}
f(z) = f(z_0) + \sum_{n=1}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^n, \quad \forall z\in B(z_0, R).
\end{equation*}

Por lo que, para todo $z\in B(z_0, R)$ se cumple que:
\begin{align*}
f(z) – f(z_0) & = \sum_{n=1}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^n\\
& = (z-z_0)\sum_{n=1}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^{n-1}\\
& = (z-z_0) g(z),
\end{align*}de donde:
\begin{equation*}
g(z) = \sum_{n=1}^\infty \frac{f^{(n)}(z_0)}{n!}(z-z_0)^{n-1},\quad \forall z\in B(z_0, R).
\end{equation*}

Entonces, del corolario 39.1 se sigue que $g$ es analítica en $B(z_0, R)$ y por tanto analítica en $z_0$, además $g$ es la función dada en (42.1).

$\blacksquare$

Ejemplo 42.5.
Veamos que la función:
\begin{equation*}
g(z) = \left\{ \begin{array}{lcc} \dfrac{\operatorname{sen}(z)}{z} & \text{si} & z\neq 0, \\ \\ 1 & \text{si} & z = 0, \end{array} \right.
\end{equation*}es entera.

Solución. Del ejemplo 42.4 tenemos que:
\begin{equation*}
\operatorname{sen}(z) = \sum_{n=0}^{\infty} \frac{(-1)^{n}z^{2n+1}}{(2n+1)!} = z \sum_{n=0}^{\infty} \frac{(-1)^{n}z^{2n}}{(2n+1)!} = z h(z),
\end{equation*}donde:
\begin{equation*}
h(z):= \sum_{n=0}^{\infty} \frac{(-1)^{n}z^{2n}}{(2n+1)!},
\end{equation*}es una función entera, corolario 39.1, ya que la serie que la define converge para todo $z\in\mathbb{C}$. Notemos que para $z\neq 0$ se cumple que:
\begin{equation*}
h(z) = \frac{\operatorname{sen}(z)}{z},
\end{equation*}mientras que $h(0)= 1 = \operatorname{sen}'(0)$, por lo que $h(z)=g(z)$ para todo $z\in\mathbb{C}$, es decir, $g$ es entera.

Definición 42.2. (Serie de Laurent.)
Sea $\{c_n\}_{n\in\mathbb{Z}}\subset\mathbb{C}$ una suecesión de números complejos doblemente infinita y $z_0\in\mathbb{C}$ fijo. Una serie de números complejos doblemente infinita:
\begin{equation*}
\sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n,
\end{equation*}es llamada una serie de Laurent centrada en $z_0$.

De acuerdo con el Lema 27.1, sabemos que la convergencia de una serie de Laurent está garantizada por la convergencia de las series:
\begin{equation*}
\sum_{n=1}^\infty c_{-n} \left(z-z_0\right)^{-n} = \sum_{n=1}^\infty \frac{c_{-n}}{\left(z-z_0\right)^{n}}, \quad \sum_{n=0}^\infty c_n \left(z-z_0\right)^n,
\end{equation*}las cuales son llamadas, respectivamente, la parte singular o principal y la parte regular o analítica, de la serie de Laurent.

En tal caso se cumple que:
\begin{equation*}
\sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n = \sum_{n=1}^\infty \frac{c_{-n}}{\left(z-z_0\right)^{n}} + \sum_{n=0}^\infty c_n \left(z-z_0\right)^n.
\end{equation*}

Dado que:
\begin{equation*}
\displaystyle\sum_{n=0}^\infty c_n \left(z-z_0\right)^n = c_0 + \displaystyle\sum_{n=1}^\infty c_n \left(z-z_0\right)^n,
\end{equation*}en ocasiones resulta conveniente expresar a una serie de Laurent como:
\begin{equation*}
\sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n = \sum_{n=-\infty}^{-1} c_n \left(z-z_0\right)^{n} + \sum_{n=0}^\infty c_n \left(z-z_0\right)^n.
\end{equation*}

Observación 42.3.
Notemos que haciendo $\zeta:=(z-z_0)^{-1}$ en la parte singular de una serie de Laurent, obtenemos la serie de potencias:
\begin{equation*}
\sum_{n=1}^\infty c_{-n} \zeta^{-n},
\end{equation*}para la cual existe $0\leq R_1 \leq \infty$, proposición 29.2, tal que la serie converge absolutamente si:
\begin{equation*}
|\zeta| < R_1 \quad \Longleftrightarrow \quad R_1 < |z-z_0|.
\end{equation*}

Más aún, la convergencia es absoluta y uniforme en el complemento de todo disco abierto $B(z_0,r_1)$, con $r_1 > R_1$, es decir, en:
\begin{equation*}
\mathbb{C}\setminus B(z_0,r_1) = \{z\in\mathbb{C} : r_1 \leq |z-z_0|\}.
\end{equation*}

Por otra parte, para la parte regular de una serie de Laurent:
\begin{equation*}
\sum_{n=0}^\infty c_n \left(z-z_0\right)^n,
\end{equation*}tenemos que existe $0\leq R_2 \leq \infty$, proposición 29.2, tal que la serie de potencias converge absolutamente si $|z-z_0|<R_2$, mientras que la convergencia es absoluta y uniforme en todo subdisco cerrado $\overline{B}(z_0,r_2)$, con $r_2 < R_2$.

En resumen, para una serie de Laurent, su parte singular converge absolutamente en el complemento del disco cerrado $\overline{B}(z_0,R_1)$, es decir, en:
\begin{equation*}
\mathbb{C}\setminus \overline{B}(z_0,R_1) = \{z\in\mathbb{C} : R_1 < |z-z_0|\},
\end{equation*}mientras que la parte regular converge absolutamente en el disco abierto $B(z_0,R_2)$, por lo que, si $R_1<R_2$, entonces la serie de Laurent converge absolutamente en:
\begin{equation*}
D:=\{z\in\mathbb{C} : R_1 < |z-z_0|<R_2\},
\end{equation*}y en $D$ define una función analítica, corolario 39.1.

Motivados en lo anterior tenemos la siguiente:

Definición 42.2. (Región anular o anillo.)
Sean $z_0\in\mathbb{C}$ fijo y $0\leq R_1 < R_2 \leq \infty$. Se define a la región anular o anillo abierto centrado en $z_0$ y de radios $R_1$ y $R_2$ como:
\begin{equation*}
A(z_0, R_1, R_2) = \{z\in\mathbb{C} : R_1<|z-z_0|<R_2\}.
\end{equation*}

Mientras que, se define al anillo cerrado con centro en $z_0$ y de radios $R_1$ y $R_2$ como:
\begin{equation*}
\overline{A}(z_0, R_1, R_2) = \{z\in\mathbb{C} : R_1\leq |z-z_0|\leq R_2\}.
\end{equation*}

Figura 148: Regiones anulares $A(z_0, R_1, R_2)$ y $\overline{A}(z_0, R_1, R_2)$, respectivamente, en el plano complejo $\mathbb{C}$.

Observación 42.4.
Debe ser claro que si $R_2 = \infty$, entonces estaremos pensando en las regiones del plano complejo:
\begin{align*}
A(z_0,R_1,\infty) & := \{z\in\mathbb{C} : R_1 < |z-z_0|<\infty\},\\
\overline{A}(z_0,R_1,\infty) & := \{z\in\mathbb{C} : R_1 \leq |z-z_0|<\infty\}.
\end{align*}

También es posible considerar a los anillos degenerados correspondientes con los complementos de los discos $\overline{B}(z_0, R_1)$ y $B(z_0, R_1)$, respectivamente, es decir, las regiones del plano complejo:
\begin{align*}
\mathbb{C} \setminus \overline{B}(z_0, R_1) & = \{z\in\mathbb{C} : R_1 < |z-z_0|\},\\
\mathbb{C} \setminus B(z_0, R_1) & = \{z\in\mathbb{C} : R_1 \leq |z-z_0|\}.
\end{align*}

Ejemplo 42.6.
Sea $0<R\leq \infty$. Consideremos a la función $f(z) = \dfrac{1}{z^3} e^z$. Es claro que la función $f$ no es analítica en $B(0,R)$, ya que en $z=0$ la función no es continua. Sin embargo, la función $f$ es analítica en el anillo abierto:
\begin{equation*}
B^*(0,R) = \{z\in\mathbb{C} : 0 < |z| < R\} = A(0,0,R).
\end{equation*}

De lo anterior se sigue que la función $f$ no tiene un desarrollo como serie de Maclauren. Notemos que para $z\neq 0$, al considerar el desarrollo en serie de Maclauren de la función $g(z) = e^z$, podemos dividir a cada término de dicha serie por $z^3$ y así obtener el siguiente desarrollo en serie de potencias de $f$:
\begin{align*}
f(z) & = \dfrac{1}{z^3} e^z\\
& = \dfrac{1}{z^3} \sum_{n=0}^{\infty} \frac{z^n}{n!}\\
& = \dfrac{1}{z^3} + \dfrac{1}{z^2} + \dfrac{1}{2! z} + \dfrac{1}{3!} + \dfrac{z}{4!} + \dfrac{z^2}{5!} + \dfrac{z^3}{6!} + \cdots,
\end{align*}el cual es válido para toda $z \in B^*(0,R)$.

