Archivo de la categoría: Variable compleja

Variable Compleja I: Transformaciones lineales y transformaciones de Möbius

Por Pedro Rivera Herrera

Introducción

En la entrada anterior definimos el concepto de transformación compleja, como una función $T$ del plano complejo en sí mismo y probamos algunos resultados básicos sobre estas transformaciones al considerar a $\mathbb{C}$ como un $\mathbb{R}$-espacio vectorial. Además, definimos algunas de las transformaciones del plano más elementales como la traslación, la homotecia, la reflexión y la rotación.

Nuestro objetivo en ésta entrada es trabajar con un tipo de transformación compleja muy particular, que nos permitirá entender mejor la geometría de las funciones complejas en la siguiente entrada.

Definición 25.1. (Transformaciones lineales.)
Sean $a,b\in\mathbb{C}$ con $a\neq 0$. A las transformaciones de la forma:
\begin{equation*}
T(z) = az + b, \tag{25.1}
\end{equation*} se les llama transformaciones lineales, las cuales son transformaciones dadas por una homotecia, una rotación y una traslación.

Observación 25.1.
En nuestros cursos de Geometría a las transformaciones de la forma (25.1), comúnmente se les llama transformaciones afines, sin embargo, en la mayoría de textos referentes a transformaciones del plano complejo $\mathbb{C}$ se les suele llamar transformaciones lineales puesto que geométricamente a una expresión de la forma (25.1) se le puede asociar una recta en el plano. Tener esto en cuenta es de suma importancia para no confundir las definiciones 24.2 y 24.3 con la definición 25.1, puesto que las primeras dos definiciones, vistas en nuestros cursos de Álgebra Lineal, corresponden a una propiedad entre $\mathbb{R}$-espacios vectoriales, mientras que la última definición está dada por una interpretación geométrica.

De hecho, es fácil verificar que no toda transformación lineal, definición 25.1, es $\mathbb{C}$-lineal, ya que $T(0) = b$ y $b\in\mathbb{C}$ no necesariamente es la constante cero.

Ejemplo 25.1.
Las transformaciones elementales del plano complejo son una transformación lineal particular.
a) Si $a=1$ y $b\in\mathbb{C}$, entonces tenemos la traslación por $b$, $T_b(z) = z+b$.
b) Si $a=e^{i\theta} \in \mathbb{C}$, con $\theta\in\mathbb{R}$ y $b=0$, entonces tenemos una rotación, $R_\theta(z) = e^{i\theta} z$.
c) Si $b=0$ y $a=k\in\mathbb{R}$, entonces tenemos una homotecia, $T(z)=kz$.
d) Si $a=e^{i\theta} \in \mathbb{C}$, con $\theta\in\mathbb{R}$ y $b\in\mathbb{C}$, entonces tenemos una reflexión respecto a una recta $L$, $r_\mathcal{L}(z) = e^{i\theta}\overline{z}+b$.

Procedemos ahora a establecer algunas propiedades sobre las transformaciones lineales.

Lema 25.1.
Sean $z_1, z_2, z_3\in\mathbb{C}$ tres puntos no colineales. El ángulo $\alpha$, figura 92, formado entre los vectores $z_2 – z_1$ y $z_3 – z_1$ está dado por:
\begin{equation*}
\alpha = \operatorname{arg}\left(\frac{z_3 – z_1}{z_2 – z_1}\right).
\end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Figura 92: Ángulo $\alpha$ formado entre los vectores $z_2 – z_1$ y $z_3 – z_1$.

Proposición 25.1.
Sea $T:\mathbb{C}\to\mathbb{C}$ una transformación lineal, entonces:

  1. $T$ envía rectas en rectas.
  2. $T$ envía circunferencias en circunferencias.

Demostración. Sea $T(z) = az + b$, con $a,b\in\mathbb{C}$ y $a\neq 0$.

  1. Sea $\mathcal{L}$ una recta en $\mathbb{C}$ con ecuación: \begin{equation*} c\overline{z} + \overline{z} c + d =0, \tag{25.2} \end{equation*} para algún $c\in\mathbb{C}$, $c\neq 0$, y $d\in\mathbb{R}$.

    Veamos que $T\left(\mathcal{L}\right)$ es también una recta. Notemos que cualquier $z\in\mathcal{L}$, bajo $T$ es de la forma $w = az+b$. Dado que $a\neq 0$, entonces: \begin{equation*} z = \frac{1}{a}\left(w-b\right), \end{equation*} por lo que, al ser $z$ un punto de $\mathcal{L}$ satisface (25.2), es decir: \begin{align*} 0 & = c\overline{\left(\frac{1}{a}\left(w-b\right)\right)} + \overline{c} \left(\frac{1}{a}\left(w-b\right)\right) + d\\ & = c \, \overline{\left(\frac{w}{a}\right)} + \overline{c} \left(\frac{w}{a}\right) + d – \left( c \overline{\left(\frac{b}{a}\right)} + \overline{c} \left(\frac{b}{a}\right)\right). \end{align*} Dado que: \begin{equation*} c \, \overline{\left(\frac{b}{a}\right)} + \overline{c} \left(\frac{b}{a}\right) = c \overline{\left(\frac{b}{a}\right)} + \overline{c \, \overline{\left(\frac{b}{a}\right)}} = 2 \operatorname{Re}\left(c \, \overline{\left(\frac{b}{a}\right)}\right), \end{equation*} entonces: \begin{equation*} d – \left( c \overline{\left(\frac{b}{a}\right)} + \overline{c} \left(\frac{b}{a}\right)\right) \in \mathbb{R}, \end{equation*} por lo que todos los puntos $w\in T\left(\mathcal{L}\right)$ satisfacen la ecuación de una recta, es decir, $T\left(\mathcal{L}\right)$ es una recta.
  2. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 25.2.
Toda transformación lineal preserva ángulos.

Demostración. Sea $T$ una transformación lineal, es decir, $T(z) = az + b$, con $a,b\in\mathbb{C}$ y $a\neq 0$.

Dado que $T$ envía rectas en rectas, basta probar que el ángulo formado entre dos rectas que se cortan en un punto es igual al de sus imágenes bajo $T$.

Sean $\mathcal{L}_1$ y $\mathcal{L}_2$ dos rectas que se cortan en un punto $z_0\in\mathbb{C}$. Sean $z_1 \in\mathcal{L}_1$ y $z_2 \in\mathcal{L}_2$. Veamos que:
\begin{equation*}
\angle\left(\mathcal{L}_1, \mathcal{L}_2\right) = \angle\left(T(\mathcal{L}_1), T(\mathcal{L}_2)\right).
\end{equation*}

Por el lema 24.1 tenemos que:
\begin{align*}
\angle\left(T(\mathcal{L}_1), T(\mathcal{L}_2)\right) & = \operatorname{arg}\left(\frac{T(z_2) – T(z_0)}{T(z_1) – T(z_0)}\right)\\
& = \operatorname{arg}\left(\frac{az_2 + b – az_0-b}{az_1 + b – az_0-b}\right)\\
& = \operatorname{arg}\left(\frac{z_2 – z_0}{z_1-z_0}\right)\\
& = \angle\left(\mathcal{L}_1, \mathcal{L}_2\right).
\end{align*}

$\blacksquare$

Observación 25.2.
En general, es posible definir a una transformación compleja para la cual las transformaciones lineales son un caso particular. Dichas transformaciones resultan de gran interés en el estudio de las funciones complejas pues nos dicen mucho sobre su comportamiento geométrico.

Definición 25.2. (Transformaciones fraccionarias lineales.)
Sean $a,b,c,d\in\mathbb{C}$, con al menos $c$ ó $d$ distinto de cero. Una transformación de la forma:
\begin{equation*}
T(z) = \frac{az + b}{cz+d}, \tag{25.3}
\end{equation*} recibe el nombre de transformación fraccionaria lineal.

Observación 25.3.
Debe ser claro que una función $T$ dada por (25.3) está bien definida para todo $z\in\mathbb{C}$ tal que $cz+d\neq 0$. De hecho $T$ es una función analítica en $\mathbb{C}\setminus A$, donde:
\begin{equation*}
A = \{z\in\mathbb{C} : cz + d = 0\}.
\end{equation*}

Más aún, bajo la condición $c\neq0$, la función $T$ se restringe de $\mathbb{C}\setminus\left\{-\frac{d}{c}\right\}$ en $\mathbb{C}\setminus\left\{\frac{a}{c}\right\}$.

Definición 25.3. (Transformaciones de Möbius.)
Sean $a,b,c,d\in\mathbb{C}$. Una transformación de la forma (25.3) tal que $ad – bc\neq 0$ recibe el nombre de transformación de Möbius.

Observación 25.4.
La condición $ad – bc\neq 0$, impuesta sobre las constantes $a,b,c,d\in\mathbb{C}$, nos permite garantizar lo siguiente:
1) Las expresiones $az + b$ y $cz + d$ no se anulan para los mismos valores de $z$.
2) La transformación $T$ no puede ser constante, ya que $a$ y $c$ no pueden ser ambas cero, al igual que $b$ y $d$ no pueden ser ambas cero.
3) En general, el denominador no puede ser un múltiplo constante del numerador, es decir que $az + b$ y $cz + d$ no tienen un factor común.

Además, no es difícil verificar que $T$ es biyectiva si y solo si $ad – bc\neq 0$, por lo que se deja como ejercicio al lector.

Observación 25.5.
Notemos que toda transformación de la forma:
\begin{equation*}
w = T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc\neq 0,
\end{equation*} es equivalente a una expresión de la forma:
\begin{equation*}
Azw + Bz + Cw + D = 0, \,\,\,\text{con} \,\,AD – BC\neq 0,
\end{equation*} donde $A = c$, $B=-a$, $C =d$ y $D=-b$.

Dado que ésta última expresión es lineal en $z$ y es lineal en $w$, entonces es bilineal en $z$ y $w$, por lo que una transformación de Möbius también suele llamarse una transformación bilineal.

Ejemplo 25.2.
Notemos que algunas de las transformaciones definidas antes, son un una transformación de Möbius particular.
a) Si $a=1=d$ y $b=0=c$, entonces tenemos la transformación identidad, $T(z) = z$.
b) Si $c=0$ y $d=1$, entonces tenemos una transformación lineal, $T(z) = az + b$.
c) Si $a = d = 0$ y $b=c$, entonces tenemos la transformación inversión, $T(z)=\dfrac{1}{z}$, dada en el ejemplo 24.1.

Es común trabajar con las transformaciones de Möbius como funciones sobre el plano complejo extendido, por lo que, considerando la observación 15.5 y el ejercicio 4 de la entrada 12, podemos definir a una transformación de Möbius como una función continua en $\mathbb{C}_\infty$, como sigue:

Definición 25.4. (Transformaciones de Möbius en $\mathbb{C}_\infty$.)
Sean $a,b,c,d\in\mathbb{C}$. Si $ad – bc\neq 0$, entonces diremos que una función racional $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ dada como:
\begin{equation*}
T(z)= \left\{ \begin{array}{lcc}
\dfrac{az+b}{cz+d}, & \text{si} & z \neq -\frac{d}{c}, \,\, z\neq \infty, \\
\\ \infty, & \text{si} & z = -\frac{d}{c}, \\
\\ \dfrac{a}{c}, & \text{si} & z = \infty,
\end{array}
\right.
\end{equation*} es una transformación de Möbius en el plano complejo extendido.

Observación 25.6.
Como hemos mencionado anteriormente, la condición $ad – bc\neq 0$ se impone para evitar que trabajemos con una transformación constante. Sin embargo, podemos utilizar dicha condición para plantear de una forma equivalente a la definición 25.4 considerando los siguientes casos:
1) Si $c=0$, entonces la condición $ad – bc\neq 0$ se reduce a $ad \neq 0$, en dicho caso tenemos que $T(\infty) = \infty$ y:
\begin{equation*}
T(z) = \frac{az+b}{d} = \frac{a}{d} \, z + \frac{b}{d}.
\end{equation*} 2) Si $c\neq 0$, tenemos $ad – bc\neq 0$, entonces $T(\infty) = a/c$, $T\left(-d/c\right) = \infty$ y:
\begin{equation*}
T(z) = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{bc-ad}{c}\frac{1}{cz+d}.
\end{equation*}

Ejemplo 25.3.
La transformación:
\begin{equation*}
f(z) = \frac{z-1}{iz+i},
\end{equation*} es una transformación de Möbius desde que $a=1$, $b=-1$, $c=i=d$ y $ad – bc = i – (-i) = 2i \neq 0$.

Dado que $c=i\neq 0$, entonces la transformación de Möbius $f$ es una función restringida, es decir:
\begin{equation*}
f:\mathbb{C}\setminus\{-1\} \to \mathbb{C}\setminus\{-i\}.
\end{equation*}

Podemos extender dicha transformación de Möbius al plano complejo extendido como sigue:
\begin{equation*}
f(z) = \frac{z-1}{iz+i}, \quad \text{si} \quad z\neq -1 \quad \text{y} \quad z\neq \infty,
\end{equation*}

mientras que:
\begin{equation*}
f(-1) = \infty \quad \text{y} \quad f(\infty) = -i.
\end{equation*}

Proposición 25.3.
Sean $T_1$ y $T_2$ dos transformaciones de Möbius dadas por:
\begin{equation*}
T_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1} \quad \text{y} \quad T_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}
\end{equation*}
con $a_1d_1 – b_1c_1 \neq 0$ y $a_2d_2 – b_2c_2 \neq 0$. Entonces su composición es también una transformación de Möbius.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 25.4.
Toda transformación de Möbius es una biyección de $\mathbb{C}_\infty$ en $\mathbb{C}_\infty$. En particular la inversa de una transformación de Möbius es también una transformación de Möbius.

Demostración. Sea $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ una transformación de Möbius dada por:
\begin{equation*}
T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc \neq 0.
\end{equation*}

De acuerdo con la observación 25.6 tenemos que si $c = 0$, entonces $T(\infty) = \infty$ y si $c\neq 0$, entonces $T(\infty) = a/c$ y $T\left(-d/c\right) = \infty$.

Primeramente verifiquemos que $T$ es inyectiva. Supongamos que $T(z_1) = T(z_2)$. Notemos que si $c \neq 0$, entonces tenemos la condición $ad – bc\neq 0$, por lo que:
\begin{align*}
\frac{az_1 + b}{cz_1+d} &= \frac{az_2 + b}{cz_2+d}\\ & \Longleftrightarrow \quad adz_1 + bcz_2 = adz_2 + bcz_1\\
& \Longleftrightarrow \quad (ad-bc)(z_1 – z_2) = 0\\
& \Longleftrightarrow \quad z_1 = z_2.
\end{align*}

Por otra parte, notemos que si $c=0$, entonces tenemos la condición $ad\neq 0$, por lo que:
\begin{align*}
\frac{az_1 + b}{d} &= \frac{az_2 + b}{d}\\ & \Longleftrightarrow \quad az_1 + b= az_2 + b\\
& \Longleftrightarrow \quad z_1 = z_2.
\end{align*}

Verifiquemos ahora que $T$ es suprayectiva. Sea $w\in\mathbb{C}_\infty$. Veamos que existe $z\in\mathbb{C}_\infty$ tal que $T(z) = w$. Notemos que si $w = \infty$, entonces $z = -d/c$ corresponde con dicho valor si $c = 0$. Sin pérdida de generalidad supongamos que $w\neq \infty$, entonces tenemos que $c\neq 0$ y por tanto se cumple la condición $ad – bc\neq 0$, por lo que planteamos la ecuación:
\begin{equation*}
w = \frac{az+b}{cz+d}.
\end{equation*}

Resolviendo para $z$ tenemos que:
\begin{equation*}
z = T^{-1}(w) = \frac{-dw+b}{cw-a},
\end{equation*} por lo que $T$ es suprayectiva.