El desarrollo obtenido antes corresponde con la serie de Laurent de la función $f$ en el anillo $A(0, 0, R)$, con $0<R\leq \infty$.

Proposición 42.1.
Sean $A(z_0, R_1, R_2) \subset \mathbb{C}$ un anillo abierto y $\displaystyle \sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n$ una serie de Laurent. Si la serie de Laurent converge en el anillo $A(z_0, R_1, R_2)$, entonces la serie converge uniformemente en todo subanillo cerrado $\overline{A}(z_0, r_1, r_2)$, donde $R_1<r_1<r_2<R_2$.

Demostración. Se sigue de la observación 42.3 y la proposición 29.2, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Observación 42.5.
Notemos que para $R_1 < r <R_2$, la circunferencia $\gamma_r(t) = z_0 + r e^{it}$, $t\in[0,2\pi]$, orientada positivamente, está completamente contenida en el anillo $A(z_0, R_1, R_2) \subset \mathbb{C}$, entonces, para todo $z\in \gamma_{r}([0,2\pi])$ la serie de Laurent $\displaystyle \sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n$ converge uniformemente a una función $f(z)$ analítica en $A(z_0, R_1, R_2)$, por lo que, proposición 39.1, podemos integrar término a término a la serie de Laurent a lo largo de $\gamma_r$, es decir:
\begin{align*}
\int_{\gamma_r} f(z) dz & = \int_{\gamma_r} \sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n dz\\
& = \sum_{n=-\infty}^\infty c_n \int_{\gamma_r} \left(z-z_0\right)^n dz\\
& = 2\pi i c_{-1},
\end{align*}donde la última igualdad se sigue del ejemplo 34.2, ya que:
\begin{equation*}
\int_{\gamma_r} \left(z-z_0\right)^n dz = \left\{ \begin{array}{lcc} 0 & \text{si} & n \neq -1, \\ \\ 2\pi i & \text{si} & n = -1. \end{array} \right.
\end{equation*}

Entonces:
\begin{equation*}
a_{-1} = \frac{1}{2\pi i} \int_{\gamma_r} f(z) dz.
\end{equation*}

Procediendo de manera análoga para la función $(z-z_0)^{k-1} f(z)$, con $k\in\mathbb{Z}$, en lugar de $f(z)$, tenemos que:
\begin{equation*}
a_{k} = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(z)}{(z-z_0)^{k+1}} dz.
\end{equation*}

Por lo tanto, los coeficientes $c_n$ de una serie de Laurent están unívocamente determinados por la función $f(z)$ definida por dicha serie.

Proposición 42.2. (Teorema de Cacuhy para circunferencias concéntricas.)
Sean $z_0\in\mathbb{C}$ fijo, $0\leq R_1 < R_2 \leq \infty$, $D:=A(z_0, R_1, R_2) \subset \mathbb{C}$ un anillo abierto y $f:D\to\mathbb{C}$ una función analítica en $D$. Para cada $R_1 < r<R_2$ sea $\gamma_r$ la circunferencia con centro en $z_0$ y radio $r$, orientada positivamente. Entonces:
\begin{equation*}
\int_{\gamma_r} f(z) dz,
\end{equation*}es independiente de $r$.

Demostración. Dadas las hipótesis, sean $r_1$ y $r_2$ tales que $R_1 < r_i<R_2$, para $i=1,2$. Dado que $\gamma_{r_1}$ y $\gamma_{r_2}$ son dos contornos cerrados homotópicos en $D$, entonces del teorema de Cauchy, teorema 38.3, se sigue que:
\begin{equation*}
\int_{\gamma_{r_1}} f(z) dz = \int_{\gamma_{r_2}} f(z) dz.
\end{equation*}

$\blacksquare$

Proposición 42.3. (Fórmula integral de Cacuhy para anillos.)
Sean $z_0\in\mathbb{C}$ fijo, $0\leq R_1 < R_2 \leq \infty$, $D:=A(z_0, R_1, R_2) \subset \mathbb{C}$ un anillo abierto y $f:D\to\mathbb{C}$ una función analítica en $D$. Para cada $R_1 < r<R_2$ sea $\gamma_r$ la circunferencia con centro en $z_0$ y radio $r$, orientada positivamente, es decir, $\gamma_r(t)=z_0+re^{it}$, para $t\in[0,2\pi]$. Si $R_1<r_1<|z-z_0|<r_2<R_2$, entonces:
\begin{equation*}
f(z) = \frac{1}{2\pi i} \int_{\gamma_{r_2}} \frac{f(\zeta)}{\zeta-z} d\zeta – \frac{1}{2\pi i} \int_{\gamma_{r_1}} \frac{f(\zeta)}{\zeta-z} d\zeta.
\end{equation*}

Demostración. Dadas las hipótesis, fijemos a $z\in D$ tal que $R_1<r_1<|z-z_0|<r_2<R_2$. Definimos a la función $g:D\to\mathbb{C}$ como:
\begin{equation*}
g(\zeta) = \left\{ \begin{array}{lcc} \dfrac{f(\zeta) – f(z)}{\zeta – z} & \text{si} & \zeta \neq z, \\ \\ f'(z) & \text{si} & \zeta = z. \end{array} \right.
\end{equation*}

De la proposición 42.1 se sigue que $g$ es analítica en $D$ y por la proposición 42.2 se tiene que:
\begin{equation*}
\int_{\gamma_{r_1}} g(\zeta) d\zeta = \int_{\gamma_{r_2}} g(\zeta) d\zeta.
\end{equation*}

Como lo anterior se cumple para todo $\zeta \in \gamma_{r_j}([0,2\pi])$, con $j=1,2$, entonces $\zeta \neq z$, por lo que:
\begin{equation*}
\int_{\gamma_{r_1}} \dfrac{f(\zeta) – f(z)}{\zeta – z} d\zeta = \int_{\gamma_{r_1}} g(\zeta) d\zeta = \int_{\gamma_{r_2}} g(\zeta) d\zeta = \int_{\gamma_{r_2}} \dfrac{f(\zeta) – f(z)}{\zeta – z} d\zeta.
\end{equation*}

Entonces:
\begin{equation*}
\int_{\gamma_{r_1}} \dfrac{f(\zeta)}{\zeta – z} d\zeta – f(z) \int_{\gamma_{r_1}} \dfrac{1}{\zeta – z} d\zeta = \int_{\gamma_{r_2}} \dfrac{f(\zeta)}{\zeta – z} d\zeta – f(z) \int_{\gamma_{r_2}} \dfrac{1}{\zeta – z} d\zeta,
\end{equation*}

de donde, considerando la definición 36.1, se sigue que:
\begin{align*}
\int_{\gamma_{r_2}} \dfrac{f(\zeta)}{\zeta – z} d\zeta – \int_{\gamma_{r_1}} \dfrac{f(\zeta)}{\zeta – z} d\zeta & = f(z) \left [ \int_{\gamma_{r_2}} \dfrac{1}{\zeta – z} d\zeta – \int_{\gamma_{r_1}} \dfrac{1}{\zeta – z} d\zeta \right]\\
& = f(z) 2\pi i \left [ n(\gamma_{r_2},z) –
n(\gamma_{r_1},z) \right]\\
& = f(z) 2\pi i \left [ 1 – 0 \right]\\
& = f(z) 2\pi i,
\end{align*}ya que $z$ está fuera de la circunferencia $\gamma_{r_1}$ y dentro de la circunferencia $\gamma_{r_2}$.

Por lo tanto:
\begin{align*}
f(z) & = \frac{1}{2\pi i}\left[ \int_{\gamma_{r_2}} \dfrac{f(\zeta)}{\zeta – z} d\zeta – \int_{\gamma_{r_1}} \dfrac{f(\zeta)}{\zeta – z} d\zeta\right]\\
& = \frac{1}{2\pi i} \int_{\gamma_{r_2}} \frac{f(\zeta)}{\zeta-z} d\zeta – \frac{1}{2\pi i} \int_{\gamma_{r_1}} \frac{f(\zeta)}{\zeta-z} d\zeta.
\end{align*}

$\blacksquare$

Teorema 42.2. (Teorema de Laurent.)
Sean $z_0\in\mathbb{C}$ fijo, $0\leq R_1 < R_2 \leq \infty$, $D:=A(z_0, R_1, R_2) \subset \mathbb{C}$ un anillo abierto y $f:D\to\mathbb{C}$ una función analítica en $D$. Entonces $f$ tiene una única expansión en serie de Laurent en $D$, es decir:
\begin{equation*}
f(z) = \sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n, \quad \forall z\in D,
\end{equation*}la cual converge absolutamente en el anillo $D$ y uniformemente en todo subanillo cerrado $\overline{A}(z_0,r_1,r_2)$, con $R_1 < r_1$ y $r_2<R_2$. Más aún:
\begin{equation*}
c_n = \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta, \quad \forall n\in\mathbb{Z},
\end{equation*}donde $C(z_0,r)$ es la circunferencia con centro en $z_0$ y radio $r$, orientada positivamente, con $R_1<r< R_2$.

Demostración. Dadas las hipótesis, veamos que la serie de Laurent $\displaystyle \sum_{n=-\infty}^\infty c_n \left(z-z_0\right)^n$ converge absolutamente en un subanillo cerrado $\overline{A}(z_0,\rho_1,\rho_2)$, con $R_1<\rho_1$ y $\rho_2<R_2$, la convergencia uniforme se sigue de la proposición 42.1.

Sean $\rho_1$ y $\rho_2$ fijos, tales que $R_1<\rho_1$ y $\rho_2<R_2$. Fijamos a $r_1$ y $r_2$ tales que:
\begin{equation*}
R_1<r_1<\rho_1\leq |z-z_0| \leq \rho_2 < r_2<R_2
\end{equation*}

Por la proposición 42.3, para todo $z\in \overline{A}(z_0,\rho_1,\rho_2)$ se cumple que:
\begin{equation*}
f(z) = \frac{1}{2\pi i} \int_{C(z_0,r_2)} \frac{f(\zeta)}{\zeta-z} d\zeta – \frac{1}{2\pi i} \int_{C(z_0,r_1)} \frac{f(\zeta)}{\zeta-z} d\zeta,
\end{equation*}donde $C(z_0,r_j)$ es la circunferencia con centro en $z_0$ y radio $r_j$, orientada positivamente, con $R_1<r_j< R_2$, para $j=1,2$.

Para $\zeta \in C(z_0,r_2)$ y $z\in \overline{A}(z_0,\rho_1,\rho_2)$ tenemos que:
\begin{equation*}
\frac{|z-z_0|}{|\zeta – z_0|} \leq \frac{\rho_2}{r_2} < 1,
\end{equation*}entonces, como en la prueba del teorema de Taylor, tenemos que la siguiente serie geométrica es convergente:
\begin{equation*}
\sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta – z_0}\right)^n = \dfrac{1}{1-\dfrac{z-z_0}{\zeta – z_0}}.
\end{equation*}

Por lo que, para $\zeta \in C(z_0,r_2)$ y $z\in \overline{A}(z_0,\rho_1,\rho_2)$, se cumple que:
\begin{align*}
\frac{1}{\zeta – z} & = \frac{1}{(\zeta-z_0) – (z-z_0)}\\
& = \left(\dfrac{1}{\zeta-z_0}\right) \dfrac{1}{1-\dfrac{z-z_0}{\zeta – z_0}}\\
& = \left(\dfrac{1}{\zeta-z_0}\right) \sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta – z_0}\right)^n\\
& = \sum_{n=0}^\infty \dfrac{(z-z_0)^n}{\left(\zeta – z_0\right)^{n+1}}.
\end{align*}

Dado que $f$ es una función continua y acotada en $C(z_0,r_2)$, entonces existe $M_2>0$ tal que $|f(\zeta)|\leq M_2$ para todo $\zeta \in C(z_0,r_2)$. Así:
\begin{equation*}
\left|\frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta)\right| \leq M_2 \frac{\rho_2^n}{r_2^{n+1}} = \frac{M_2}{r_2}\left(\frac{\rho_2}{r_2}\right)^n := M_n^{(2)},
\end{equation*}para todo $\zeta \in C(z_0,r_2)$ y todo $z \in \overline{A}(z_0,\rho_1,\rho_2)$.

Como $\rho_2<r_2$, tenemos que la serie $\displaystyle\sum_{n=0}^\infty M_n^{(2)}$ converge para todo $n\in\mathbb{N}$, por lo que, del criterio $M$ de Weierstrass, proposición 28.3, se sigue que la serie:
\begin{equation*}
\sum_{n=0}^\infty \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta) = \frac{f(\zeta)}{\zeta – z},
\end{equation*}converge uniformemente para todo $\zeta\in C(z_0,r_2)$.

Entonces, por el teorema de Weierstrass sobre integración término a término de una serie de funciones uniformemente convergente, proposición 39.1, y la fórmula integral de Cauchy para derivadas, proposición 36.5, tenemos que:
\begin{align*}
\frac{1}{2\pi i } \int_{C(z_0,r_2)} \frac{f(\zeta)}{\zeta-z}d\zeta & = \frac{1}{2\pi i } \int_{C(z_0,r_2)} \sum_{n=0}^\infty \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} f(\zeta) d\zeta\\
& = \sum_{n=0}^\infty (z-z_0)^n \frac{1}{2\pi i } \int_{C(z_0,r_2)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta\\
& = \sum_{n=0}^\infty c_n (z-z_0)^n,
\end{align*}donde:
\begin{equation*}
c_n = \frac{1}{2\pi i } \int_{C(z_0,r_2)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta.
\end{equation*}

Análogamente, para $\zeta \in C(z_0,r_1)$ y $z\in \overline{A}(z_0,\rho_1,\rho_2)$ tenemos que:
\begin{equation*}
\frac{|\zeta – z_0|}{|z-z_0|} \leq \frac{r_1}{\rho_1} < 1,
\end{equation*}entonces, la siguiente serie geométrica es convergente:
\begin{equation*}
\sum_{n=0}^\infty \left(\dfrac{\zeta – z_0}{z-z_0}\right)^n = \dfrac{1}{1-\dfrac{\zeta – z_0}{z-z_0}}.
\end{equation*}

Por lo que, para $\zeta \in C(z_0,r_1)$ y $z\in \overline{A}(z_0,\rho_1,\rho_2)$, se cumple que:
\begin{align*}
\frac{1}{\zeta – z} & = \frac{1}{(\zeta-z_0) – (z-z_0)}\\
& = \left(-\dfrac{1}{z-z_0}\right) \dfrac{1}{1-\dfrac{\zeta – z_0}{z-z_0}}\\
& = \left(-\dfrac{1}{z-z_0}\right) \sum_{n=0}^\infty \left(\dfrac{\zeta – z_0}{z-z_0}\right)^n\\
& = \sum_{n=0}^\infty \dfrac{-(\zeta – z_0)^n}{\left(z-z_0\right)^{n+1}}\\
& = \sum_{n=1}^\infty \dfrac{-(\zeta – z_0)^{n-1}}{\left(z-z_0\right)^{n}}
\end{align*}

Como $f$ es una función continua y acotada en $C(z_0,r_1)$, entonces existe $M_1>0$ tal que $|f(\zeta)|\leq M_1$ para todo $\zeta \in C(z_0,r_1)$. Por lo que:
\begin{equation*}
\left|\dfrac{-(\zeta – z_0)^{n-1}}{\left(z-z_0\right)^{n}} f(\zeta)\right| \leq M_1 \frac{r_1^{n-1}}{\rho_1^n} = \frac{M_1}{r_1}\left(\frac{r_1}{\rho_1}\right)^n := M_n^{(1)},
\end{equation*}para todo $\zeta \in C(z_0,r_1)$ y todo $z \in \overline{A}(z_0,\rho_1,\rho_2)$.