Dado que $T$ es biyectiva entonces existe $T^{-1}$ tal que $T \circ T^{-1} = T^{-1} \circ T = \mathbb{I}_\mathbb{C}$ para todo $z\in\mathbb{C}_\infty$, la cual está dada por:
\begin{equation*}
T^{-1}(z) = \frac{-dz+b}{cz-a},\,\,\,\text{con} \,\,ad – bc \neq 0,
\end{equation*} tal que si $c = 0$, entonces $T^{-1}(\infty) = \infty$ y si $c\neq 0$, entonces $T^{-1}(a/c) = \infty$ y $T^{-1}\left(\infty\right) = -d/c$. Es claro que $T^{-1}$ es también una transformación de Möbius.

$\blacksquare$

Observación 25.7.
De acuerdo con las proposiciones 25.3 y 25.4 no es díficil verificar que el conjunto de todas las transformaciones de Möbius dotado con la operación de composición de funciones forma un grupo.

Proposición 25.5.
Toda transformación de Möbius $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ se puede expresar como la composición de transformaciones lineales (homotecias, rotaciones y traslaciones) y la inversión.

Demostración. Sea $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ una transformación de Möbius dada por:
\begin{equation*}
T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc \neq 0,
\end{equation*} tal que si $c = 0$, entonces $T(\infty) = \infty$ y si $c\neq 0$, entonces $T(\infty) = a/c$ y $T\left(-d/c\right) = \infty$.\\

Por la observación 25.6(1) tenemos que, para $c=0$ la transformación $T$ se puede ver como la composición $T_2 \circ T_1$, donde:
\begin{equation*}
T_1(z) = \frac{a}{d}\,z, \quad \quad T_2(z) = z + \frac{b}{d},
\end{equation*} con $ad\neq 0$, por lo que en dicho caso se cumple el resultado.

Por otra parte, por la observación 25.6(2), para $c\neq 0$ tenemos que la transformación $T$ se puede ver como la composición $T_3 \circ T_2 \circ T_1$, donde:
\begin{equation*}
T_1(z) = cz + d, \quad \quad T_2(z) = \frac{1}{z}, \quad \quad T_3(z) = \frac{a}{c} + \frac{bc-ad}{c} z,
\end{equation*} con $ad – bc\neq 0$, por lo que en dicho caso también se cumple el resultado.

$\blacksquare$

Procedemos a analizar algunas propiedades geométricas importantes de las transformaciones de Möbius. Para ello nos apoyaremos de algunos resultados para la transformación inversión.

Tenemos que la transformación:
\begin{equation*}
w = T(z) = \frac{1}{z}, \tag{25.4}
\end{equation*} establece una biyección entre los puntos distintos de cero de los planos $z$ y $w$. Dado que $z \, \overline{z} = |\,z\,|^2$, entonces podemos reescribir a (25.4) mediante la composición de las siguientes transformaciones:
\begin{equation*}
T_1(z) = \frac{1}{\overline{z}} = \frac{z}{|\,z\,|^2}, \quad \quad T_2(z) = \overline{z}, \tag{25.5}
\end{equation*} entonces es claro que $T(z) = (T_2 \circ T_1)(z)$.

Notemos que la primer transformación en (25.5) nos describe una inversión con respecto a la circunferencia unitaria $C(0,1)$, es decir, la imagen de un punto $z\neq 0$ es el punto $w_1 = T_1(z)$ con las siguientes propiedades:
\begin{equation*}
|\,w_1\,| = \frac{1}{|\,z\,|}, \quad \quad \operatorname{arg} w_1 = \operatorname{arg} z.
\end{equation*}

Por lo que los puntos fuera de la circunferencia unitaria $|\,z\,|=1$ serán mapeados, mediante $T_1$, en los puntos $w_1\neq 0$ dentro de dicha circunferencia y viceversa. Mientras que los puntos que caigan sobre la circunferencia unitaria $|\,z\,|=1$, bajo $T_1$, serán mapeados en ellos mismos. Por otra parte, la segunda transformación dada en (16.2) es simplemente una reflexión a través del eje real de cada $w_1 = T_1(z) \neq 0$, es decir $w = \overline{w_1}$, figura 93.

Figura 93: Gráfica de la transformación inversión vista como la composición de las transformaciones $T_1$ y $T_2$ dadas en (25.5).

Podemos visualizar lo anterior en el siguiente applet de GeoGebra: https://www.geogebra.org/m/z3cf2kyt.

Desde que:
\begin{equation*}
\lim_{z\to 0} \frac{1}{z} = \infty, \quad \lim_{z\to \infty} \frac{1}{z} = 0,
\end{equation*} entonces podemos definir una biyección entre los planos $z$ y $w$ extendidos, es decir entre $\mathbb{C}_\infty$ y $\mathbb{C}_\infty$, mediante:
\begin{equation*}
T(z) = \left\{ \begin{array}{lcc}
\dfrac{1}{z}, & \text{si} & z\neq 0, z\neq \infty,\\
\\0, & \text{si} & z = \infty, \\
\\ \infty, & \text{si} & z=0.
\end{array}
\right.
\end{equation*}

Es claro que la transformación $T$, definida previamente, es una función continua en $\mathbb{C}_\infty$.

Considerando lo anterior, estamos listos para probar la siguiente:

Proposición 25.6.
La transformación inversión mapea el conjunto de circunferencias y rectas en el conjunto de circunferencias y rectas.

Demostración. Sea $T(z) = 1/z$ la transformación inversión. De nuestros cursos de geometría analítica sabemos que para $A,D,E,F$ números reales tales que $D^2+E^2 > 4AF$, la ecuación:
\begin{equation*}
A(x^2 + y^2) + Dx + Ey + F = 0, \tag{25.6}
\end{equation*} representa una circunferencia o una recta, si $A\neq 0$ ó $A = 0$, respectivamente.

Dado que $z\, \overline{z} = |\,z\,|^2$, tenemos que si $w = u + iv$ es la imagen de $z=x+iy\neq 0$ bajo la transformación inversión, es decir:
\begin{equation*}
w=T(z) = \frac{1}{z} = \frac{\overline{z}}{|\,z\,|^2},
\end{equation*}entonces:
\begin{equation*}
u=\frac{x}{x^2+y^2}, \quad v = -\frac{y}{x^2+y^2}. \tag{25.7}
\end{equation*}

Considerando que la transformación inversión establece una biyección entre los planos $z$ y $w$, entonces podemos plantear:
\begin{equation*}
z= T^{-1}(w) = \frac{1}{w} = \frac{\overline{w}}{|\,w\,|^2},
\end{equation*} de donde:
\begin{equation*}
x=\frac{u}{u^2+v^2}, \quad y = -\frac{v}{u^2+v^2}.\\ \tag{25.8}
\end{equation*}

Supongamos que $z=x+iy\neq 0$ satisface (25.6), veamos que $w=u+iv = T(z) \neq 0$ también satisface una ecuación similar. Sustituyendo las ecuaciones dadas en (25.8) tenemos que:
\begin{align*}
0 & = A\left[\frac{u^2+v^2}{(u^2+v^2)^2}\right] + D\left(\frac{u}{u^2+v^2}\right) + E\left(-\frac{v}{u^2+v^2}\right) + F\\
& = A\left(\frac{1}{u^2+v^2}\right) + Du\left(\frac{1}{u^2+v^2}\right) -Ev\left(\frac{1}{u^2+v^2}\right) + F,
\end{align*} de donde se sigue que $w=u+iv$ satisface la ecuación:
\begin{equation*}
F(u^2 + v^2) + Du – Ev + A = 0, \tag{25.9}
\end{equation*}la cual corresponde con la ecuación de una circunferencia o una recta, si $F\neq 0$ ó $F = 0$, respectivamente.

De manera análoga se puede mostrar que si $w=u+iv$ satisface (25.9), entonces, utilizando (25.7), $z=x+iy$ satisface (25.6).

$\blacksquare$

Observación 25.8.
Si consideramos a $T$ la transformación inversión, entonces de las ecuaciones (25.6) y (25.9) tenemos que:
1) Si $A\neq0$ y $F\neq 0$, en el plano $z$ se tiene una circunferencia que no pasa a través del origen, la cual, bajo $T$, será mapeada en una circunferencia que tampoco pasa por el origen en el plano $w$.
2) Si $A\neq0$ y $F=0$, en el plano $z$ se tiene una circunferencia que pasa a través del origen, la cual, bajo $T$, será mapeada en una recta que no pasa por el origen en el plano $w$.
3) Si $A=0$ y $F\neq 0$, en el plano $z$ se tiene una recta que no pasa a través del origen, la cual, bajo $T$, será mapeada en una circunferencia que pasa por el origen en el plano $w$.
4) Si $A=0$ y $F= 0$, en el plano $z$ se tiene una recta que pasa a través del origen, la cual será mapeada, bajo $T$, en una recta que pasa por el origen en el plano $w$.

Podemos visualizar lo anterior en el siguiente applet de GeoGebra: https://www.geogebra.org/m/eqh4nbab.

De acuerdo con las proposiciones 25.1, 25.5 y 25.6 se tiene el siguiente:

Corolario 25.1.
Toda transformación de Möbius mapea el conjunto de rectas y circunferencias en el conjunto de rectas y circunferencias.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 25.4.
Muestra que la recta $\mathcal{L} : 3y=x$, en el plano $z$, es enviada en una circunferencia, en el plano $w$, bajo la transformación de Möbius:
\begin{equation*}
w = T(z) = \frac{i z+ 2}{4z+i}. \tag{25.10}
\end{equation*}

Solución. Sean $z=x+iy$ y $w=u+iv$. Para determinar la imagen de la recta $3y=x$ bajo $T$, debemos encontrar los valores de $x$ y de $y$ en términos de $u$ y de $v$.

Resolvemos (25.10) para $z$:
\begin{align*}
w = \frac{i z+ 2}{4z+i} \quad &\Longrightarrow \quad 4zw + iw = iz +2\\
&\Longrightarrow \quad z(4w-i) = 2-iw\\
&\Longrightarrow \quad z = \frac{2-iw}{4w-i}.
\end{align*}

Entonces:
\begin{align*}
x+iy & = \frac{v+2-iu}{4u+i(4v-1)} \frac{4u-i(4v-1)}{4u-i(4v-1)}\\
& = \frac{(v+2-iu)[4u+i(4v-1)]}{16u^2+(4v-1)^2}\\
& = \frac{9u – i(4u^2+4v^2+7v-2)}{16u^2+(4v-1)^2},
\end{align*} de donde:
\begin{equation*}
x = \frac{9u}{16u^2+(4v-1)^2}, \quad \quad y = -\frac{4u^2+4v^2+7v-2}{16u^2+(4v-1)^2}.
\end{equation*}

Sustituyendo en la ecuación de la recta tenemos que:
\begin{equation*}
\frac{9u}{16u^2+(4v-1)^2} = \frac{-3(4u^2+4v^2+7v-2)}{16u^2+(4v-1)^2},
\end{equation*} es decir:
\begin{equation*}
u^2 + v^2 + \frac{3}{4}u+\frac{7}{4}v-\frac{1}{2} = 0,
\end{equation*} la cual corresponde con la ecuación de una circunferencia, en el plano $w$, con centro en $\left(-3/8, -7/8\right)$ y radio $r = (3/8) \sqrt{10}$.

Figura 94: Imagen de la recta $3y=x$ bajo la transformación de Möbius (25.10).

Podemos generalizar la definición 24.10, de punto fijo de una transformación, para las funciones complejas definidas sobre el plano complejo extendido.

Definición 25.5.(Punto fijo.)
Sea $S\subset\mathbb{C}_\infty$ y sea $f: S \to \mathbb{C}_\infty$ una función. Diremos que un punto $z_0 \in S$ es un punto fijo de $f$ si y solo si $f(z_0) = z_0$.

Ejemplo 25.5.
a) La función $f(z) = z^2$ fija a los puntos $0, 1$ e $\infty$.
b) La función $f(z) = \dfrac{1}{z}$ fija a los puntos $1$ y $-1$.
c) La función $f(z) = z+i$ fija al $\infty$.

Una pregunta interesante que podemos hacernos es ¿cuáles son los puntos fijos de una transformación de Möbius?

Para responder a esta pregunta consideremos los siguientes resultados.

Proposición 25.7.
Toda transformación de Möbius $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ deja fijo 1, 2 o todos los puntos de $\mathbb{C}_\infty$.

Demostración. Sea $T:\mathbb{C}_\infty \to \mathbb{C}_\infty$ una transformación de Möbius dada por:
\begin{equation*}
T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc\neq 0.
\end{equation*}

Para encontrar los puntos fijos de $T$ planteamos la siguiente ecuación:
\begin{equation*}
T(z) = \frac{az + b}{cz+d} = z,
\end{equation*} resolviendo para $z$ obtenemos la ecuación cuadrática:
\begin{equation*}
cz^2 + (d-a)z – b = 0.\tag{25.11}
\end{equation*}

Caso 1. Si $c\neq 0$, por la observación 25.6 tenemos que $T(\infty) = a/c$ y $T\left(-d/c\right) = \infty$, es decir, $T$ no fija al punto $z=\infty$. Por otra parte, es claro que la ecuación (25.11) tiene exactamente 1 ó 2 soluciones, por lo que en dicho caso tenemos que $T$ fija 1 ó 2 puntos de $\mathbb{C}_\infty$.

Caso 2. Si $c=0$, por la observación 25.6 tenemos que $T(\infty) = \infty$, es decir, $T$ fija al punto $z=\infty$. Por otra parte, para $c=0$ tenemos la condición $ad\neq 0$, por lo que $a \neq 0$ y $d \neq 0$, entonces procedemos a analizar los siguientes casos:

  • Si $a\neq d$, entonces la transformación $T$ es de la forma: \begin{equation*} T(z) = \frac{az + b}{d}. \end{equation*} De (25.11) tenemos la solución: \begin{equation*} z = \frac{b}{d-a} \neq \infty, \end{equation*} la cual es otro punto fijo de $T$, por lo que tenemos exactamente 2 puntos fijos, es decir, $T$ deja fijos a 2 puntos de $\mathbb{C}_\infty$.
  • Si $a = d$, entonces la ecuación (25.11) se reduce a $b=0$, por lo que la transformación $T$ es de la forma: \begin{equation*} T(z) = \frac{az + 0}{0z + a} = z, \end{equation*} la cual es la transformación identidad, por lo que claramente $T$ fija a todo punto de $\mathbb{C}_\infty$.

$\blacksquare$

Corolario 25.2.
Si $T$ es una transformación de Möbius que fija tres puntos distintos de $\mathbb{C}_\infty$, entonces $T$ es la identidad.