Como $r_1<\rho_1$, tenemos que la serie $\displaystyle\sum_{n=0}^\infty M_n^{(1)}$ converge para todo $n\in\mathbb{N}$, por lo que, del criterio $M$ de Weierstrass, se tiene que la serie:
\begin{equation*}
-\sum_{n=1}^\infty\dfrac{(\zeta – z_0)^{n-1}}{\left(z-z_0\right)^{n}} f(\zeta) = \frac{f(\zeta)}{\zeta – z},
\end{equation*}converge uniformemente para todo $\zeta\in C(z_0,r_1)$.

Entonces, por la proposición 39.1 y la fórmula integral de Cauchy para derivadas, proposición 36.5, tenemos que:
\begin{align*}
-\frac{1}{2\pi i } \int_{C(z_0,r_1)} \frac{f(\zeta)}{\zeta-z}d\zeta & = \frac{1}{2\pi i } \int_{C(z_0,r_1)} \sum_{n=1}^\infty\dfrac{(\zeta – z_0)^{n-1}}{\left(z-z_0\right)^{n}} f(\zeta) d\zeta\\
& = \sum_{n=1}^\infty \dfrac{1}{\left(z-z_0\right)^{n}} \frac{1}{2\pi i } \int_{C(z_0,r_1)} (\zeta – z_0)^{n-1} f(\zeta) d\zeta\\
& = \sum_{n=1}^\infty \dfrac{1}{\left(z-z_0\right)^{n}} \frac{1}{2\pi i } \int_{C(z_0,r_1)} \dfrac{f(\zeta)}{(\zeta – z_0)^{1-n}} d\zeta\\
& = \sum_{n=1}^\infty \dfrac{c_{-n}}{\left(z-z_0\right)^{n}},
\end{align*}donde:
\begin{equation*}
c_{-n} = \frac{1}{2\pi i } \int_{C(z_0,r_1)} \frac{f(\zeta)}{(\zeta-z_0)^{1-n}} d\zeta,
\end{equation*}o equivalentemente:
\begin{equation*}
-\frac{1}{2\pi i } \int_{C(z_0,r_1)} \frac{f(\zeta)}{\zeta-z}d\zeta = \sum_{n=-\infty}^{-1} c_{n} \left(z-z_0\right)^{n},
\end{equation*}donde:
\begin{equation*}
c_{n} = \frac{1}{2\pi i } \int_{C(z_0,r_1)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta.
\end{equation*}

Dado que para $r\in (R_1,R_2)$ se cumple que $C(z_0,r_1)$, $C(z_0,r_2)$ y $C(z_0,r)$ son tres contornos cerrados homótopicos en $D$, del teorema integral de Cauchy, versión homotópica (teorema 38.3), se tiene que:
\begin{equation*}
\int_{C(z_0, r)} \frac{f(\zeta)}{(\zeta-z_0)^{1+n}}d\zeta = \int_{C(z_0,r_1)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}}d\zeta = \int_{C(z_0,r_2)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}}d\zeta,
\end{equation*}por lo que:
\begin{align*}
f(z) & = \frac{1}{2\pi i} \int_{C(z_0,r_2)} \frac{f(\zeta)}{\zeta-z} d\zeta – \frac{1}{2\pi i} \int_{C(z_0,r_1)} \frac{f(\zeta)}{\zeta-z} d\zeta\\
& = \sum_{n=0}^\infty c_n (z-z_0)^n + \sum_{n=-\infty}^{-1} c_{n} \left(z-z_0\right)^{n}\\
& = \sum_{n=-\infty}^\infty c_n (z-z_0)^n,
\end{align*}donde:
\begin{equation*}
c_{n} = \frac{1}{2\pi i } \int_{C(z_0,r_1)} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta, \quad \forall n\in\mathbb{Z}.
\end{equation*}

Por último, para verificar la unicidad de la expansión de $f$ en serie de Laurent, supongamos que en $D$ se cumple que $f$ tiene dos expansiones en serie de Laurent, es decir:
\begin{equation*}
f(z) = \sum_{n=-\infty}^\infty a_n (z-z_0)^n = \sum_{n=-\infty}^\infty b_n (z-z_0)^n.
\end{equation*}

Tenemos que ambas series convergen uniformemente en todo subanillo cerrado de $D$, entonces, para $k\in\mathbb{Z}$ arbitrario:
\begin{equation*}
\frac{1}{2\pi i} \int_{C(z_0,r)} \sum_{n=-\infty}^\infty a_n (z-z_0)^{n-k-1} dz = \frac{1}{2\pi i} \int_{C(z_0,r)} \sum_{n=-\infty}^\infty b_n (z-z_0)^{n-k-1} dz,
\end{equation*}donde $C(z_0,r)$ es una circunferencia contenida en cualquier subanillo cerrado de $D$, entonces, por la convergencia uniforme de ambas series, se sigue de la proposición 39.1 que:
\begin{equation*}
\sum_{n=-\infty}^\infty \frac{1}{2\pi i} \int_{C(z_0,r)} a_n (z-z_0)^{n-k-1} dz = \sum_{n=-\infty}^\infty \frac{1}{2\pi i} \int_{C(z_0,r)} b_n (z-z_0)^{n-k-1} dz.
\end{equation*}

Por el ejemplo 34.2 tenemos que:
\begin{equation*}
\int_{C(z_0,r)} a_n (z-z_0)^{n-k-1} dz = \int_{C(z_0,r)} b_n (z-z_0)^{n-k-1} dz = \left\{ \begin{array}{lcc} 0 & \text{si} & n \neq k, \\ \\ 2\pi i & \text{si} & n = k,\end{array} \right.
\end{equation*}de donde:
\begin{equation*}
a_k 2\pi i = b_k 2\pi i \quad \Longleftrightarrow \quad a_k = b_k, \quad \forall k\in\mathbb{Z}.
\end{equation*}

$\blacksquare$

Observación 42.6.
Dado que la convergencia de la serie de Laurent:
\begin{equation*}
f(z) = \sum_{n=1}^\infty \frac{c_{-n}}{\left(z-z_0\right)^{n}} + \sum_{n=0}^\infty c_n \left(z-z_0\right)^n,
\end{equation*}en un anillo abierto $A(z_0,R_1,R_2)$, es uniforme en todo subanillo cerrado en $A(z_0,R_1,R_2)$ y para cada $n\in\mathbb{Z}$, la función $c_n(z-z_0)^n$ es analítica en dicho anillo abierto, entonces, teoremas de Weierstrass, podemos integrar y derivar a una serie de Laurent término a término.

Por lo que:
\begin{equation*}
f'(z) = -\sum_{n=1}^\infty \frac{n c_{-n}}{\left(z-z_0\right)^{n+1}} + \sum_{n=1}^\infty n c_n \left(z-z_0\right)^{n-1} dz.
\end{equation*}

En general, podemos continuar derivando a la función $f$ término a término para obtener a cualquier derivada de orden superior.

Por otra parte, para todo contorno $\gamma$ en el anillo $A(z_0,R_1,R_2)$ tenemos que:
\begin{equation*}
\int_{\gamma} f(z) dz = \sum_{n=1}^\infty c_{-n} \int_{\gamma} \frac{1}{\left(z-z_0\right)^{n}} dz + \sum_{n=0}^\infty c_n \int_{\gamma} \left(z-z_0\right)^n.
\end{equation*}

Ejemplo 42.7.
Determinemos la expansión en serie de Laurent de la función:
\begin{equation*}
f(z) = \frac{1}{z^2-3z+2},
\end{equation*}en los anillos abiertos $A(0,1,2)$ y $A(-i,\sqrt{2},\sqrt{5})$.

Solución. Aplicando fracciones parciales, podemos reescribir la función $f(z)$ como:
\begin{equation*}
f(z) = \frac{1}{z^2-3z+2} = \frac{1}{(1-z)(2-z)} = \frac{1}{1-z} – \frac{1}{2-z},
\end{equation*}de donde es claro que $f$ es analítica en $D:=\mathbb{C}\setminus\{1,2\}$ y en particular en los anillos abiertos $A(0,1,2)$ y $A(-i,\sqrt{2},\sqrt{5})$ contenidos en $D$.

Para $z\in A(0,1,2)$ tenemos que $1<|z|<2$, por lo que:
\begin{equation*}
\frac{1}{|z|} < 1 \quad \text{y} \quad \frac{|z|}{2} < 1.
\end{equation*}

Entonces, considerando la serie geométrica tenemos que:
\begin{equation*}
\sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = \dfrac{1}{1-\dfrac{1}{z}} \quad \text{y} \quad \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \dfrac{1}{1-\dfrac{z}{2}}.
\end{equation*}

Por lo que:
\begin{align*}
\frac{1}{1-z} & = \left(-\frac{1}{z}\right) \dfrac{1}{1-\dfrac{1}{z}}\\
& = \left(-\frac{1}{z}\right) \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \\
& = – \sum_{n=0}^{\infty}\frac{1}{z^{n+1}}\\
& = – \sum_{n=-\infty}^{-1} z^{n}.
\end{align*}
\begin{align*}
\frac{1}{2-z} & = \left(\frac{1}{2}\right) \dfrac{1}{1-\dfrac{z}{2}}\\
& = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n\\
& = \sum_{n=0}^{\infty}\frac{z^n}{2^{n+1}}.
\end{align*}

Entonces, para todo $z\in A(0,1,2)$ tenemos que:
\begin{equation*}
f(z) = – \sum_{n=-\infty}^{-1} z^{n} -\sum_{n=0}^{\infty}\frac{z^n}{2^{n+1}} = \cdots-\frac{1}{z^2} – \frac{1}{z} – \frac{1}{2} – \frac{z}{4} – \frac{z^2}{8} – \cdots.
\end{equation*}

Análogamente, para $z\in A(-i,\sqrt{2},\sqrt{5})$ tenemos que $\sqrt{2}<|z+i|<\sqrt{5}$, de donde:
\begin{equation*}
\frac{\sqrt{2}}{|z+i|} = \frac{|1+i|}{|z+i|} < 1 \quad \text{y} \quad \frac{|z+i|}{\sqrt{5}} = \frac{|z+i|}{|2+i|} < 1.
\end{equation*}

Por lo que:
\begin{equation*}
\sum_{n=0}^{\infty} \left(\frac{1+i}{z+i}\right)^n = \dfrac{1}{1-\dfrac{1+i}{z+i}} \quad \text{y} \quad \sum_{n=0}^{\infty} \left(\frac{z+i}{2+i}\right)^n = \dfrac{1}{1-\dfrac{z+i}{2+i}}.
\end{equation*}

Entonces:
\begin{align*}
\frac{1}{1-z} & = \dfrac{1}{(1+i)-(z+i)}\\
& = \left(-\frac{1}{z+i}\right) \dfrac{1}{1 – \dfrac{1+i}{z+i}}\\
& = \left(-\frac{1}{z+i}\right) \sum_{n=0}^{\infty} \left(\frac{1+i}{z+i}\right)^n \\
& = \left(-\frac{1}{z+i}\right) \sum_{n=-\infty}^{0} \left(\frac{z+i}{1+i}\right)^n \\
& = -\sum_{n=-\infty}^{0} \frac{\left(z+i\right)^{n-1}}{(1+i)^n}\\
& = -\sum_{n=-\infty}^{-1} \frac{\left(z+i\right)^{n}}{(1+i)^{n+1}}.
\end{align*}
\begin{align*}
\frac{1}{2-z} & = \dfrac{1}{(2+i)-(z+i)}\\
& = \left(\frac{1}{2+i}\right) \dfrac{1}{1 -\dfrac{z+i}{2+i}}\\
& = \frac{1}{2+i}\sum_{n=0}^{\infty} \left(\frac{z+i}{2+i}\right)^n\\
& = \sum_{n=0}^{\infty} \frac{\left(z+i\right)^n}{(2+i)^{n+1}}.
\end{align*}

Por lo tanto, para todo $z\in A(-i,\sqrt{2},\sqrt{5})$ tenemos que:
\begin{equation*}
f(z) = -\sum_{n=-\infty}^{-1} \frac{\left(z+i\right)^{n}}{(1+i)^{n+1}} – \sum_{n=0}^{\infty} \frac{\left(z+i\right)^n}{(2+i)^{n+1}}.
\end{equation*}

Ejemplo 42.8.
Determinemos la expansión en serie de Laurent de la función $f(z) = e^{1/z}$, en el anillo $A(0,0,\infty)$.

Solución. Sabemos que $f$ es una función analítica en $D:=\mathbb{C}\setminus\{0\}$, por lo que en particular es analítica en $A(0,0,\infty)\subset D$. Considerando la serie de Maclaurin de la exponencial compleja, ejemplo 42.4, tenemos que:
\begin{equation*}
e^z = \sum_{n=0}^\infty \frac{z^n}{n!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Para $z\in A(0,0,\infty)$ tenemos que $0<|z|<\infty$, por lo que $z\neq 0$, entonces:
\begin{equation*}
e^{1/z} = \sum_{n=0}^\infty \frac{(1/z)^n}{n!} = \sum_{n=0}^\infty \frac{1}{z^n n!}.
\end{equation*}

Ejemplo 42.9.
Determinemos la serie de Laurent de la función $f(z) = (1-z)^{-3}$, en el anillo $A(0,1,\infty)$.

Solución. Sabemos que $f$ es una función analítica en $D:=\mathbb{C}\setminus\{1\}$, en particular es analítica en el anillo abierto $A(0,1,\infty)\subset D$. Considerando el ejemplo 42.7, para $z\in A(0,1,\infty)$ tenemos que $|z|^{-1} < 1$, por lo que:
\begin{align*}
\frac{1}{1-z} & = \left(-\frac{1}{z}\right) \dfrac{1}{1-\dfrac{1}{z}}\\
& = \left(-\frac{1}{z}\right) \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \\
& = -\sum_{n=1}^{\infty}\frac{1}{z^{n}}.
\end{align*}

Diferenciando dos veces de ambos lados de la igualdad, tenemos que:
\begin{equation*}
\frac{d}{z} \frac{1}{1-z} = \frac{1}{(1-z)^2} = \sum_{n=1}^{\infty}\frac{n}{z^{n+1}} = \frac{d}{dz} \left(-\sum_{n=1}^{\infty}\frac{1}{z^n}\right),
\end{equation*}
\begin{equation*}
\frac{d}{z} \frac{1}{(1-z)^2} = \frac{2}{(1-z)^3} = -\sum_{n=1}^{\infty}\frac{n(n+1)}{z^{n+2}} = \frac{d}{dz} \left(\sum_{n=1}^{\infty}\frac{n}{z^{n+1}}\right),
\end{equation*}de donde:
\begin{equation*}
f(z) = \frac{1}{(1-z)^3} = -\frac{1}{2} \sum_{n=1}^{\infty}\frac{n(n+1)}{z^{n+2}},
\end{equation*}para todo $z\in A(0,1,\infty)$.

Ejemplo 42.10.
Sea $\gamma$ la circunferencia unitaria orientada positivamente. Evaluemos la integral:
\begin{equation*}
\int_{\gamma} \frac{e^{1/z}}{z} dz.
\end{equation*}

Solución. Sea $f(z) = e^{1/z} z^{-1}$. Es claro que $f$ es una función analítica en $D:=\mathbb{C}\setminus\{0\}$ y $\gamma$ está completamente contenido en $D$, entonces $f$ es continua en el contorno $\gamma$, por lo que la integral existe. Sin embargo, no podemos utilizar el teorema integral de Cauchy para evaluar la integral ya que la singularidad $z_0 = 0$ está dentro de la circunferencia unitaria dada por $\gamma$.