Demostración. Es inmediata del resultado anterior.

$\blacksquare$

Corolario 25.3.
Si $T_1$ y $T_2$ son dos transformaciones de Möbius que fijan a tres puntos distintos de $\mathbb{C}_\infty$, entonces $T_1=T_2$.

Demostración. Se sigue de las proposiciones 25.3, 25.4 y del corolario 25.3, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Observación 25.9.
El último resultado es de suma importancia pues nos dice que el comportamiento de una transformación de Möbius está completamente descrito por su acción sobre tres puntos distintos de $\mathbb{C}_\infty$.

Observación 25.10.
Notemos que si $T$ es una transformación de Möbius, digamos:
\begin{equation*}
T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc\neq 0,
\end{equation*} entonces para $\lambda\in\mathbb{C}$, tal que $\lambda\neq 0$, se cumple que:
\begin{equation*}
S(z) = \frac{\lambda a z +\lambda b}{\lambda c z + \lambda d}
\end{equation*} también es una transformación de Möbius desde que $\lambda^2(ad – bc) \neq 0$. Más aún, es claro que $T = S$.

Ejemplo 25.6.
Determina la transformación de Möbius que envía los puntos del plano $z$, en los puntos del plano $w$, respectivamente.
a) $-1\mapsto -i$, $0 \mapsto 1$ y $1 \mapsto i$.
b) $1\mapsto 0$, $i \mapsto 1$ y $-1 \mapsto \infty$.
c) $1\mapsto i$, $0 \mapsto \infty$ y $-1 \mapsto 1$.

Solución. Sea $T$ una transformación de Möbius, es decir:
\begin{equation*}
w = T(z) = \frac{az + b}{cz+d}, \,\,\,\text{con} \,\,ad – bc\neq 0.
\end{equation*}

a) Dado que $T(0)=1$, tenemos que:
\begin{equation*}
1 = \frac{b}{d} \quad \Longrightarrow \quad b = d,
\end{equation*} por lo que $b(a-c) \neq 0$, es decir $b\neq 0$ y $a\neq c$, entonces:
\begin{equation*}
T(z) = \frac{az + b}{cz+b}, \,\,\,\text{con} \,\,b(a-c) \neq 0.
\end{equation*} Como $T(-1) = -i$ y $T(1) = i$, tenemos el siguiente sistema de ecuaciones:
\begin{equation*}
\left\{ \begin{array}{c}
\dfrac{-a+b}{-c+b} = -i,\\
\\ \dfrac{a+b}{c+b} = i.
\end{array}
\right. \quad \Longrightarrow \quad \left\{ \begin{array}{c}
-a+b = ic-ib,\\
\\ a+b = ic+ib.
\end{array}
\right.
\end{equation*}Resolviendo tenemos $a = ib$ y $c = -ib$.

Como $b\neq 0$, entonces:
\begin{equation*}
T(z) = \frac{b(iz+1)}{b(-iz+1)} = \frac{iz+1}{-iz+1} = \frac{i-z}{i+z}.
\end{equation*}

b) Puesto que $T(-1)=\infty$, de la observación 25.6 tenemos que $c\neq 0$ y $-d/c = -1$, es decir, $c=d$.

Como $T(1) = 0$, entonces $a+b = 0$, es decir $a = -b$, entonces:
\begin{equation*}
T(z) = \frac{-b(z-1)}{d(z+1)}, \quad -2bd \neq 0.
\end{equation*}Por último, como $T(i)=1$, entonces:
\begin{equation*}
\frac{-b(i-1)}{d(i+1)} = 1 \quad \Longrightarrow \quad b = d \left(\frac{1+i}{1-i}\right) = id.
\end{equation*}Por lo tanto, como $d\neq 0$, tenemos que:
\begin{equation*}
T(z) = \frac{-id(z-1)}{d(z+1)}= -i\left(\dfrac{z-1}{z+1}\right).
\end{equation*}

c) Dado que $T(0)=\infty$, de la observación 25.6 tenemos que $c\neq 0$ y $d=0$, por lo que:
\begin{equation*}
T(z) = \frac{az + b}{cz}, \,\,\,\text{con} \,\,bc \neq 0.
\end{equation*}Como $T(1) = i$ y $T(-1) = 1$, tenemos el siguiente sistema de ecuaciones:
\begin{equation*}
\left\{ \begin{array}{c}
\dfrac{a+b}{c} = i,\\
\\ \dfrac{-a+b}{-c} = 1.
\end{array}
\right. \quad \Longrightarrow \quad \left\{ \begin{array}{c}
a+b = ic,\\
\\ -a+b = -c.
\end{array}
\right.
\end{equation*} Resolviendo tenemos $2a = c(1+i)$ y $2b = c(i-1)$.

De acuerdo con la observación 25.10 y considerando que $c\neq 0$, entonces tenemos que:
\begin{align*}
T(z) = \frac{az+b}{cz} & = \frac{2az+2b}{2cz}\\
&= \frac{c[(1+i)z+(i-1)]}{2cz}\\
&= \frac{(1+i)z+(i-1)}{2z}.
\end{align*}

Proposición 25.8.
Sean $z_1, z_2, z_3 \in\mathbb{C}_\infty$ tres puntos distintos. Entonces existe una única transformación de Möbius tal que:
\begin{equation*}
T(z_1) = 0, \quad T(z_2) = 1 \quad \text{y} \quad T(z_3) = \infty. \tag{25.12}
\end{equation*}

Demostración. Sean $z_1, z_2, z_3 \in\mathbb{C}_\infty$ tres puntos distintos. La unicidad se sigue del corolario 25.3.

Supongamos primeramente que los tres puntos son finitos, entonces para la existencia definimos a la transformación:
\begin{equation*}
T(z) = \frac{(z-z_1)(z_2 – z_3)}{(z-z_3)(z_2 – z_1)}, \quad \forall z\in\mathbb{C}. \tag{25.13}
\end{equation*} Primero veamos que $T$ es una transformación de Möbius. Notemos que:
\begin{align*}
T(z) &= \frac{(z-z_1)(z_2 – z_3)}{(z-z_3)(z_2 – z_1)}\\
& = \frac{(z_2 – z_3) z + z_1(z_3-z_2)}{(z_2 – z_1)z + z_3 (z_1 – z_2)}\\
& =: \frac{az+b}{cz+d},
\end{align*}de donde:
\begin{align*}
ad – bc & = z_3(z_2 – z_3)(z_1 – z_2) + z_1(z_3 – z_2)(z_1 – z_2)\\
& = (z_2 – z_3)(z_1 – z_2)(z_3 – z_1).
\end{align*}Dado que $z_1, z_2, z_3$ son distintos, entonces $z_2 – z_3 \neq 0$, $z_1 – z_2 \neq 0$ y $z_3 – z_1 \neq 0$, es decir, $ad – bc \neq 0$, por lo que $T$ es una transformación de Möbius.

Veamos ahora que $T$ cumple (25.12). Es claro que:
\begin{align*}
T(z_1) &= \frac{(z_1-z_1)(z_2 – z_3)}{(z_1-z_3)(z_2 – z_1)} = 0,\\
T(z_2) &= \frac{(z_2-z_1)(z_2 – z_3)}{(z_2-z_3)(z_2 – z_1)} = 1,\\
T(z_3) &= \frac{(z_3-z_1)(z_2 – z_3)}{(z_3-z_3)(z_2 – z_1)} = \infty.
\end{align*}

Por otra parte, si alguno de los $z_k$’s es $\infty$, definimos a $T(z)$ de modo que $z_k$ tienda a $\infty$ en (25.13). Sin pérdida de generalidad, supongamos que $z_1 = \infty$, entonces reescribimos el lado derecho de la igualdad en (25.13) como sigue:
\begin{equation*}
\dfrac{\dfrac{z}{z_1} – 1}{z-z_3} \dfrac{z_2-z_3}{\dfrac{z_2}{z_1} – 1},
\end{equation*}entonces:
\begin{equation*}
T(z) := \lim_{z_1 \to \infty} \dfrac{\dfrac{z}{z_1} – 1}{z-z_3} \dfrac{z_2-z_3}{\dfrac{z_2}{z_1} – 1} = \frac{z_2 – z_3}{z – z_3}.
\end{equation*}Claramente $T$ es una transformación de Möbius pues $z_3 – z_2 \neq 0$. Notemos que:
\begin{equation*}
T(\infty) = 0, \quad T(z_2) = 1 \quad \text{y} \quad T(z_3) = \infty.
\end{equation*}Análogamente, si $z_2 = \infty$ podemos definir:
\begin{equation*}
T(z) = \frac{z – z_1}{z – z_3},
\end{equation*}mientras que si $z_3 = \infty$ definimos:
\begin{equation*}
T(z) = \frac{z – z_1}{z_2 – z_1}.
\end{equation*}En ambos casos $T$ es una transformación de Möbius y se cumple (25.12).

$\blacksquare$

El resultado anterior nos motiva a dar la siguiente:

Definición 25.6. (Razón cruzada.)
Sean $z_1, z_2, z_3 \in\mathbb{C}_\infty$ tres puntos distintos y sea $z\in\mathbb{C}_\infty$. La {\bf razón cruzada} de $z, z_1, z_2$ y $z_3$, denotada como $(z; z_1, z_2, z_3)$, es el valor $T(z) \in\mathbb{C}_\infty$, donde $T$ es la única transformación de Möbius tal que $T(z_1)=0$, $T(z_2)=1$ y $T(z_3)=\infty$.

Observación 25.11.
De acuerdo con la proposición 25.8 es claro que:
\begin{equation*}
(z; z_1, z_2, z_3) = T(z)= \left\{ \begin{array}{lcc}
\dfrac{(z-z_1)(z_2 – z_3)}{(z-z_3)(z_2 – z_1)} & \text{si} & z_1, z_2, z_3 \in\mathbb{C}, \\
\\ \dfrac{z_2-z_3}{z-z_3} & \text{si} & z_1 = \infty, \\
\\ \dfrac{z-z_1}{z-z_3} & \text{si} & z_2 = \infty, \\
\\ \dfrac{z-z_1}{z_2-z_1} & \text{si} & z_3 = \infty.
\end{array}
\right.
\end{equation*}

Ejemplo 25.7.
Determina el valor de las siguientes razones cruzadas.
a) $(z;0,1,\infty)$.
b) $(z;1,\infty, 0)$.
c) $(z_2;z_1,z_2,z_3)$.
d) $(2;\infty, i,-1)$.

Solución. Tenemos que:
a) \begin{equation*}
(z;0,1,\infty) = \frac{z-0}{1-0} = z.
\end{equation*}b)
\begin{equation*}
(z;1,\infty,0) = \frac{z-1}{z-0} = \frac{z-1}{z}.
\end{equation*}c)
\begin{equation*}
(z_2;z_1,z_2,z_3) = \dfrac{(z_2-z_1)(z_2 – z_3)}{(z_2-z_3)(z_2 – z_1)} = 1.
\end{equation*}d)
\begin{equation*}
(2;\infty, i,-1) = \frac{i-(-1)}{2-(-1)} = \frac{1+i}{3}.
\end{equation*}

Ejemplo 25.8.
De acuerdo con la definición 25.6, la transformación de Möbius del ejemplo 25.6(b) puede escribirse como $T(z) = (z;1,i,-1)$.

Corolario 25.4.
Sean $z_1, z_2, z_3 \in\mathbb{C}_\infty$ tres puntos distintos y $w_1, w_2, w_3 \in\mathbb{C}_\infty$ tres puntos distintos. Entonces, existe una única transformación de Möbius tal que:
\begin{equation*}
H(z_1) = w_1, \quad H(z_2) = w_2 \quad \text{y} \quad H(z_3) = w_3.
\end{equation*}

Demostración. Dadas las hipótesis, sean $T(z) = (z; z_1, z_2, z_3)$ y $S(w) = (w; w_1, w_2, w_3)$. Definimos $H=S^{-1}\circ T$, entonces es claro que:
\begin{align*}
H(z_1) & = (S^{-1}\circ T)(z_1) = S^{-1}\left(T(z_1)\right) = S^{-1}\left(0\right) = w_1,\\
H(z_2) &= (S^{-1}\circ T)(z_2) = S^{-1}\left(T(z_2)\right) = S^{-1}\left(1\right) = w_2,\\
H(z_3) &= (S^{-1}\circ T)(z_3) = S^{-1}\left(T(z_3)\right) = S^{-1}\left(\infty\right) = w_3.
\end{align*} La unicidad se sigue del corolario 25.3.

$\blacksquare$

Proposición 25.9.
Toda transformación de Möbius preserva la razón cruzada.

Demostración. Sea $T$ una transformación de Möbius y sean $z_1, z_2, z_3 \in\mathbb{C}_\infty$ tres puntos distintos. Veamos que:
\begin{equation*}
\left(z; z_1, z_2, z_3\right) = \left(T(z); T(z_1), T(z_2), T(z_3)\right).
\end{equation*}

Sea $S(z) = \left(z; z_1, z_2, z_3\right)$. Definimos $H=S\circ T^{-1}$, la cual claramente es una transformación de Möbius. Tenemos que:
\begin{align*}
H(T(z_1)) & = S(z_1) = 0,\\
H(T(z_2)) &= S(z_2) = 1,\\
H(T(z_3)) &= S(z_3) = \infty,
\end{align*} por lo que, por la unicidad de la razón cruzada:
\begin{equation*}
H(z) = \left(z; T(z_1), T(z_2), T(z_3)\right), \quad \forall z\in\mathbb{C}_\infty.
\end{equation*}Entonces:
\begin{equation*}
S(z) = H(T(z)) = \left(T(z); T(z_1), T(z_2), T(z_3)\right), \quad \forall z\in\mathbb{C}_\infty.
\end{equation*}

$\blacksquare$

Observación 25.12.
Podemos reescribir el resultado anterior como:
\begin{equation*}
\dfrac{(z-z_1)(z_2 – z_3)}{(z-z_3)(z_2 – z_1)} = \dfrac{(w-w_1)(w_2 – w_3)}{(w-w_3)(w_2 – w_1)},
\end{equation*}donde $w = T(z)$ y $T$ es una transformación de Möbius. En caso de que algún $z_k$ ó algún $w_k$, con $k=1,2,3$, sea igual a $\infty$, entonces consideramos la definición de la observación 25.11.

Obtener una transformación de Möbius resulta sencillo mediante la razón cruzada.

Ejemplo 25.9.
Consideremos los incisos a) y c) del ejemplo 25.6.

Para el inciso a) queremos una transformación de Möbius tal que:
\begin{equation*}
-1\mapsto -i, \quad 0 \mapsto 1 \quad \text{y} \quad 1 \mapsto i.
\end{equation*}Considerando la observación 25.12 tenemos que:
\begin{equation*}
\dfrac{(z-(-1))(0 – 1)}{(z-1)(0 – (-1))} = \dfrac{(w-(-i))(1 – i)}{(w-i)(1 – (-i))},
\end{equation*}es decir:
\begin{equation*}
\dfrac{-(z+1)}{z-1} = \dfrac{(w+i)(1 – i)}{(w-i)(1 +i)},
\end{equation*}de donde:
\begin{equation*}
-2(z +i) = 2w(z+i) \quad \Longrightarrow \quad w = T(z) = \frac{i-z}{i+z}.
\end{equation*}

Por otra parte, para el inciso c) queremos una transformación de Möbius tal que:
\begin{equation*}
1\mapsto i, \quad 0 \mapsto \infty \quad \text{y} \quad -1 \mapsto 1.
\end{equation*}Considerando la observación 25.12 tenemos que:
\begin{equation*}
\dfrac{(z-1)(0 – (-1))}{(z-(-1))(0 – 1)} = \dfrac{w-i}{w-1},
\end{equation*}es decir:
\begin{equation*}
\dfrac{z-1}{-(z+1)} = \dfrac{w-i}{w-1},
\end{equation*}de donde:
\begin{equation*}
z(1 +i) + i – 1 = 2zw \quad \Longrightarrow \quad w = T(z) = \frac{(1+i)z +(i-1)}{2z}.
\end{equation*}

Ejemplo 25.10.
Determina la transformación de Möbius tal que:
\begin{equation*}
0\mapsto i, \quad 1 \mapsto 2 \quad \text{y} \quad -1 \mapsto 4.
\end{equation*}

Solución. Tenemos que:
\begin{equation*}
(z; 0, 1, -1) = \dfrac{(z-0)(1 – (-1)}{(z-(-1))(1 – 0)} = \frac{2z}{z+1},
\end{equation*}mientras que:
\begin{equation*}
(w; i, 2, 4) = \dfrac{(w-i)(2 – 4)}{(w-4)(2 – i)} = \dfrac{-2(w-i)}{(w-4)(2 – i)},
\end{equation*}por lo que:
\begin{equation*}
\frac{2z}{z+1} = \dfrac{-2(w-i)}{(w-4)(2 – i)},
\end{equation*}de donde, al resolver para $w$ tenemos:
\begin{equation*}
w\left[(6-2i)z+2\right] = \left[(16-6i)z+2i\right] \quad \Longrightarrow \quad w = T(z) = \frac{(16-6i)z+2i}{(6-2i)z+2}.
\end{equation*}

Corolario 25.5.
Sea $C \subset\mathbb{C}_\infty$ una circunferencia (o una recta), sean $z_1, z_2, z_3 \in C$ tres puntos distintos y $z\in\mathbb{C}_\infty$. Entonces $(z;z_1,z_2,z_3) \in \mathbb{R}$ si y solo si $z\in C$.

Demostración. Dadas las hipótesis, consideremos a $T(z) = (z;z_1,z_2,z_3)$. Dado que $T$ es una transformación de Möbius, del corolario 25.1 se sigue que $T$ mapea a $C$ en una circunferencia (o en una recta) en $\mathbb{C}_\infty$ que pasa por $0, 1$ e $\infty$, entonces $T(C) = \mathbb{R}\cup\{\infty\}$.

Por lo que:
\begin{align*}
T(z) = (z;z_1,z_2,z_3) \in \mathbb{R} \quad & \Longleftrightarrow \quad T(z) \in \mathbb{R} \cup\{\infty\} = T(C)\\
& \Longleftrightarrow \quad z \in C.
\end{align*}

$\blacksquare$

Tarea moral

  1. Completa la demostración de la proposición 25.1.
  2. Realiza la demostración de la proposición 25.3.
  3. Prueba la observación 25.7.
  4. Demuestra los corolarios 25.1 y 25.3.
  5. a) Muestra que la ecuación (25.6) se puede escribir de la forma: \begin{equation*} 2Az\,\overline{z} + (D-Ei)z + (D+Ei)\overline{z} + 2F = 0, \end{equation*} donde $z=x+iy$. b) Muestra que bajo la transformación inversión, $f(z)=1/z$, la ecuación del inciso anterior se convierte en: \begin{equation*} 2Fw\,\overline{w} + (D+Ei)w + (D-Ei)\overline{w} + 2A = 0. \end{equation*} Después prueba que si $w=u+iv$, entonces la ecuación anterior es la misma que la ecuación (25.9).
    Hint: Utiliza coordenadas complejas conjugadas.
  6. Determina de forma explícita la transformación de Möbius determinada por las siguientes correspondencias de puntos. Verifica tu resultado utilizando la razón cruzada.
    a) $1+i \mapsto 0$, $2 \mapsto \infty$, $0 \mapsto i-1$.
    b) $0 \mapsto 1$, $1 \mapsto 1+i$, $\infty \mapsto 2$.
    c) $\infty \mapsto 0$, $1+i \mapsto 1$, $2 \mapsto \infty$.
    d) $-2 \mapsto 1-2i$, $i \mapsto 0$, $2 \mapsto 1+2i$.
    e) $1 \mapsto 1$, $i \mapsto 0$, $-1 \mapsto -1$.
  7. Obtén los puntos fijos de las siguientes transformaciones.
    a) $T(z) = \dfrac{iz+2}{z+1}$.
    b) $T(z) = i\left(\dfrac{z-i}{z+i}\right)$.
    c) $T(z) = \dfrac{z}{z+1}$.
    d) $T(z) = \dfrac{1+i}{z+1}$.
  8. a) Determina la transformación de Möbius tal que: \begin{equation*} 1 \mapsto 0, \quad i \mapsto -1 \quad \text{y} \quad 0 \mapsto -i. \end{equation*}
    b) Considera la transformación $T$ del inciso anterior. ¿Cuál es la imagen de la circunferencia, en el plano $z$, que pasa por los puntos $z_1 = 1, z_2 = i$ y $z_3 = 0$, bajo $T$? ¿Cuál es la imagen del interior de dicha circunferencia bajo $T$?
  9. Prueba que si el origen es un punto fijo de una transformación de Möbius $T$, entonces dicha transformación es de la forma: \begin{equation*} w=T(z)=\frac{z}{cz+d}, \quad d\neq 0. \end{equation*}
  10. Muestra que la transformación: \begin{equation*} w = T(z) = \frac{iz+2}{4z+i}, \end{equation*} envía el eje real, en el plano $z$, en una circunferencia en el plano $w$. Determina el centro y el radio de dicha circunferencia. ¿Cuál es el punto en el plano $z$ que es enviado en el centro de la circunferencia?
  11. Determina la transformación de Möbius tal que envía el punto $i$ en el punto $-i$ y que fija el punto $1+2i$.

Más adelante…

En esta entrada hemos definido el concepto de transformación de Möbius o bilineal y establecimos algunos resultados elementales, en el estudio de estas transformaciones del plano complejo (extendido), las cuales resultan de suma importancia para entender de manera clara la geometría de algunas de las funciones complejas más elementales, como veremos en la siguiente entrada.

En general, las transformaciones de Möbius tienen muchas aplicaciones en el análisis complejo. Dejando de lado la aparente simplicidad en su definición, éstas transformaciones son el corazón de algunas áreas matemáticas modernas de investigación, por su conexión con las geometrías no Euclidianas como la geometría hiperbólica. De hecho, éstas transformaciones están estrechamente ligadas con la teoría de la relatividad de Einstein.

La siguiente entrada es la última de ésta segunda unidad y en ella abordaremos una alternativa básica para poder estudiar el comportamiento geométrico de las funciones complejas más elementales.

Entradas relacionadas

Variable Compleja I: Transformaciones del plano complejo $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos abordado de manera formal el concepto de función en el sentido complejo así como algunas de sus propiedades más importantes como la continuidad y la diferenciablidad.

Para esta entrada, así como para las últimas dos entradas de esta unidad, nuestro objetivo será darle una interpretación geométrica a las funciones complejas de variable compleja. Para ello recurriremos al concepto de transformación, desde una perspectiva Geométrica, es decir, como una transformación del plano en sí mismo y desde la perspectiva del Álgebra Lineal considerando lo que sabemos de $\mathbb{R}^2$ como un $\mathbb{R}$-espacio vectorial.

Observación 24.1.
Recordemos que una transformación del plano $\mathbb{R}^2$ es una función $T:\mathbb{R}^2 \to \mathbb{R}^2$, es decir, una función del plano en sí mismo. En algunos textos suele pedirse que $T$ sea una función biyectiva, sin embargo, como veremos en esta entrada, la mayoría de las transformaciones con las que trabajaremos cumplirán esta propiedad.

Definición 24.1. (Transformación compleja.)
Una transformación compleja o simplemente una transformación del plano complejo es una función $T: \mathbb{C} \to \mathbb{C}$, es decir, una función del plano complejo $\mathbb{C}$ en sí mismo.

Considerando que hemos construido a $\mathbb{C}$ mediante $\mathbb{R}^2$ y el hecho de que $\mathbb{R}^2$ es un $\mathbb{R}$-espacio vectorial, podemos definir el concepto de linealidad para transformaciones complejas.

Definición 24.2. (Transformación compleja $\mathbb{R}$-lineal.)
Sea $T : \mathbb{C} \to \mathbb{C}$ una transformación. Entonces, $T$ es $\mathbb{R}$-lineal si:

  1. $T(z_1 + z_2) = T(z_1) + T(z_2)$, para todo $z_1,z_2\in\mathbb{C}$,
  2. $T(\lambda z) = \lambda T(z)$, para todo $\lambda\in\mathbb{R}$ y para todo $z\in\mathbb{C}$.

Definición 24.3. (Transformación compleja $\mathbb{C}$-lineal.)
Sea $T : \mathbb{C} \to \mathbb{C}$ una transformación. Entonces, $T$ es $\mathbb{C}$-lineal si:

  1. $T(z_1 + z_2) = T(z_1) + T(z_2)$, para todo $z_1,z_2\in\mathbb{C}$,
  2. $T(\lambda z) = \lambda T(z)$, para todo $\lambda\in\mathbb{C}$ y para todo $z\in\mathbb{C}$.

Proposición 24.1.
Toda transformación $T : \mathbb{C} \to \mathbb{C}$ que es $\mathbb{R}$-lineal es de la forma:
\begin{equation*}
T(z) = \lambda z + \mu \overline{z},
\end{equation*}
donde $\lambda = \dfrac{a – ib}{2}$, $\mu = \dfrac{a + ib}{2}$, con $a = T(1)$ y $b=T(i)$.

Demostración. Dadas las hipótesis, sea $z=x+iy\in\mathbb{C}$. Como $T$ es $\mathbb{R}$-lineal, entonces:
\begin{equation*}
T(z) = T(x+iy) = x T(1) + y T(i).
\end{equation*}

Definimos $a := T(1)$ y $b := T(i)$, dado que:
\begin{equation*}
x = \frac{z + \overline{z}}{2} \quad \text{y} \quad y = -i\left(\frac{z – \overline{z}}{2}\right),
\end{equation*}

entonces:
\begin{equation*}
T(z) = a\left(\frac{z + \overline{z}}{2}\right) -ib\left(\frac{z – \overline{z}}{2}\right) = \lambda z + \mu \overline{z},
\end{equation*} donde $\lambda = \dfrac{a – ib}{2}$ y $\mu = \dfrac{a + ib}{2}$.

$\blacksquare$

Proposición 24.2.
Toda transformación $T:\mathbb{C}\to\mathbb{C}$ que es $\mathbb{C}$-lineal es de la forma:
\begin{equation*}
T(z) = \lambda z,
\end{equation*} donde $\lambda = T(1) \in\mathbb{C}$ es una constante.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 24.3.
Sea $T$ una transformación $\mathbb{R}$-lineal, cuya matriz asociada es $A\in M_{2\times 2}(R)$ (considerando la base estándar de $\mathbb{R}^2$). Entonces las siguientes condiciones son equivalentes:

  1. $T$ es $\mathbb{C}$-lineal, definición 24.3.
  2. $T(iz) = i\,T(z)$ para todo $z\in\mathbb{C}$.
  3. $A = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}$ para algunos $a, b\in\mathbb{R}$.
  4. $T$ es una multiplicación compleja, es decir, existe algún $\lambda \in\mathbb{C}$ tal que $T(z) = \lambda z$ para todo $z\in\mathbb{C}$.

Demostración.

1. $\Rightarrow )$ 2.

Es inmediata de la definición.

2. $\Rightarrow )$ 3.

Sea $A = \begin{pmatrix}
a & c\\
b & d
\end{pmatrix}$, con $a,b,c,d\in\mathbb{R}$ la matriz asociada a $T$. Entonces tenemos:
\begin{align*}
T(i) & = \begin{pmatrix}
a & c\\
b & d
\end{pmatrix} \begin{pmatrix}
0\\
1
\end{pmatrix}\\
& = \begin{pmatrix}
c\\
d
\end{pmatrix}\\
&= c + id.
\end{align*}

Por otra parte:
\begin{align*}
i\,T(1) & = i \begin{pmatrix}
a & c\\
b & d
\end{pmatrix} \begin{pmatrix}
1\\
0
\end{pmatrix}\\
& = i\begin{pmatrix}
a\\
b
\end{pmatrix}\\
&= i(a + ib)\\
& = -b + ia.
\end{align*}

Por hipótesis tenemos que $T(i) = i \, T(1)$, por lo que $c = -b$ y $d = a$, de donde se sigue el resultado.

3. $\Rightarrow )$ 4.

Sea $z = x+iy\in\mathbb{C}$, entonces:
\begin{align*}
T(z) & = A\,z\\
& = \begin{pmatrix}
a & -b\\
b & a
\end{pmatrix} \begin{pmatrix}
x\\
y
\end{pmatrix}\\
&= (ax – by) + i(bx + ay)\\
& = (a+ib)(x+iy),
\end{align*}

por lo que tomando $\lambda = a + ib\in\mathbb{C}$ se tiene que $T(z) = \lambda z$, para toda $z\in\mathbb{C}$.

4. $\Rightarrow )$ 1.

Se deja como ejercicio al lector.

$\blacksquare$

Observación 24.2.
El resultado anterior nos dice cuáles transformaciones $\mathbb{R}$-lineales, pueden ser vistas también como transformaciones $\mathbb{C}$-lineales.

Más aún, dado que $\mathbb{R}\subset\mathbb{C}$, debe ser claro que una transformación que es $\mathbb{C}$-lineal en particular es $\mathbb{R}$-lineal, sin embargo el recíproco no se cumple.

Ejemplo 24.1.
a) Sea $T:\mathbb{C} \to \mathbb{C}$ dada por $T(z) = \overline{z}$. Es fácil verificar que $T$ es una transformación $\mathbb{R}$-lineal, por lo que se deja como ejercicio al lector. Por otra parte, notemos que para todo $z=x+iy\in\mathbb{C}$:
\begin{equation*}
T(z) = \overline{z} = x – iy,
\end{equation*} por lo que:
\begin{equation*}
T(i) = \overline{i} = -i,
\end{equation*} mientras que:
\begin{equation*}
i\,T(1) = i\,\overline{1} = i(1) = i,
\end{equation*} entonces considerando la proposición 16.2 es claro que $T$ no es $\mathbb{C}$-lineal.

b) Sea $T:\mathbb{C}\setminus\{0\} \to \mathbb{C}\setminus\{0\}$ dada por $T(z) = \dfrac{1}{z}$. Es fácil verificar que $T$ no es una transformación $\mathbb{R}$-lineal ni tampoco $\mathbb{C}$-lineal, por lo que se deja como ejercicio al lector. A esta transformación se le llama inversión.