Consideremos al anillo abierto $A(0,0,\infty)\subset D$. Por el ejemplo 42.8, sabemos que para todo $z\in A(0,0,\infty)$ se cumple que:
\begin{equation*}
e^{1/z} = \sum_{n=0}^\infty \frac{(1/z)^n}{n!} = \sum_{n=0}^\infty \frac{1}{z^n n!}.
\end{equation*}

Por lo que, para todo $z\in A(0,0,\infty)$ tenemos que:
\begin{equation*}
f(z) = \frac{e^{1/z}}{z} = \frac{1}{z} \sum_{n=0}^\infty \frac{1}{z^n n!} = \sum_{n=0}^\infty \frac{1}{z^{n+1} n!}.
\end{equation*}

Del ejemplo 34.1 sabemos que:
\begin{equation*}
\int_{\gamma} \frac{1}{z^{n+1}} dz = \left\{ \begin{array}{lcc} 0 & \text{si} & n \neq 0, \\ \\ 2\pi i & \text{si} & n = 0.\end{array} \right.
\end{equation*}

Entonces, como $\gamma$ es un contorno en el anillo abierto $A(0,0,\infty)$, tenemos que:
\begin{align*}
\int_{\gamma} \frac{e^{1/z}}{z} dz & = \int_{\gamma} \sum_{n=0}^\infty \frac{1}{z^{n+1} n!} dz\\
& = \sum_{n=0}^\infty \frac{1}{n!} \int_{\gamma} \frac{1}{z^{n+1}} dz\\
& = \frac{1}{0!} 2\pi i\\
& = 2\pi i.
\end{align*}

Tarea moral

  1. Sean $z_1,z_2\in\mathbb{C}$ tales que $z_1\neq z_2$ y $0< |z_1|\leq|z_2|$. Muestra que para $|z|<|z_1|$, se cumple que:
    \begin{equation*}
    \frac{1}{(z_1 -z)(z_2 -z)} = \frac{1}{(z_1 – z_2)} \sum_{n=0}^\infty \frac{(z_1^{n+1} – z_2^{n+1})}{(z_1 z_2)^{n+1}} z^n.
    \end{equation*}
  2. Determina la expansión en serie de Taylor de las siguientes funciones alrededor del punto dado.
    a) $f(z)=\dfrac{4}{z^2+2z}$, alrededor de $z_0=1$.
    b) $f(z)=\dfrac{2}{1-z^2}$, alrededor de $z_0=i$.
    c) $f(z)=\dfrac{2i}{3-iz}$, alrededor de $z_0=-1$.
    d) $f(z)=ze^{3z^2}$, alrededor de $z_0=0$.
  3. Muestra que las siguientes funciones son analíticas en $z_0=0$. Determina su desarrollo en serie de Maclaurin y su radio de convergencia.
    a) $f(z) = \left\{ \begin{array}{lcc} \dfrac{\operatorname{cos}(z)-1}{z} & \text{si} & z \neq 0, \\ \\ 0 & \text{si} & z = 0.\end{array} \right.$
    b) $f(z) = \left\{ \begin{array}{lcc} \dfrac{e^z-1}{z} & \text{si} & z \neq 0, \\ \\ 1 & \text{si} & z = 0.\end{array} \right.$
  4. Determina la expansión en serie de Laurent de las siguientes funciones en los anillos abiertos dados.
    a) $f(z)=z+\dfrac{1}{z}$, en $A(1,1,\infty)$.
    b) $f(z)=\dfrac{1}{(3z-1)(2z+1)}$, en $A(0,1/3,1/2)$.
    c) $f(z)=\dfrac{1}{1-z^2}$, en $A(2,1,3)$.
    d) $f(z)=z+\dfrac{1}{z}$, en $A(1,1,\infty)$.
  5. Evalúa las siguientes integrales utilizando una serie de Laurent apropiada en cada caso. Todas las circunferencias están orientadas positivamente.
    a) $\displaystyle \int_{C(0,1)} \operatorname{sen}\left(\frac{1}{z}\right) dz$.
    b) $\displaystyle \int_{C(0,4)} \operatorname{Log}\left(1+\frac{1}{z}\right) dz$.
    c) $\displaystyle \int_{C(0,1)} \dfrac{\operatorname{cos}\left(\frac{1}{z^2}\right)}{z} dz$.
    d) $\displaystyle \int_{C(0,1)} e^{z^2+\frac{1}{z}}dz$.
  6. Muestra que:
    \begin{equation*}
    \operatorname{cosh}\left(z+\frac{1}{z}\right) = \sum_{n=-\infty}^\infty c_n z^n,
    \end{equation*}donde:
    \begin{equation*}
    c_n = \int_{0}^{2\pi} \operatorname{cos}(nt)\operatorname{cosh}(2 \operatorname{cos}(t))dt.
    \end{equation*}Hint: Integra a lo largo de la circunferencia unitaria $C(0,1)$.

Más adelante…

En esta entrada hemos probado dos resultados que son de suma importancia en la teoría de la Variable Compleja y que nos permiten caracterizar aún más a las funciones analíticas. Dichos resultados son el teorema de Taylor y el teorema de Laurent, y ambos nos permiten dar un recíproco a los resultados de la tercera unidad, en la cual vimos que una serie de potencias define a una función analítica en su disco de convergencia, mientras que con los resultados de esta entrada establecimos que toda función analítica en un dominio puede representarse a través de un desarrollo en series de potencias, ya sea en una expansión en serie de Taylor o en una expansión en serie de Laurent, dependiendo de la función analítica en cuestión.

La siguiente entrada corresponde con la última de estas notas, en ella daremos una clasificación de las singularidades de una función analítica y veremos uno de los resultados más importantes del curso, el cual engloba la mayoría de resultados establecidos hasta ahora y que nos es de mucha utilidad en la práctica al evaluar integrales, es decir, el teorema del residuo.

Entradas relacionadas

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros $a$ y $b$, con $b\neq 0$, nos permite poner de manera única a $a$ de la forma $a=qb+r$, en donde $q$ y $r$ son enteros, y además $0\leq r < |b|$. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir $a=qb$. Cuando esto sucede, diremos que $b$ divide a $a$, o bien que $a$ es múltiplo de $b$. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean $m$ y $n$ enteros. Diremos que $m$ divide a $n$ si existe un entero $k$ tal que $n=km$. En notación, escribiremos $m|n$. También diremos que $n$ es un múltiplo de $m$, o bien que $n$ es divisible entre $m$.

Ejemplo. El número $35$ es divisible entre $5$ pues podemos encontrar un entero $k$ tal que $35=k\cdot 5$. Concretamente, podemos escribir $35=7\cdot 5$. Así mismo, este número también es divisible entre $-7$ pues podemos encontrar un entero $k$ tal que $35=k\cdot (-7)$, en concreto, podemos escribir $35=(-5)(-7)$.

Por otro lado, el $35$ no es múltiplo de $8$. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que $35=4\cdot 8 + 3$. Como esta es la única forma de escribir a $35$ como un múltiplo de $8$ más un residuo entre $0$ y $7$, entonces es imposible escribirlo como un múltiplo de $8$ más residuo $0$. En otras palabras, no es múltiplo de $8$.

$\triangle$

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros $1$ y $-1$ dividen a cualquier otro entero.
  • El entero $0$ es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero $n$ se tiene que $n|n$.
  • Es transitiva, es decir si $l,m,n$ son enteros tales que $l|m$ y $m|n$, entonces $l|n$.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si $n$ es un entero, entonces $n=n\cdot 1$. Esto nos dice que $1$ divide a $n$. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    \begin{align*}
    n&=n\cdot 1\\
    &=n\cdot ((-1)\cdot (-1))\\
    &=(n\cdot (-1))\cdot (-1)\\
    &=(-n)\cdot (-1).
    \end{align*}
    Aquí estamos usando que $(-1)(-1)=1$, la asociatividad del producto en los números enteros y que $(-1)n=-n$. En resumen, obtenemos que $n=(-n)(-1)$, lo cual nos dice que $-1|n$.
  • Aquí notamos que para cualquier entero $n$ tenemos que $0=0\cdot n$. Así, $n|0$.
  • Anteriormente usamos que $n=n\cdot 1$ para concluir $1|n$. Así mismo, al usar $n=1\cdot n$ obtenemos que $n|n$.
  • Veamos la transitividad. Supongamos que $l,m,n$ son enteros tales que $l|m$ y $m|n$. Por definición de divisibilidad podemos encontrar enteros $q$ y $r$ tales que $m=ql$ y $n=rm$. Substituyendo el valor de $m$ de la primera igualdad en la segunda y usando asociatividad obtenemos que: $$n=rm=r(ql)=(rq)l.$$ Esto precisamente nos dice que $l|n$.

$\square$

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros $l,m,n$, si $l|m$ y $l|n$, entonces $l|m+n$.
  • Para enteros $l,m,n$, si $l|m$, entonces $l|mn$.
  • Para enteros $l$, $a$, $b$, $c$, $d$ se cumple que si $l|m$ y $l|n$, entonces $l|am+bn$.

Demostración. Daremos la demostración inciso por inciso:

  • Como $l|m$ y $l|n$, por definición existen enteros $r$ y $s$ tales que $m=rl$ y $n=sl$. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que $$m+n=rl+sl=(r+s)l.$$ Esto por definición está diciendo que $l$ divide a $m+n$.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que $mn=nm$, por lo cual $mn$ es divisible entre $m$. Es decir, tenemos $l|m$ y $m|mn$. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que $l|mn$.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como $l|m$, entonces $l|am$. Así mismo, como $l|n$, entonces $l|bn$. Finalmente, por el primer inciso, como $l|am$ y $l|bn$, entonces $l|am+bn$.