De acuerdo con los resultados de la entrada 18 y considerando la proposición 24.3, debe ser claro que existe una estrecha relación entre a diferenciabilidad en el sentido complejo y las transformaciones $\mathbb{C}$-lineales, pues como sabemos, la diferenciabilidad en el sentido real de una función $f:\mathbb{R}^2\to\mathbb{R}^2$ no basta para garantizar la diferenciabilidad compleja.

Proposición 24.4.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función. Se dice que $f$ es complejo diferenciable en $z\in U$ si existe:
\begin{equation*}
\lim_{h\to 0} \frac{f(z+h) – f(z)}{h}. \tag{24.1}
\end{equation*}

Mientras que, se dice que $f$ es real diferenciable en $z\in U$ si existe una transformación $\varphi : \mathbb{C} \to \mathbb{C}$, la cual es $\mathbb{R}$-lineal, tal que:
\begin{equation*}
\lim_{h\to 0} \frac{f(z+h) – f(z) – \varphi(h)}{h} = 0. \tag{24.2}
\end{equation*}

Entonces se cumple que:

  1. si $f$ es complejo diferenciable en $z\in U$, entonces $f$ es real diferenciable en $z\in U$;
  2. si $f$ es real diferenciable en $z\in U$ y la transformación $\mathbb{R}$-lineal $\varphi : \mathbb{C} \to \mathbb{C}$ también es $\mathbb{C}$-lineal, entonces $f$ es complejo diferenciable en $z\in U$;
  3. si $f$ es real diferenciable en $z\in U$ y existe el límite:
    \begin{equation*}
    \lim_{h\to 0} \left|\frac{f(z+h) – f(z)}{h}\right|, \tag{24.3}
    \end{equation*} entonces $f$ ó $\overline{f}$ es complejo diferenciable en $z\in U$.

Demostración. Dadas las hipótesis.

  1. Se deja como ejercicio al lector.
  2. Se deja como ejercicio al lector.
  3. Como $f$ es real diferenciable en $z\in U$, entonces existe una transformación $R$-lineal $\varphi:\mathbb{C} \to \mathbb{C}$ tal que (24.2) se cumple. De acuerdo con la desiguladad del triángulo, proposición 3.3, tenemos que:
    \begin{equation*} 0 \leq \left| \left|\frac{f(z+h) – f(z)}{h} \right| – \left| \frac{\varphi(h)}{h}\right| \right| \leq \left|\frac{f(z+h) – f(z) – \varphi(h)}{h}\right|. \end{equation*} Por hipótesis el límite (24.2) existe, entonces al tomar limites en las desigualdades anteriores se sigue que:
    \begin{equation*} \lim_{h\to 0}\left| \left|\frac{f(z+h) – f(z)}{h} \right| – \left| \frac{\varphi(h)}{h}\right| \right| = 0, \end{equation*} de donde:
    \begin{equation*} \lim_{h\to 0} \left|\frac{f(z+h) – f(z)}{h} \right| = \lim_{h\to 0} \left| \frac{\varphi(h)}{h}\right|, \end{equation*} dado que (24.3) existe, entonces el límite del lado derecho de la igualdad existe.

    Como $\varphi$ es $R$-lineal, entonces, proposición 24.1, es de la forma $\varphi(h) = \lambda h + \mu \overline{h}$ donde: \begin{equation*} \lambda = \dfrac{\varphi(1) – i\varphi(i)}{2} \quad \text{y} \quad \mu = \dfrac{\varphi(1) + i\varphi(i)}{2}. \tag{24.4} \end{equation*} Notemos que: \begin{equation*} \left| \frac{\varphi(h)}{h}\right|^2 = \left| \frac{\lambda h + \mu \overline{h}}{h}\right|^2 = |\lambda|^2 + |\mu|^2 + 2 \operatorname{Re}\left(\lambda \overline{\mu} \frac{h}{\overline{h}}\right), \end{equation*} por lo que, al tomar límites en ambos lados de la igualdad, al existir el límite del lado izquierdo, también debe existir el límite: \begin{equation*} \lim_{h\to 0} \operatorname{Re}\left(\lambda \overline{\mu} \, \frac{h}{\overline{h}}\right). \end{equation*} Sea $h = a+ib$. Procedemos a calcular el límite cuando $h\to 0$ a lo largo de las rectas $a = 0$ y $b=0$, respectivamente. Por la unicidad del límite tenemos que: \begin{equation*} \lim_{b\to 0} \operatorname{Re}\left(\lambda \overline{\mu} \left[\frac{ib}{-ib}\right]\right) = \lim_{a\to 0} \operatorname{Re}\left(\lambda \overline{\mu} \left[\frac{a}{a}\right]\right), \end{equation*} es decir: \begin{equation*} -\operatorname{Re}\left(\lambda \overline{\mu}\right) = \operatorname{Re}\left(-\lambda \overline{\mu}\right) = \operatorname{Re}\left(\lambda \overline{\mu}\right), \end{equation*} de donde: \begin{equation*} \operatorname{Re}\left(\lambda \overline{\mu}\right) = 0. \end{equation*} Procediendo de manera análoga, si ahora consideramos el límite cuando $h\to 0$ a lo largo de las rectas $a=b$ y $a=-b$, respectivamente, por la unicidad del límite tenemos que: \begin{equation*} \operatorname{Re}\left(i\lambda \overline{\mu}\right) = – \operatorname{Re}\left(i\lambda \overline{\mu}\right) \quad \Longleftrightarrow \quad -\operatorname{Im}\left(\lambda \overline{\mu}\right) = \operatorname{Im}\left(\lambda \overline{\mu}\right), \end{equation*} de donde: \begin{equation*} \operatorname{Im}\left(\lambda \overline{\mu}\right) = 0. \end{equation*} Por lo tanto $\lambda \overline{\mu} = 0$, es decir, $\lambda = 0$ ó $\overline{\mu} = 0$.

    De $(24.4)$ se sigue que: \begin{equation*} \varphi(1) = i \varphi(i) \quad \text{ó} \quad \overline{\varphi}(1) = i \overline{\varphi}(i). \end{equation*} Del primer caso se sigue de la proposición 24.3 que $\varphi$ es $\mathbb{C}$-lineal y por el inciso anterior de esta proposición, tenemos que $f$ es complejo diferenciable en $z\in U$.

    Por último, notemos que si $f$ es real diferenciable con respecto a $\varphi$, entonces $\overline{f}$ es real diferenciable con respecto a $\overline{\varphi}$ desde que: \begin{align*} \lim_{h\to 0} \frac{f(z+h) – f(z) – \varphi(h)}{h} &= 0\\ \Longleftrightarrow \quad \lim_{h\to 0} \left| \frac{f(z+h) – f(z) – \varphi(h)}{h} \right| &= 0\\ \Longleftrightarrow \quad \lim_{h\to 0} \frac{\left| \overline{f(z+h) – f(z) – \varphi(h)}\right|}{\left|h\right|} &= 0\\ \Longleftrightarrow \quad \lim_{h\to 0} \frac{\overline{f}(z+h) – \overline{f}(z) – \overline{\varphi}(h)}{h} &= 0. \end{align*} Por lo que, para el segundo caso se sigue de la proposición 24.3, que $\overline{\varphi}$ es $\mathbb{C}$-lineal y por tanto $\overline{f}$ es complejo diferenciable en $z\in U$.

    Entonces $f$ ó $\overline{f}$ es complejo diferenciable en $z\in U$.

$\blacksquare$

Procedemos ahora a definir algunas de las transformaciones del plano complejo más importantes, con las que ya estamos familiarizados por nuestros cursos de Geometría.

Definición 24.4. (Transformación identidad en $\mathbb{C}$.)
La transformación $\mathbb{I}_\mathbb{C} : \mathbb{C} \to \mathbb{C}$ dada por $\mathbb{I}_\mathbb{C}(z)=z$, es llamada la transformación identidad del plano complejo $\mathbb{C}$.

Definición 24.5. (Homotecia.)
Sea $k\in\mathbb{R}\setminus\{0\}$. Se define a una homotecia del plano complejo $\mathbb{C}$, con centro en el origen y razón (o factor) $k$ como la transformación $h_k:\mathbb{C} \to \mathbb{C}$ dada por $h_k(z) = kz$.

Si el punto $O$ es el origen, $M$ es un punto cualquiera en el plano complejo, dado por $z\in\mathbb{C}$, entonces la posición del punto $M’=h_k(z) \in \mathbb{C}$ depende del signo de $k$, es decir, si $k>0$ figura 83, ó $k<0$ figura 84. Al punto $M’$ se le llama el punto homotético de $M$ con centro en $O$ y razón $k$.

En cualquiera de ambos caso se cumple que:
\begin{equation*}
|\overline{OM’}| = |k| \, |\overline{OM}|,
\end{equation*} es decir, el módulo del punto homotético $M’$ es igual al valor absoluto de $k$ por el módulo del punto $M$.

No es difícil verificar que la composición de dos homotecias también es una homotecia.

Figura 83: Homotecia del plano complejo $\mathbb{C}$ cuando $k>0$.
Figura 84: Homotecia del plano complejo $\mathbb{C}$ cuando $k<0$.

Definición 24.6. (Traslación.)
Sea $z_0 \in \mathbb{C}$ fijo y sea $t_{z_0}:\mathbb{C} \to \mathbb{C}$ la transformación dada por:
\begin{equation*}
t_{z_0}(z) = z + z_0.
\end{equation*}

La transformación $t_{z_0}$ es llamada la traslación del plano complejo $\mathbb{C}$ por un número $z_0$.

Teniendo en cuenta la interpretación geométrica de la suma de dos números complejos, entrada 3, podemos dar fácilmente una interpretación geométrica de la traslación analizando la imagen de cualquier $z\in\mathbb{C}$, bajo $t_{z_0}$, figura 85.

En la figura 85, $O M_0 M’ M$ es un paralelogramo y el segmento $\overline{OM’}$ es una de sus diagonales. Por lo que, la transfromación $t_{z_0}$ corresponde en el plano complejo $\mathbb{C}$ con la traslación $t_{\overrightarrow{OM_0}}$ dada por el vector $\overrightarrow{OM_0}$ en el caso del plano Euclidiano.

Debe ser claro que la composición de dos traslaciones $t_{z_1}$ y $t_{z_2}$ cumple que:
\begin{equation*}
t_{z_1} \circ t_{z_2} = t_{z_1 + z_2}.
\end{equation*}

Figura 85: Traslación del plano complejo $\mathbb{C}$ por un número $z_0$.

Observación 24.3.
Notemos que el conjunto $\tau$ de todas las traslaciones del plano complejo forma un grupo con respecto de la composición de funciones. El grupo $\left(\tau,\circ\right)$ es abeliano y su unidad es la transformación identidad $\mathbb{I}_{\mathbb{C}} = t_0$, es decir, la traslación por el número complejo $0$.

Definición 24.7. (Reflexión respecto al eje real y respecto a un punto.)
Sea $s:\mathbb{C} \to \mathbb{C}$ dada por $s(z) = \overline{z}$. A la transformación $s$ se le llama la reflexión con respecto al eje real.

Si $M$ es un punto en el plano dado por el número complejo $z\in\mathbb{C}$, entonces el punto $M’=s(z) \in\mathbb{C}$ es obtenido al reflejar a $M$ respecto al eje real, figura 86. Además, es claro que:
\begin{equation*}
s \circ s = \mathbb{I}_{\mathbb{C}}.
\end{equation*}

Figura 86: Reflexión en el plano complejo $\mathbb{C}$ con respecto al eje real.

Por otra parte, a la transformación $s_0 : \mathbb{C} \to \mathbb{C}$ dada por $s_0(z) = -z$, se le llama la reflexión con respecto al origen, desde que $s_0(z) + z = 0$, entonces para un punto $M = z\in\mathbb{C}$, el origen $O$ es el punto medio del segmento $\overline{MM’}$, con $M’=s_0(z)$, es decir, el punto $M’$ es la reflexión del punto $M$ en el origen, figura 87.

Debe ser claro que:
\begin{equation*}
s_{0} \circ s_{0} = \mathbb{I}_{\mathbb{C}}.
\end{equation*}

Figura 87: Reflexión en el plano complejo $\mathbb{C}$ con respecto al origen.

Por último, para $z_0\in\mathbb{C}$ fijo, se define a la reflexión con respecto a $\pmb{z_0}$ como la transformación $s_{z_0} : \mathbb{C} \to \mathbb{C}$ dada por $s_{z_0}(z) = 2z_0-z$.

Si $M, M_0$ y $M’$ son los puntos en el plano dados por $z,z_0,s_{z_0}(z) \in \mathbb{C}$, respectivamente, entonces $M_0$ es el punto medio del segmento $\overline{MM’}$ y así $M’$ es la reflexión de $M$ en $M_0$, figura 88.

Es sencillo verificar que:
\begin{equation*}
s_{z_0} \circ s_{z_0} = \mathbb{I}_{\mathbb{C}}.
\end{equation*}

Figura 88: Reflexión en el plano complejo $\mathbb{C}$ con respecto a un punto fijo $z_0\in\mathbb{C}$.

Observación 24.4.
A pesar de que la transformación $T(z) = \overline{z}$ no es $\mathbb{C}$-lineal, es importante recordar su interpretación geométrica, ya que dicha transformación nos representa una reflexión en el plano complejo a través del eje real.

Definición 24.8. (Rotación.)
Sea $a = \in \mathbb{C}$ tal que $|a|=1$, es decir, $a=e^{i\theta_0}$. Se define a la rotación de $z=\rho e^{i\theta}\in\mathbb{C}$ alrededor del origen, en un ángulo $\theta_0\in\mathbb{R}$, como la transformación $r_a:\mathbb{C} \to \mathbb{C}$ dada por:
\begin{equation*}
r_a(z) = az = \rho e^{i(\theta+\theta_0)}.
\end{equation*}

Así, si $M$ es un punto en el plano complejo dado por $z=\rho e^{i\theta}\in\mathbb{C}$, entonces $M’ = r_a(z)$ se obtiene al rotar $M$ alrededor del origen un ángulo $\theta_0$, figura 89.

Figura 89: Rotación del plano complejo $\mathbb{C}$ alrededor del origen en un ángulo $\theta_0\in\mathbb{R}$.

Observación 24.5.
De manera general es posible definir una reflexión en el plano complejo respecto a una recta $\mathcal{L}$ arbitraria, la cual está dada por la composición de una rotación y/o una traslación del eje real, una reflexión respecto al eje real y las inversas de la rotación y la traslación, por lo que será de la forma:
\begin{equation*}
s_\mathcal{L}(z) = e^{i\theta} \overline{z} + b,
\end{equation*} para algún ángulo $\theta\in\mathbb{R}$ y una constante $b\in\mathbb{C}$.

Analicemos lo anterior mediante el siguiente:

Ejemplo 24.2.
Determinemos la reflexión en el plano complejo dada sobre la recta $\mathcal{L} : y=x+3$.

Solución. Primeramente, notemos que la recta dada se obtiene al rotar el eje real alrededor del origen un ángulo de $\pi/4$ y luego trasladarlo verticalmente por $3i$.