$\square$

Observa que si ponemos $a=1$ y $b=-1$ en la última propiedad obtenemos el siguiente corolario: si $l|m$ y $l|n$, entonces $l|m-n$.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si $m$ y $n$ son enteros distintos de cero tales que $m|n$, entonces $|m|\leq |n|$.
  • Si $m$ y $n$ son enteros positivos tales que $m|n$, entonces $m\leq n$.
  • Si $m$ y $n$ son enteros tales que $m|n$ y $n|m$, entonces $|m|=|n|$.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros $m$ y $n$ tales que $m|n$. Por definición de divisibilidad, tenemos que existe un entero $k$ tal que $n=km$. Al tomar valor absoluto de esta expresión, obtenemos que $|n|=|km|$. Por propiedades del valor absoluto, tenemos que $|km|=|k||m|$. Como $n$ es distinto de cero, entonces $k$ también es distinto de cero, así que $|k|\geq 1$. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: $$|n|=|km|=|k||m|\geq 1\cdot |m| = |m|.$$

Esto es lo que queríamos demostrar.

Para el segundo inciso, como $m$ y $n$ son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos $|m|=m$ y $|n|=n$. De este modo, por el primer inciso tenemos $m\leq n$.

En el tercer inciso primero tenemos que descartar algunos casos. Si $m=0$, entonces la divisibilidad $0|n$ nos dice que $n=k\cdot 0$ para alguna $k$ entera, pero entonces $n=0$ también, y entonces se cumple $|m|=0=|n|$. El caso $n=0$ es análogo. Ya descartados estos casos, podemos suponer que $m$ y $n$ son distintos de cero. Por el primer inciso tendríamos entonces $|m|\leq |n|$ y $|m|\geq |n|$. Así, $|m|=|n|$, como queríamos.

$\square$

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número $12$.

Solución. Supongamos que $d$ es un divisor de $12$. Tenemos entonces que $|d|\leq |12|=12$, así, $d$ es un número entre $-12$ y $12$. Fuera de este rango no pueden existir divisores de $12$.

Por reflexividad tenemos que $12|12$. Por la propiedad de $1$ y $-1$ tenemos que $1|12$ y $-1|12$. Es fácil ver $12=2\cdot 6$ y $12=3\cdot 4$, así que $2$, $3$, $4$ y $6$ son todos ellos divisores de $12$. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como $12=3\cdot 4$, también tenemos $12=(-3)(-4)$.

De este modo, hasta ahora hemos visto que $-12,-6,-4,-3,-2,-1,1,2,3,4,6,12$ son todos ellos divisores de $12$.

El $5$ claramente no es, pues al hacer el algoritmo de la división obtenemos $12=2\cdot 5 +2$, con residuo $2$. Entonces el $-5$ tampoco puede ser divisor.

Podríamos hacer lo mismo con $7,8,9,10,11$. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir $12=7k$, por ejemplo, se tiene que $k$ no puede ser $1$ (pues $12\neq 7$) y si ponemos $k\geq 2$ entonces el producto es al menos $14$, que ya se pasa de $12$. Así, ni estos números, ni $-7,-8,-9,-10,-11$ son divisores de $12$.

$\triangle$

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número $24$ (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si $l$, $m$ y $n$ son enteros tales que $l|m$ y $n|m$, entonces $l+n|m$.
    2. Si $l,m,n$ son enteros tales que $l|mn$, entonces o bien $l|m$ o bien $l|n$.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si $m$ y $n$ son enteros positivos tales que $m|n$ y $n|m$, entonces $m=n$.
    2. Si $m$ es divisor de $n$ con $n=km$, entonces $k$ también es divisor de $n$.
  4. Sean $m$ y $n$ enteros. Demuestra que $m$ divide a $n$ si y sólo si $m^2$ divide a $n^2$.
  5. Sea $n$ un entero positivo, $m$ un entero, $a_1,\ldots,a_n$ enteros y $b_1,\ldots,b_n$ enteros. Demuestra que si $m|b_i$ para todo $i=1,\ldots,n$, entonces $m| \sum_{i=1}^n a_ib_i$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Grupos, anillos y campos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío $G$ con una operación binaria $\cdot$ que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos $x,y,z$ en $G$ tenemos que $x\cdot (y\cdot z) = (x\cdot y) \cdot z$.
  • Neutro: Existe un elemento $e$ en $G$ tal que $x\cdot e = x = e\cdot x$ para todo elemento x.
  • Inversos: Para cada elemento $x$ en $G$, existe un elemento $y$ en $G$ tal que $x\cdot y = e = y\cdot x$.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo $a\cdot b = ab$. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como $(a\cdot b)\cdot c$ se escriben simplemente como $abc$, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que $ab=ba$ para todo par de elementos $a$ y $b$. Si $ab=ba$ decimos que $a$ y $b$ conmutan y si todo par de elementos de $G$ conmutan, decimos que $G$ es conmutativo. Un elemento siempre conmuta consigo mismo. Para $n$ un entero positivo definimos $a^n$ como el producto formado por $n$ veces el elemento $a$.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros $e$ y $e’$ tendríamos $e=e\cdot e’=e’$, en donde primero usamos que $e’$ es neutro y después que $e$ lo es. Para $a$ en $G$, definimos $a^0$ como $e$.

En grupos se vale «cancelar». Por ejemplo, si $ab=ac$, entonces podemos multiplicar esta igualdad a la izquierda por un inverso $d$ de $a$ y obtendríamos $$b=eb=dab=dac=ec=c.$$ Del mismo modo, la igualdad $ba=ca$ implica $b=c$.

En particular, si $d$ y $d’$ son inversos de $a$, tenemos $da=e=d’a$, de donde $d=d’$. Esto muestra que los inversos también son únicos, así que al inverso de $a$ le llamamos $a^{-1}$. Observa que $e^{-1}=e$. Nota que si $a$ y $b$ son elementos de $G$, entonces $$ab(b^{-1}a^{-1})=aea^{-1}=aa^{-1}=e,$$ de modo que el inverso de un producto $ab$ es el producto $b^{-1}a^{-1}$. Para $n$ un entero positivo, definimos $a^{-n}$ como el inverso de $a^n$, que por lo anterior, es precisamente $(a^{-1})^n$. De hecho, ya definido $a^n$ para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean $a$ y $b$ dos elementos en un grupo $G$ con neutro $e$ tales que $aba=ba^2b$, $a^3=e$ y $b^{2021}=e$. Muestra que $b=e$.

Sugerencia pre-solución. Observa que si $a$ y $b$ conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que $a$ y $b$ conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que $a$ y $b^2$ conmutan. Poniendo una identidad entre ambas $b$ en el producto $ab^2$, tenemos que $$ab^2=abaa^{-1}b=ba^2ba^{-1}b.$$ De $a^3=e$, tenemos $a^{-1}=a^2$, así que siguiendo con la cadena de igualdades, \begin{align*}
ba^2ba^{-1}b&=ba^2ba^2b\\
&=ba^2aba\\
&=bba=b^2a.
\end{align*} Así, $ab^2=b^2a$.

Ahora veremos que $a$ y $b$ conmutan. Para ello, como $a$ y $b^2$ conmutan, tenemos que $a$ y $b^{2k}$ conmutan para cualquier entero $k$. Esto se puede probar por inducción. El caso $k=1$ es lo que ya probamos. Si es válido para cierta $k$, se sigue que $$ab^{2k+2}=b^{2k}ab^2=b^{2k+2}a.$$ Por hipótesis, $b^{2020}=b$, así que el resultado anterior nos dice que $a$ y $b$ conmutan.

Por esta razón, la primer hipótesis $aba=ba^2b$ se puede reescribir como $a^2b=a^2b^2$, que por cancelación izquierda da $e=b$, como queríamos mostrar.

$\square$

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo $G$ es un subconjunto $H$ de $G$ que es un grupo con las operaciones de $G$ restringidas a $H$.

Para que $H$ sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que $\mathbb{Z}_{12}$, los enteros módulo $12$ con la suma, forman un grupo. De aquí, $H_1=\{0,3,6,9\}$ es un subgrupo y $H_2=\{0,4,8\}$ es otro.

Proposición. Si $a$ es un elemento de un grupo $G$, entonces o bien $$1,a, a^2, a^3,\ldots$$ son todos elementos distintos de $G$, o bien existe un entero positivo $n$ tal que $a^n=1$ y $1,a,\ldots,a^{n-1}$ son todos distintos. En este segundo caso, $\{1,a,\ldots,a^{n-1}\}$ es un subgrupo de $G$.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen $i<j$ tales que $a^j=a^i$, de donde por la ley de cancelación tenemos que $a^{j-i}=e$ y $j-i\geq 1$. Así, el conjunto de enteros positivos $m$ tales que $a^m=e$ es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos $n$.

Afirmamos que $$1,a,a^2,\ldots,a^{n-1}$$ son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían $0\leq i < j \leq {n-1}$ tales que $a^{j-i}=e$, pero $j-i\leq n-1$ sería una contradicción a la elección de $n$ como elemento mínimo.

Probemos ahora que $A=\{1,a,\ldots,a^{n-1}\}$ es subgrupo de $G$. Si tenemos $a^k$ y $a^l$ en $A$, su producto es $a^{k+l}$. Por el algoritmo de la división, $k+l=qn+r$, con $r\in \{0,\ldots,n-1\}$, de modo que $$a^ka^l=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r,$$ así que $A$ es cerrado bajo productos. Además, si $1\leq k\leq n-1$, entonces $1\leq n-k \leq n-1$ y $a^ka^{n-k}=a^n=e$. Así, $A$ es cerrado bajo inversos. Esto muestra que $A$ es subgrupo de $G$.

$\square$

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si $G$ es un grupo, su orden $\text{ord}(G)$ es la cantidad de elementos que tiene. Por otro, dado un elemento $a$, el orden $\text{ord}(a)$ de $a$ es el menor entero positivo $n$ tal que $a^n=e$, si es que existe.

Definimos al subgrupo generado por $a$ como $$\langle a\rangle:=\{a^n:n\in \mathbb{Z}\}.$$ La proposición anterior dice que si $\langle a \rangle$ es finito, entonces es un subgrupo de $G$ de orden $\text{ord}(\langle a \rangle) = \text{ord}(a).$ A los grupos de la forma $\langle a \rangle$ se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea $G$ un grupo finito y $H$ un subgrupo de $G$. Entonces $\text{ord}(H)$ divide a $\text{ord}(G)$.

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea $G$ un grupo finito.

  • Si $\text{ord}(G)$ es un primo $p$, entonces $G$ es cíclico.
  • El orden de cualquier elemento $a$ de $G$ divide al orden de $G$, y por lo tanto $a^{\text{ord}(G)}=1$.
  • Si $a$ es un elemento de $G$ de orden $n$ y $a^m=e$, entonces $n$ divide a $m$.

Demostración. Para la primer parte, si tomamos un elemento $a$ de $G$ que no sea $e$, ya vimos que $\langle a \rangle$ es un subgrupo cíclico de $G$. Por el teorema de Lagrange, su orden debe dividir al primo $p$. Pero el orden de $\langle a \rangle$ es al menos $2$, así que el orden de $\langle a \rangle$ debe ser $p$ y por lo tanto $\langle a \rangle=G$.

Como vimos arriba, el orden de $a$ es el orden de $\langle a \rangle$, que divide a $G$. Así,
\begin{align*}
a^{\text{ord}(G)}&=(a^{\text{ord}{a}})^{\text{ord}(G)/ \text{ord}(a)}\\
&=e^{\text{ord}(G)/ \text{ord}(a)}\\
&=e.
\end{align*} Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir $m=qn+r,$ con $r$ entre $0$ y $n-1$. Tenemos que $$e=a^m=a^{qn+r}=a^r.$$ Por lo visto en la sección anterior, necesariamente $r=0$, así que $n$ divide a $m$.

$\square$

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo $G$, tenemos elementos $a$ y $b$ tales que $a^7=1$ y $aba^{-1}=b^2$. Determina qué posibles valores puede tener el orden de $b$.

Sugerencia pre-solución. Conjetura una fórmula para $b^{2n}$ buscando un patrón. Establécela por inducción.

Solución. El orden de $a$ debe dividir a $7$, así que es o $1$ o $7$. Si es $1$, entonces $a=e$, por lo que por la hipótesis tenemos $b=b^2$. De aquí $b=e$, así que el orden de $b$ es $1$. La otra opción es que el orden de $a$ sea $7$.

Afirmamos que para todo entero $n$ se tiene que $a^nba^{-n}=b^{2^n}$. Esto se prueba inductivamente. Es cierto para $n=1$ por hipótesis. Si se cumple para cierta $n$ y elevamos la igualdad al cuadrado, tenemos que
\begin{align*}
b^{2^{n+1}}&=(b^{2n})^2\\
&=a^nba^{-n}a^nba^{-n}\\
&=a^nb^2a^{-n}\\
&=a^{n+1}ba^{-(n+1)},
\end{align*}

lo cual termina la inducción.

En particular, para $n=7$ tenemos que $a^7=a^{-7}=e$, por lo que $b=b^{2^7}$, y por lo tanto $b^{127}=e$. Como $127$ es primo, el orden de $b$ puede ser $1$ ó $127$.

$\square$

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de $b$ sea exactamente $127$. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero $n$, los enteros entre $1$ y $n-1$ que son primos relativos con $n$ forman un grupo con la operación de producto módulo $n$. Si llamamos $\varphi(n)$ a la cantidad de primos relativos con $n$ entre $1$ y $n-1$, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo $n$ y $a$ un entero primo relativo con $n$, se tiene que $$a^\varphi(n)\equiv 1\pmod n.$$

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para $p$ un primo y $a$ un entero que no sea múltiplo de $p$, se tiene que $$a^{p-1}\equiv 1 \pmod p.$$

Así, cuando $p$ es primo y $a$ no es múltiplo de $p$, se tiene que el orden de $a$ divide a $p-1$. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero $n>1$ se tiene que $n$ divide a $2^n-1$.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo $p$ que divida a $n$ y que además sea extremo en algún sentido. Trabaja módulo $p$.

Solución. Supongamos que existe un entero $n>1$ tal que $n$ divide a $2^n-1$. Sea $p$ el primo más pequeño que divide a $n$. Tomemos $a$ el orden de $2$ en el grupo multiplicativo $\mathbb{Z}_p$.

Por un lado, como $p$ divide a $n$ y $n$ divide a $2^n-1$, se tiene que $p$ divide a $2^n-1$ y por lo tanto $$2^n\equiv 1 \pmod p.$$ De esta forma, $a$ divide a $n$.

Por otro lado, por el pequeño teorema de Fermat, tenemos que $$2^{p-1}\equiv 1 \pmod p,$$ así que $a$ divide a $p-1$ y por lo tanto $a\leq p-1$.

Si $a\neq 1$, entonces $a$ tiene un divisor primo que divide a $n$ y es menor que $a\leq p-1$, lo cual es imposible pues elegimos a $p$ como el menor divisor primo de $n$. De esta forma, $a=1$. Pero esto da la contradicción $2\equiv 1 \pmod p$.

$\square$

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto $R$ con dos operaciones binarias suma y producto tales que:

  • $R$ con la suma es un grupo conmutativo.
  • El producto en $R$ es asociativo, es decir $(ab)c=a(bc)$ para $a,b,c$ en $R$.
  • Se cumple la ley distributiva, es decir $a(b+c)=ab+ac$ y $(b+c)a=ba+ca$ para $a,b,c$ en $R$.

El producto en $R$ no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo $R$ tiene neutro, decimos que $R$ es un anillo con $1$. Si la multiplicación de $R$ es conmutativa, decimos que $R$ es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, $ab=ac$ implica $b=c$ y $ba=ca$ implica $b=c$.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento distinto de la identidad aditiva tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que $R=\{a_1,\ldots,a_n\}$ es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea $a$ un elemento de $R$ y supongamos que $a$ no tiene inverso multiplicativo. Entonces, los números $$a_1a, a_2a,\ldots,a_n a$$ sólo pueden tomar a lo más $n-1$ valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos $a_ia=a_ja$ para $i\neq j$.

Como $R$ es dominio entero, se vale cancelar, lo cual muestra $a_i=a_j$. Esto es una contradicción, pues $a_i$ y $a_j$ eran elementos distintos de $R$. Así, todo elemento tiene inverso multiplicativo.

$\square$

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros $\mathbb{Z}$. Se construyen los campos $\mathbb{R}$, $\mathbb{Q}$ y $\mathbb{C}$. También, se construyen los anillos de polinomios $\mathbb{F}[x]$. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.