Así, para reflejar a $z\in\mathbb{C}$ respecto a $\mathcal{L}$, primero trasladamos verticalmente dicho punto por $-3i$, luego lo rotamos alrededor del origen un ángulo de $-\pi/4$, después lo reflejamos respecto al eje real y por último, lo rotamos alrededor del origen un ángulo de $\pi/4$ y lo trasladamos por $3i$.

Es decir, sean:
\begin{align*}
t_{-3i}(z) &= z-3i,\\
r_{e^{-i\frac{\pi}{4}}}(z) &= e^{-i\frac{\pi}{4}} z,\\
s(z) &= \overline{z},\\
t_{3i}(z) & = z+3i,\\
r_{e^{i\frac{\pi}{4}}}(z) &= e^{i\frac{\pi}{4}} z,
\end{align*}

por lo que:
\begin{align*}
\left(s\circ r_{e^{-i\frac{\pi}{4}}} \circ t_{-3i}\right)(z) & = s\left(r_{e^{-i\frac{\pi}{4}}}(t_{-3i}(z))\right)\\
& = s\left(r_{e^{-i\frac{\pi}{4}}}(z-3i)\right)\\
& = s\left(e^{-i\frac{\pi}{4}}(z-3i)\right)\\
& = \overline{e^{-i\frac{\pi}{4}}(z-3i)}\\
& = e^{i\frac{\pi}{4}}(\overline{z}+3i).
\end{align*}

Luego, como $e^{i\frac{\pi}{2}} = i$, tenemos que:
\begin{align*}
\left(t_{3i} \circ r_{e^{i\frac{\pi}{4}}}\right)(e^{i\frac{\pi}{4}}(\overline{z}+3i)) & = t_{3i} \left(r_{e^{i\frac{\pi}{4}}}(e^{i\frac{\pi}{4}}(\overline{z}+3i))\right)\\
& = t_{3i} \left(e^{i\frac{\pi}{4}} e^{i\frac{\pi}{4}}(\overline{z}+3i)\right)\\
& = e^{i\frac{\pi}{2}}(\overline{z}+3i) + 3i\\
& = i (\overline{z}+3i) + 3i\\
& = i\overline{z} – 3(1-i).
\end{align*}

Entonces, la reflexión sobre la recta $\mathcal{L} : y=x+3$, figura 90, está dada por:
\begin{equation*}
s_{\mathcal{L}}(z) = i\overline{z} – 3(1-i).
\end{equation*}

Por ejemplo, si consideramos al punto $z=-1+4i$, entonces:
\begin{align*}
s_{\mathcal{L}}(z) & = i(\overline{-1+4i}) – 3(1-i)\\
& = i(-1-4i)-3+3i\\
& = -i+4-3+3i\\
& = 1+2i.
\end{align*}

Figura 90: Reflexión en $\mathbb{C}$ respecto a la recta $y=x+3$.

Observación 24.6.
Como se verá en el ejercicio 7 de esta entrada, las reflexiones son transformaciones más sencillas que las rotaciones y las traslaciones, desde que estas últimas transformaciones son simplemente composiciones dos reflexiones particulares.

Recordemos ahora otro concepto importante visto en nuestros cursos de Geometría.

Definición 24.9. (Isometría.)
Sea $S\subset \mathbb{C}$. Una transformación $T:\mathbb{C} \to \mathbb{C}$ se llama una isometría si no modifica las distancias, es decir, si:
\begin{equation*}
|\,T(z_1) – T(z_2)\,| = |\,z_1 – z_2\,|, \quad \forall z_1, z_2 \in\mathbb{C}.
\end{equation*}

Mientras que una función $f:S \to \mathbb{C}$ se llama una isometría si:
\begin{equation*}
|\,f(z_1) – f(z_2)\,| = |\,z_1 – z_2\,|,
\end{equation*} para todo par de números complejos $z_1$ y $z_2$ en el dominio $S$ de $f$.

Observación 24.7.
No es difícil verificar que la composición de dos isometrías es también una isometría. Más aún, el conjunto de todas las isometrías del plano complejo, denotado como $\text{Iso}(\mathbb{C})$ es un grupo con respecto a la composición de funciones y el grupo de las traslaciones, $(\tau, \circ)$, es un subgrupo de dicho grupo.

Proposición 24.5.
Las traslaciones, reflexiones y las rotaciones alrededor de un punto $z_0$ son isometrías del plano.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

De acuerdo con el ejercicio 9 de esta entrada tenemos el siguiente:

Ejemplo 24.3.
a) Las transformaciones $s_{\mathcal{L}_1}(z) = \overline{z}+3i$, $s_{\mathcal{L}_2}(z) = \overline{z}+5i$ y $s_{\mathcal{L}_3}(z) = -\overline{z}+1$ corresponden con tres reflexiones, las primeras dos respecto a las rectas horizontales $\mathcal{L}_1 : -iz+i\overline{z}-3=0$ y $\mathcal{L}_2 : -iz+i\overline{z}-5=0$, respectivamente, y la última respecto a la recta vertical $\mathcal{L}_3 : z+\overline{z}-1=0$.

La composición:
\begin{align*}
\left(s_{\mathcal{L}_1} \circ s_{\mathcal{L}_2}\right)(z) & = s_{\mathcal{L}_1}\left( s_{\mathcal{L}_2}(z)\right)\\
& = s_{\mathcal{L}_1}\left( \overline{z}+5i\right)\\
& = \overline{\overline{z}+5i}+3i\\
& = z – 2i,
\end{align*} corresponde con la traslación $t_{-2i}(z)$ en el plano complejo.

Por otra parte, la composición:
\begin{align*}
\left(s_{\mathcal{L}_1} \circ s_{\mathcal{L}_3}\right)(z) & = s_{\mathcal{L}_1}\left( s_{\mathcal{L}_3}(z)\right)\\
& = s_{\mathcal{L}_1}\left(- \overline{z}+1\right)\\
& = \overline{- \overline{z}+1}+3i\\
& = -z + \left(1 + 3i\right),
\end{align*} corresponde con la rotación $r_{a}(z)$ alrededor del punto $z_0 = \dfrac{1}{2} + i \dfrac{1}{2}$ y un ángulo $\pi$, es decir, $a = e^{i\pi}$, en el plano complejo.

b) La transformación $h(z)=\overline{z}+1$ está dada por la composición de la reflexión respecto al eje real $s(z) = \overline{z}$ y la traslación $t_{1}(z)=z+1$.

c) La transformación $h(z)=\overline{z}+2i = (\overline{z}+i)+i$ está dada por la composición de la reflexión $s_{\mathcal{L}}(z) = \overline{z} + i$, respecto a la recta horizontal $\mathcal{L} : -iz+i\overline{z}-1=0$, y la traslación $t_{i}(z)=z+i$.

Definición 24.10.(Punto fijo.)
Sea $T: \mathbb{C} \to \mathbb{C}$ una transformación. Diremos que un punto $z_0 \in \mathbb{C}$ es un punto fijo de $T$ si y solo si $T(z_0) = z_0$.

Ejemplo 24.4.
a) La transformación identidad fija a todos los puntos de $\mathbb{C}$.

b) Si $z_0\in\mathbb{C}$ es tal que $z_0 \neq 0$, entonces la transformación $t_{z_0}(z)=z+z_0$ no tiene puntos fijos.

c) Si $a\in\mathbb{C}$ es tal que $|a|=1$ y $a\neq 1$, entonces la rotación $r_a(z) = az$ alrededor del origen solo fija al origen.

Lema 24.1.
Una isometría del plano que fija a los puntos $0, 1$ e $i$ debe ser la identidad.

Demostración. Dadas las hipótesis, sea $h:\mathbb{C}\to\mathbb{C}$ una isometría tal que: \begin{equation*}
h(0)=0, \quad h(1) = 1 \quad \text{y} \quad h(i)=i.
\end{equation*}

Dado que $h$ es una isometría, entonces para cualesquiera $z,w\in\mathbb{C}$ se cumple que:
\begin{equation*}
|h(z)-h(w)| = |z-w|,
\end{equation*} en particular, para $w \in \{0,1,i\}$ tenemos que:
\begin{equation*}
|h(z)| = |z|, \quad |h(z)-1| = |z-1| \quad \text{y} \quad |h(z)-i| = |z-i|.
\end{equation*}

Elevando al cuadrado las tres igualdades anteriores tenemos que:
\begin{align*}
h(z) \overline{h(z)} & = z \overline{z}, \tag{24.4}\\
(h(z)-1)\overline{(h(z)-1)} &= (z-1)\overline{(z-1)}, \tag{24.5}\\
(h(z)-i)\overline{(h(z)-i)} &= (z-i)\overline{(z-i)}.\tag{24.6}
\end{align*}

Desarrollando (24.5) tenemos:
\begin{equation*}
h(z) \overline{h(z)} – h(z) – \overline{h(z)} + 1 = z \overline{z} – z \overline{z} + 1.
\end{equation*}

Considerando (24.4) se tiene que:
\begin{equation*}
h(z) + \overline{h(z)} = z + \overline{z}, \tag{24.7}
\end{equation*}

Análogamente, de (24.6) obtenemos que:
\begin{equation*}
h(z) – \overline{h(z)} = z – \overline{z}, \tag{24.8}
\end{equation*}

Entonces, de (24.7) y (24.8) se sigue que:
\begin{equation*}
h(z) = z.
\end{equation*}

$\blacksquare$

Proposición 24.6.
Toda isometría del plano complejo es de la forma:
\begin{equation*}
h_1(z) = \alpha z + \beta \quad \text{ó} \quad h_2(z) = \alpha \overline{z} + \beta,
\end{equation*} con $\alpha, \beta\in\mathbb{C}$, únicos y $|\,\alpha\,|=1$.

La primera función es una isometría que preserva la orientación y la segunda una isometría que la invierte.

Demostración. Sea $h:\mathbb{C} \to \mathbb{C}$ una isometría arbitraria. Primeramente notemos que una función de la forma:
\begin{equation*}
h_1(z) = \alpha z + \beta \quad \text{ó} \quad h_2(z) = \alpha \overline{z} + \beta,
\end{equation*} con $\alpha, \beta\in\mathbb{C}$, constantes y $|\,\alpha\,|=1$ es una isometría desde que:
\begin{align*}
|h_1(z) – h_1(w)| = |\alpha(z-w)| = |z-w|,\\
|h_2(z) – h_2(w)| = |\alpha\overline{(z-w)}| = |z-w|,
\end{align*} para cualesquiera $z, w\in\mathbb{C}$.

Definimos:
\begin{equation*}
\beta : = h(0) \quad \text{y} \quad \alpha:= h(1) – h(0),
\end{equation*} de donde se sigue la unicidad de dichas constantes. Además:
\begin{equation*}
|\alpha|= |h(1) – h(0)| = |1 – 0| = 1.
\end{equation*}

Consideremos a la función:
\begin{equation*}
H(z) : = \frac{h(z) – \beta}{\alpha} = \frac{h(z) – h(0)}{h(1) – h(0)},
\end{equation*} la cual está bien definida desde que $\alpha\neq 0$, pues cualquier isometría del plano en particular es una función inyectiva.

Veamos que $H$ también es una isometría, en particular que dicha función es igual a $z$ ó $\overline{z}$.

Sean $z, w\in\mathbb{C}$, entonces:
\begin{align*}
|H(z) – H(w)| & = \left|\frac{h(z) – \beta}{\alpha} – \frac{h(z) – \beta}{\alpha} \right|\\
& = \frac{|h(z) – h(w)|}{|\alpha|}\\
& = |z-w|.
\end{align*}

Por otra parte, tenemos que:
\begin{align*}
H(0) = \frac{h(0) – h(0)}{h(1) – h(0)} = 0,\\
H(1) = \frac{h(1) – h(0)}{h(1) – h(0)} = 1.
\end{align*}

Dado que $H$ es una isometría que fija a $0$ y a $1$, se sigue que:
\begin{align*}
|H(i)| = |H(i) – H(0)| = |i-0| = 1, \tag{24.9}\\
|H(i)-1| = |H(i) – H(1)| = |i-1| = \sqrt{2}. \tag{24.10}
\end{align*}

Geométricamente, lo anterior nos dice que $H(i)$ está en la intersección de la circunferencia unitaria y la circunferencia de radio $\sqrt{2}$ y centro en $1$, pero en tal intersección únicamente están los puntos $i$ y $-i$, figura 91.

Figura 91: Intersección de las circunferencias $C(0,1)$ y $C(1,\sqrt{2})$.

Es fácil verificar este hecho de manera algebraica elevando al cuadrado las ecuaciones (24.9) y (24.10) y resolviendo el sistema de ecuaciones como en la prueba del lema 24.1, por lo que esta verificación se deja como ejercicio al lector.

Si $H(i)=i$, entonces por el lema 24.1 tenemos que:
\begin{equation*}
H(z) = z \quad \Longrightarrow \quad h(z) = \alpha z + \beta, \quad \forall z\in\mathbb{C}.
\end{equation*}

Si $H(i)=-i$, entonces $\overline{H(z)}$ es una isometría del plano que fija a $0, 1$ e $i$, por lo que, lema 24.1, debe ser la identidad:
\begin{equation*}
\overline{H(z)} = z \quad \Longrightarrow \quad H(z) = \overline{z}, \quad \forall z\in\mathbb{C},
\end{equation*}

de donde:
\begin{equation*}
h(z) = \alpha \overline{z} + \beta.
\end{equation*}

$\blacksquare$

Corolario 24.1.
Toda isometría del plano complejo es una función biyectiva y su inversa es también una isometría.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Corolario 24.2.
Una isometría del plano está determinada por sus imágenes en tres puntos no colineales, es decir, si $z_1, z_2, z_3\in\mathbb{C}$ son tres puntos no colineales y $h_1$ y $h_2$ son dos isometrías tales que $h_1(z_i) = h_2(z_i)$, para $i=1,2,3$, entonces $h_1 = h_2$.

Demostración. Se sigue de la observación 24.5 y del corolario 24.1, por lo que los detalles se deja como ejercicio al lector.

$\blacksquare$

Cerraremos esta entrada con la siguiente caracterización de las transformaciones $\mathbb{C}$-lineales.

Observación 24.8.
Sean $\lambda=a_1 + i a_2$, $\mu=b_1 + i b_2$, $z=x + i y$ y $w = u+iv$ números complejos y sea $T:\mathbb{C} \to \mathbb{C}$ una transformación $\mathbb{R}$-lineal. Por la proposición 24.1 sabemos que $T$ es de la forma:
\begin{align*}
w = T(z) & = \lambda z + \mu \overline{z}\\
& = (a_1+b_1) x – (a_2 – b_2) y + i \left[(a_2 + b_2) x + (a_1-b_1)y\right].
\end{align*}

De lo anterior se sigue que podemos representar a dicha transformación mediante las ecuaciones reales:
\begin{align*}
u = (a_1+b_1) x – (a_2 – b_2) y,\\
v = (a_2 + b_2) x + (a_1-b_1)y.
\end{align*}

Por lo que, geométricamente una transformación $\mathbb{R}$-lineal del plano complejo, es una transformación afín de un plano $\overline{y} = A \overline{x}$ con:
\begin{equation*}
A = \begin{pmatrix}
a_1+b_1 & -(a_2-b_2)\\
a_2+b_2& a_1 – b_1
\end{pmatrix}.
\end{equation*}

El Jacobiano de dicha transformación es:
\begin{equation*}
J = a_1^2 – b_1^2 + a_2^2 -b_2^2 = |\lambda|^2 – |\mu|^2,
\end{equation*} es decir, la transformación es invertible si $|\lambda| \neq |\mu|$. Dicha transformación envía rectas en rectas, rectas paralelas en rectas paralelas y cuadrados en paralelogramos. Además, preserva la orientación cuando $|\lambda|>|\mu|$ y la invierte cuando $|\lambda| < |\mu|$.

Sin embargo, una transformación $\mathbb{C}$-lineal, digamos $T(z) = \lambda z$, puede no invertir la orientación desde que su Jacobiano es:
\begin{equation*}
J = |\lambda|^2 \geq 0.
\end{equation*}

En tal caso, dicha transformación no es invertible si $\lambda=0$. Considerando la interpretación geométrica de la multiplicación de dos números complejos, para $\lambda= |\lambda| e^{i\theta_0}$, tenemos que $T(z) = |\lambda| e^{i\theta_0} z$ es la composición de una homotecia de razón $|\lambda|$ y una rotación alrededor del origen de un ángulo $\theta_0$. Tal transformación preserva ángulos y envía cuadrados en cuadrados.

Considerando lo anterior tenemos la siguiente caracterización de las transformaciones $\mathbb{C}$-lineales.

Proposición 24.7.
Si una transformación $\mathbb{R}$-lineal, digamos $T(z) = \lambda z +\mu \overline{z}$, preserva la orientación y los ángulos entre tres vectores no paralelos $e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}\in\mathbb{C}$, con $\theta_k \in\mathbb{R}$ para $k=1,2,3$, entonces $T$ es $\mathbb{C}$-lineal.

La prueba de este resultado, así como de algunos otros resultados de ésta entrada se pueden consultar en el texto Introduction to Complex Analysis – excerpts de B.V.Shabat.

Tarea moral

  1. Realiza la demostración de las proposiciones 24.2 y 24.5.
  2. Completa la demostración de la proposiciones 24.3 y 24.4.
  3. Prueba las observaciones 24.3 y 24.7.
  4. Demuestra los corolarios 24.1 y 24.2.
  5. Sean $z_1, z_2 \in\mathbb{C}$. Supón que una isometría del plano complejo tiene como puntos fijos a $z_1$ y a $z_2$. Demuestra que todo punto $z$ del segmento $[z_1, z_2]$ es un punto fijo de dicha transformación.
  6. Prueba que las siguientes transformaciones son una isometría. En cada caso muestra que cada función se puede ver como la composición de una rotación con una traslación y posiblemente con una reflexión sobre el eje real.
    a) $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z) = i \overline{z} + 4 – i$.
    b) $g:\mathbb{C} \to \mathbb{C}$ dada por $g(z) = -iz+ 1 + 2i$.
    c) $h:\mathbb{C} \to \mathbb{C}$ dada por $h(z) = -\overline{z} + i$.
  7. Muestra que una traslación del plano complejo es la composición de dos reflexiones respecto dos rectas paralelas, mientras que una rotación en $\mathbb{C}$, alrededor de un punto fijo $z_0 \in\mathbb{C}$, es la composición de dos reflexiones respecto dos rectas que se cortan en $z_0$.
  8. En cada inciso determina una expresión que describa a una reflexión en el plano complejo respecto a la recta dada.
    a) $y=k$ con $k\in\mathbb{R}$ constante.
    b) $x=k$ con $k\in\mathbb{R}$ constante.
    c) $y=mx+b$, con $m, b\in\mathbb{R}$ y $m\neq 0$.
  9. Muestra que las siguientes transformaciones corresponden con una reflexión respecto a la recta dada.
    a) $s_{\mathcal{L}}(z) = \overline{z}+3i$ con $\mathcal{L}: -iz+i\overline{z}-3=0$.
    b) $s_{\mathcal{L}}(z) = \overline{z}+5i$ con $\mathcal{L} : -iz+i\overline{z}-5=0$.
    c) $s_{\mathcal{L}}(z) = -\overline{z}+1$ con $\mathcal{L} : z+\overline{z}-1=0$.
    d) $s_{\mathcal{L}}(z) = \overline{z}+i$ con $\mathcal{L} : -iz+i\overline{z}-1=0$.

Más adelante…

En esta entrada hemos recordado algunos conceptos de Geometría Analítica y Álgebra Lineal relacionados con las transformaciones del plano Euclidiano. Como es de esperarse, las definiciones de estos conceptos para el caso complejo coinciden con las que se dan para $\mathbb{R}^2$. Sin embargo, debe ser claro que a través de las propiedades de los números complejos resulta más sencilla la prueba de los resultados dados en esta entrada.

La siguiente entrada estudiaremos algunas transformaciones del plano complejo muy particulares, llamadas transformaciones de Möbius, mediante las cuales podremos caracterizar la geometría de las funciones complejas.

Entradas relacionadas

Variable Compleja I: Series de potencias. Introducción y criterios de convergencia

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos el concepto de serie de potencias, el cual es un tipo particular de serie de números complejos y/o serie de funciones de números complejos, por lo que los resultados de las dos entradas anteriores nos serán de gran utilidad para caracterizar a dichas series.

En general, las series de potencias resultan de gran interés puesto que nos permiten aproximar y definir funciones, en particular a las funciones complejas elementales como lo haremos en las siguientes entradas. Nuestro objetivo en esta entrada es establecer algunos resultados elementales para determinar cuándo y en qué conjuntos estas series convergen.

Definición 29.1. (Serie de Potencias.)
Sean $z_0 \in\mathbb{C}$ y $\{c_n\}_{n\geq 0} \subset \mathbb{C}$ una sucesión de números complejos. Una serie de la forma: \begin{equation*}
\displaystyle \sum_{n=0}^\infty c_n \left(z-z_0\right)^n, \quad \forall z\in\mathbb{C}, \tag{29.1}
\end{equation*} es llamada serie de potencias centrada en $z_0$ y los números $c_n\in\mathbb{C}$ son llamados los coeficientes de la serie.

Observación 29.1.
Recordemos que hemos hecho antes la convención $(z-z_0)^0 = 1$ para todo $z-z_0\in\mathbb{C}$.

Considerando lo anterior, podemos pensar a una serie de potencias como una serie de números complejos o como una serie de funciones, por lo que, en cualquiera de los dos casos podemos hablar de los conceptos de convergencia, convergencia absoluta, convergencia puntual y convergencia uniforme establecidos en las entradas anteriores.

Si consideramos a una serie de potencias, dada en (29.1), como una serie de funciones, entonces dicha serie está definida por la sucesión de funciones:
\begin{equation*}
f_0(z) = c_0, \quad f_n(z) = c_n\left(z-z_0\right)^n, \forall n\geq 1.
\end{equation*}

Bajo esta idea, es claro que cada serie de potencias define a una función compleja, de variable $z$, cuyo dominio natural consistirá de todos los $z\in\mathbb{C}$ para los cuales la serie de funciones (29.1) converge. Por tanto, en caso de ser necesario podemos elegir distintos dominios para dicha función, correspondientes con subconjuntos del dominio natural dado por la convergencia de la serie.

Observación 29.2.
Notemos que la serie dada por (29.1) siempre converge en el centro, es decir, si $z=z_0$ entonces para $n \geq 1$ todos los términos de la serie se anulan, mientras que para $n=0$ se obtiene la constante $c_0 \in \mathbb{C}$, por lo que la serie de potencias converge.

Por otra parte, para $z\neq z_0$ la serie de potencias puede converger o diverger, como veremos más adelante.

Si planteamos el cambio de variable:
\begin{equation*}
\zeta = z – z_0, \tag{29.2}
\end{equation*} es claro que $\zeta = 0$ si y solo si $z = z_0$ y $\zeta \neq 0$ si y solo si $z \neq z_0$, entonces la serie de potencias dada en (29.1) toma la forma:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty c_n \zeta^n, \quad \forall \zeta \in\mathbb{C}, \tag{29.3}
\end{equation*} de donde (29.3) converge si $\zeta = 0$, mientras que para $\zeta \neq 0$ la serie puede converger o diverger.

El cambio de variable dado en (29.2) puede simplificar un poco las cuentas, por lo que trabajaremos indistintamente con una serie de potencias de la forma (29.1) ó (29.3), simplemente considerando $z=\zeta$ y a la serie centrada en el origen, es decir, $z_0 = 0$. Para recuperar el caso general bastará con realizar el cambio de variable (29.2).

Ejemplo 29.1.
Veamos que para una serie de potencias, de la forma (29.1) ó (29.3), se cumple, respectivamente, alguna de las siguientes condiciones.

  1. La serie converge para todo $z\in\mathbb{C}$ ó $\zeta\in\mathbb{C}$.
  2. La serie converge solo para $z=z_0$ ó $\zeta = 0$.
  3. La serie converge solo para los $z$ ó $\zeta$ en alguna región del plano complejo $\mathbb{C}$.

Solución. Por ahora, para verificar la afirmación basta con dar un ejemplo para cada caso. Más adelante, corolario 29.1, probaremos esta afirmación.

Veamos que cada condición se cumple sin importar si la serie de potencias es de la forma (29.1) ó (29.3).

  1. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=0}^\infty \frac{(z-1+i)^n}{(n!)^2} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty \frac{\zeta^n}{n!}. \end{equation*} Para la primera serie tenemos que $z_0 = 1-i$. Es claro que para $z=z_0$ la serie de potencias converge. Supongamos que $z\neq z_0$, entonces: \begin{align*} \lambda = \lim_{n\to \infty} \dfrac{\left|\dfrac{(z-1+i)^{n+1}}{\left[(n+1)!\right]^2}\right|}{\left|\dfrac{(z-1+i)^{n}}{(n!)^2}\right|} & = \lim_{n\to \infty} \left|\dfrac{(z-1+i)^{n+1}(n!)^2}{(z-1+i)^{n}\left[(n+1)!\right]^2} \right|\\ & = \lim_{n\to \infty} \dfrac{\left|z-1+i\right|(n!)^2}{(n+1)^2(n!)^2}\\ & = \lim_{n\to \infty} \dfrac{\left|z-1+i\right|}{(n+1)^2} = 0. \end{align*} Entonces, por el criterio del cociente de D’Alembert, proposición 27.5, para toda $z\neq z_0$ la serie converge absolutamente. Por lo tanto, para todo $z\in\mathbb{C}$ la primera serie de potencias converge.

    Por otra parte, para la segunda serie de potencias, por el ejemplo 27.8, sabemos que la serie es absolutamente convergente para todo $\zeta\in\mathbb{C}$, por lo que la segunda serie de potencias también converge para todo $\zeta\in\mathbb{C}$.
  2. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=1}^\infty \frac{n^n (z-i)^n}{n} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty n! \zeta^n. \end{equation*} Para la primera serie tenemos que $z_0 = i$, $c_0 = 0$ y $c_n = \dfrac{n^n}{n}$ para $n\geq 1$. Es claro que para $z=z_0$ la serie de potencias converge. Supongamos que $z\neq z_0$, entonces: \begin{equation*} \lambda = \lim_{n\to \infty} \left|\frac{n^n (z-i)^n}{n}\right|^{1/n} = \lim_{n\to \infty} \frac{n \left|z-i\right|}{n^{1/n}} = \infty, \end{equation*} desde que $\lim\limits_{n\to\infty} n = \infty$ y $\lim\limits_{n\to\infty} n^{1/n} = 1$.

    Entonces, por el criterio de la raíz, proposición 27.6, tenemos que la serie diverge para toda $z\neq z_0$. Por lo tanto, la primera serie de potencias converge solo para $z=z_0$.

    Por otra parte, para la segunda serie de potencias es claro que la serie converge si $\zeta=0$. Mientras que para $\zeta \neq 0$ tenemos que: \begin{equation*} \lim_{n \to \infty} n! \zeta^n = \infty, \end{equation*} desde que $\lim\limits_{n\to\infty} n! = \infty$ y $|\zeta^n| \geq r >0$ para toda $n\in\mathbb{N}$, es decir, la sucesión $\{\zeta^n\}_{n\geq 0}$, con $\zeta\neq 0$, está separada de cero, proposición 8.2(5).

    Por lo tanto, la segunda serie solo converge para $\zeta = 0$.
  3. Consideremos a las series de potencias: \begin{equation*} \displaystyle \sum_{n=0}^\infty (-2)^n \frac{(z+2)^n}{n+1} \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty \zeta^n. \end{equation*}Para la primera serie tenemos que $z_0 = -2$. Es claro que para $z=z_0$ la serie de potencias converge. Si $z\neq z_0$, tenemos: \begin{align*} \lambda = \lim_{n\to \infty} \dfrac{\left|(-2)^{n+1} \dfrac{(z+2)^{n+1}}{n+2}\right|}{\left|(-2)^n \dfrac{(z+2)^n}{n+1}\right|} & = \lim_{n\to \infty} \left|-2\right| \left|\dfrac{(n+1)(z+2)^{n+1}}{(n+2)(z+2)^{n}}\right|\\ & = \lim_{n\to \infty} \left(2\right) \left|z+2\right| \frac{n+1}{n+2}\\ & = 2 \left|z+2\right|. \end{align*}Entonces, por el criterio del cociente de D’Alembert, proposición 27.5, tenemos que la serie converge si $\lambda = 2 \left|z+2\right| < 1$, es decir, para toda $z\in\mathbb{C}$ tal que $\left|z+2\right| < 1/2$, mientras que la serie diverge si $\left|z+2\right| > 1/2$.

    Por último, para la segunda serie de potencias, por el ejemplo 27.3 sabemos que la serie geométrica es convergente para todo $\zeta\in\mathbb{C}$ tal que $\left|\zeta\right|<1$ y divergente si $\left|\zeta\right|\geq 1$.

Observación 29.3.
Al trabajar con una serie de potencias, ya sea de la forma (29.1) ó (29.3), debemos ser cuidadosos al identificar los coeficientes de la serie, puesto que no siempre están dados de forma explícita y esto puede llegar a causar errores al manipular a las series de potencias y/o al deducir algo relacionado con su convergencia.

Una vez que estemos seguros de que los coeficientes de la serie corresponden con la regla explícita dada en la serie, podemos trabajar con dicha regla para obtener los coeficientes.

Ejemplo 29.2.
Identifiquemos los coeficientes de las siguientes series de potencias.
a) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n}$.
b) $\displaystyle \sum_{n=1}^\infty \frac{z^n}{n}$.
c) $\displaystyle \sum_{n=1}^\infty \frac{(-1)^n z^{n-1}}{n(n+1)}$.

Solución. Es claro que las cuatro series están centradas en $z_0 = 0$. Procedemos a escribir a las series de potencias de acuerdo con la definición 29.1.

a) Tenemos que:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*} de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{2^n}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = 2n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = 1, \quad c_1 = 0,\quad c_2 = -\frac{1}{2}, \quad c_3 = 0, \quad \ldots, \quad c_{2n} = \dfrac{(-1)^{n}}{2^n}, \quad c_{2n+1} = 0,
\end{equation*}

es decir:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{(-1)^{n}}{2^n}, & \text{si} & k = 2n,\\
\\ 0, & \text{si} & k = 2n+1,\\
\end{array}
\right. \quad \text{con} \,\, n\in\mathbb{N}.
\end{equation*}

b) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \frac{z^n}{n} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*} de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1}{n}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = 0, \quad c_1 = 1,\quad c_2 = \frac{1}{2}, \quad c_3 = \frac{1}{3}, \quad \ldots, \quad c_{n} = \dfrac{1}{n},
\end{equation*}es decir:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{1}{k}, & \text{si} & k \geq 1,\\
\\ 0, & \text{si} & k = 0.\\
\end{array}
\right.
\end{equation*}

c) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \frac{(-1)^n z^{n-1}}{n(n+1)} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{n(n+1)}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n-1,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que:
\begin{equation*}
c_0 = \dfrac{(-1)^{1}}{1(1+1)} = -\frac{1}{2}, \quad c_1 = \dfrac{(-1)^{2}}{2(2+1)} = \frac{1}{6},\quad c_2 = \dfrac{(-1)^{3}}{3(3+1)} = -\frac{1}{12}, \quad \ldots,
\end{equation*} es decir:
\begin{equation*}
c_k = \dfrac{(-1)^{k+1}}{(k+1)(k+2)}, \quad k\in\mathbb{N}.
\end{equation*}

Nuestra primera tarea es determinar bajo qué condiciones una serie de potencias converge, pues como vimos en el ejemplo 29.1, existen series de potencias que convergen en todo $\mathbb{C}$, en un sólo punto o en alguna región del plano complejo. Es claro que un ejemplo no es una prueba de este hecho, por lo que procedemos a verificarlo de manera formal.

Proposición 29.1. (Lema de Abel.)
Si la serie de potencias $\displaystyle \sum_{n=0}^\infty c_n z^n$ converge para algún $z=z_0 \neq 0$, entonces la serie converge absolutamente para toda $z\in\mathbb{C}$ tal que $|z| < |z_0|$.

Más aún, si la serie diverge para algún $z=z_1 \neq 0$, entonces la serie diverge para toda $z\in\mathbb{C}$ tal que $|z_1| < |z|$.

Demostración. Dadas las hipótesis, procedemos a verificar la primera parte de la proposición.

Si la serie $\displaystyle \sum_{n=0}^\infty c_n z_0^n$ converge, con $z_0 \neq 0$, entonces, corolario 27.1, se cumple que:
\begin{equation*}
\lim_{n\to\infty} c_n z_0^n = 0,
\end{equation*}

es decir, la sucesión $\{c_n z_0^n\}_{n\geq 0}$ converge a 0, por lo que, proposición 8.1, es una sucesión acotada. Entonces, existe $M>0$ tal que:
\begin{equation*}
|c_n| \, |z_0|^n = |c_n z_0^n| \leq M, \quad \forall n\in\mathbb{N}.
\end{equation*}

Como $z_0\neq 0$, tenemos que:
\begin{equation*}
|c_n| \leq \frac{M}{|z_0|^n}, \quad \forall n\in\mathbb{N},
\end{equation*}

de donde:
\begin{equation*}
|c_n z^n | \leq M \left|\frac{z}{z_1}\right|^n, \quad \forall n\in\mathbb{N}.
\end{equation*}

Si $|z|<|z_0|$, entonces la serie geométrica $\displaystyle \sum_{n=0}^\infty M \left|\frac{z}{z_1}\right|^n$ es convergente, por lo que, se sigue del criterio de comparación, proposición 27.4, que la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ es absolutamente convergente.

Por último, para la segunda parte procedemos por reducción al absurdo. Supongamos que $\displaystyle \sum_{n=0}^\infty c_n z_1^n$ diverge. Si $|z_1| < |z|$ y la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ converge, entonces de la primera parte se sigue que $\displaystyle \sum_{n=0}^\infty c_n z_1^n$ converge, lo cual claramente es una contradicción. Por lo tanto $\displaystyle \sum_{n=0}^\infty c_n z^n$ diverge si $|z|>|z_1|$.

$\blacksquare$

El lema de Abel es de suma importancia para poder establecer el siguiente resultado, el cual será un parteaguas para los resultados de esta entrada.

Proposición 29.2. (Radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias, entonces existe un número $R\in[0,\infty]$, llamado el {\bf radio de convergencia} de la serie, tal que:

  1. la serie es absolutamente convergente si $|z-z_0| < R$;
  2. la serie converge absolutamente y uniformemente en todo disco cerrado $\overline{B}(z_0, r)$, con $r$ fijo tal que $r<R$;
  3. si $|z-z_0| > R$ la serie diverge.

Al conjunto $B(z_0, R) = \{z\in\mathbb{C} : |z-z_0| < R\}$ se le llama su disco de convergencia asociado, figura~\ref{fig:f100}. En algunos textos suele hablarse del círculo de convergencia de la serie, el cual se asocia al conjunto $C(z_0, R) = \{z\in\mathbb{C} : |z-z_0| = R\}$, ya que geométricamente corresponde con el interior de una circunferencia de radio $R$ centrada en $z_0$.

Observación 29.4.
Notemos que la proposición no nos dice nada sobre la convergencia o divergencia de la serie para el caso en que $R=|z-z_0|$. Como veremos en la proposición 29.3, no podemos afirmar nada sobre tal caso.

Demostración. Dadas las hipótesis, definimos:
\begin{equation*}
S:= \left\{\rho \in [0, \infty) : \sum_{n=0}^\infty c_n \rho^n \,\, \text{converge}\right\}.
\end{equation*}

Notemos que $S \neq \emptyset$ desde que $0\in S$.

Afirmamos que el radio de convergencia de la serie de potencias $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$, está dado por $ R:= \sup S$.

  1. De acuerdo con el enunciado de la proposición, debe ser claro que podemos tener dos casos extremos: si $R = 0$ ó si $R = \infty$, los cuales están dados por la definición de $R$ como sigue.

    Si $S$ no es acotado superiormente, adoptamos la convención $R = \infty$. Veamos que en tal caso, la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge absolutamente y uniformemente en $\overline{B}(z_0, r)$, para cualquier $r\geq 0$.

    Si elegimos a $\rho\in S$ tal que $|z-z_0| \leq r <\rho$, entonces la serie $\displaystyle \sum_{n=0}^\infty c_n \rho^n$ es convergente y de la proposición 27.4(1) tenemos que la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ es absolutamente convergente. Dado que: \begin{equation*}|c_n(z-z_0)^n| \leq |c_n r^n| = |c_n| r^n, \quad \forall n\in\mathbb{N}, \end{equation*} entonces del criterio $M$ de Weierstrass, proposición 28.3, se sigue que la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge absolutamente y uniformemente en $\overline{B}(z_0, r)$. Como $r$ es arbitario, entonces tenemos el caso $R=\infty$.

    Supongamos que $S$ es acotado superiormente. Si $R=0$, entonces la serie solo converge si $z=z_0$, por lo que, lema de Abel, la serie converge absolutamente solo en el centro.

    Si $R>0$ y $|z-z_0|<R$, entonces, por la definición de $R$, existe $r\in S$ tal que: \begin{equation*}|z-z_0| < r \leq R. \end{equation*}Dado que $r\in S$, entones la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ es convergente. Notemos que la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ converge para $z = r+z_0$, por lo que, lema de Abel, la serie converge absolutamente para $|z-z_0| < r \leq R$, lo cual completa el caso $|z-z_0| < R$.
  2. Sea $z \in \overline{B}(z_0, r)$, con $r$ fijo tal que $r<R$, entonces, por la definición de $R$, podemos elegir $\rho \in S$ tal que $r<\rho \leq R$. Como la serie $\displaystyle \sum_{n=0}^\infty c_n \rho^n$ converge, entonces, proposición 27.4(1), la serie $\displaystyle \sum_{n=0}^\infty |c_n| r^n$ converge, por lo que, criterio $M$ de Weierstrass, la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ es absolutamente y uniformemente convergente en $\overline{B}(z_0, r)$.
  3. Supongamos que $|z-z_0| > R$, entonces, por la definición de $R$, existe $r\not\in S$ tal que: \begin{equation*} R \leq r < |z-z_0|. \end{equation*} Como la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ diverge, entonces la serie $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ diverge para $z=z_0+r$, por lo que, lema de Abel, la serie diverge para todo $z\in\mathbb{C}$ tal que $R \leq r < |z-z_0|$.

$\blacksquare$

La proposición 29.2 nos da la prueba de la afirmación hecha en el ejemplo 29.1.

Corolario 29.1.
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $R$ su radio de convergencia. Entonces:

  1. Si $R=\infty$, la serie converge absolutamente para todo $z\in\mathbb{C}$.
  2. Si $R=0$, la serie converge solo para $z=z_0$.
  3. Si $0<R<\infty$, la serie converge solo para los $z\in\mathbb{C}$ tales que $|z-z_0|<R$ y diverge para $|z-z_0|>R$.

Demostración. Es inmediato de la proposición 29.2.

Ejemplo 29.3.
Analicemos la siguiente serie y determinemos su radio de convergencia.
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = 1 – \frac{z^2}{2} + \frac{z^4}{2^2} – \frac{z^6}{2^3} + \ldots .
\end{equation*}

Solución. Por el ejemplo 29.2 sabemos que se trata de una serie de potencias con centro en $z_0 = 0$ y coeficientes:
\begin{equation*}
c_k = \left\{ \begin{array}{lcc}
\dfrac{(-1)^{n}}{2^n}, & \text{si} & k = 2n,\\
\\ 0, & \text{si} & k = 2n+1,\\
\end{array}
\right. \quad \text{con} \,\, n\in\mathbb{N}.
\end{equation*}

Notemos que si hacemos $w = \dfrac{-z^2}{2}$ entonces:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n}{2^n} z^{2n} = \sum_{n=0}^\infty \left(\frac{-z^2}{2}\right)^n = \sum_{n=0}^\infty w^n.
\end{equation*}

Entonces, tenemos una serie geométrica convergente si $|w|<1$, es decir, si $|z^2| < 2$. En tal caso la serie converge a:
\begin{equation*}
\frac{1}{1-w} = \frac{2}{2-z^2}.
\end{equation*}

Para esta serie es claro que su radio de convergencia es $R = \sqrt{2}$.

En general, obtener el radio de convergencia de una serie de potencias no es una tarea fácil, el ejemplo anterior resultó sencillo pues conocemos bien a la serie geométrica, pero en general las series de potencias pueden resultar más complejas. Por ello, procedemos a establecer una serie de resultados que nos permitan determinar el radio de convergencia de una serie de potencias a través de la sucesión de números complejos $\{c_n\}_{n\geq 0}$, correspondiente con los coeficientes de la serie.

Primeramente, recordemos los siguientes conceptos y resultados estudiados y probados en nuestros cursos de Cálculo y/o Análisis.

Definición 29.2.
Sea $\{a_n\}_{n\geq0}\subset\mathbb{R}$ una sucesión de números reales acotada. Se define:
\begin{align*}
l_{0} = \sup \{ a_n : n\geq 0\} & = \sup \{a_0 , a_1,\ldots, a_n ,\ldots\},\\
l_{1} = \sup \{ a_n : n\geq 1\} &= \sup \{a_1 , a_2,\ldots, a_n ,\ldots\},\\
l_{2} = \sup \{ a_n : n\geq 2\} &= \sup \{a_2 , a_3,\ldots, a_n ,\ldots\},\\
& \,\,\, \vdots\\
l_{k} = \sup \{ a_n : n\geq k\} &= \sup \{ a_k , a_{k+1},\ldots, a_n ,\ldots\}.
\end{align*}

Es claro que:
\begin{equation*}
\{ a_n : n\geq k+1\} \subset \{ a_n : n\geq k\}, \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
l_{k+1} = \sup \{ a_n : n\geq k+1\} \leq l_{k} = \sup \{ a_n : n\geq k\},
\end{equation*}

es decir, la sucesión $\{ l_{k}\}_{k\geq0}$ es decreciente.

Dado que $\{a_n\}_{n\geq0}$ es acotada, entonces existe $M>0$ tal que $|a_n| \leq M$ para toda $n\in\mathbb{N}$, es decir:
\begin{equation*}
– M \leq a_n \leq M, \quad \forall n\in\mathbb{N},
\end{equation*}

de donde:
\begin{equation*}
– M \leq l_k \leq M, \quad \forall k\in\mathbb{N},
\end{equation*} es decir, la sucesión $\{ l_{k}\}_{k\geq0}$ también es acotada.

Por lo tanto, se sigue del teorema de la convergencia monótona para sucesiones, teorema 27.1, que la sucesión $\{ l_{k}\}_{k\geq0}$ converge.

Si la sucesión $\{a_n\}_{n\geq0}$ no es acotada superiormente, tenemos que $l_k = \infty$ para toda $k\in\mathbb{N}$, en tal caso se define:
\begin{equation*}
\lim_{k \to \infty} l_k = \infty. \tag{29.4}
\end{equation*}

Análogamente, se define a la sucesión:
\begin{equation*}
m_k = \inf \{a_n : n\geq k\}, \quad k\in\mathbb{N}.
\end{equation*}

Claramente $m_k \leq m_{k+1}$ para todo $k\in\mathbb{N}$ y $\{m_k\}_{k\geq 0}$ es acotada, entonces, teorema 27.1, la sucesión $\{m_k\}_{k\geq 0}$ converge.

Si la sucesión $\{a_n\}_{n\geq0}$ no es acotada inferiormente, tenemos que $m_k = -\infty$ para toda $k\in\mathbb{N}$, en tal caso se define:
\begin{equation*}
\lim_{k \to \infty} m_k = -\infty. \tag{29.5}
\end{equation*}

Definición 29.3. (Límite superior e inferior de una sucesión.)
Sea $\{a_n\}_{n\geq0}\subset\mathbb{R}$ una sucesión de números reales arbitraria. Considerando a las sucesiones $\{l_k\}_{k\geq 0}$ y $\{m_k\}_{k\geq 0}$, dadas como en la definición 29.2, entonces se define el límite inferior y superior de $\{a_n\}_{n\geq0}$, respectivamente, como:
\begin{align*}
\lim_{k\to\infty} m_k & = \lim_{k\to\infty} \inf\{a_n : n\geq k\},\\
\lim_{k\to\infty} l_k & = \lim_{k\to\infty} \sup\{a_n : n\geq k\},
\end{align*}

a los cuales se denota, respectivamente, como:
\begin{align*}
\liminf_{n\to\infty} a_n = \lim_{k\to\infty} m_k,\\
\limsup_{n\to\infty} a_n = \lim_{k\to\infty} l_k.
\end{align*}

Observación 29.5.
Dado que una sucesión monótona (acotada) siempre tiene límite, entonces si permitimos que se cumplan (29.4) y (29.5), es claro que $ \lim\limits_{k\to\infty} m_k$ y $\lim\limits_{k\to\infty} l_k$ siempre existen y por tanto los límites inferior y superior de una sucesión arbitraria de números reales $\{a_n\}_{n\geq0}$ siempre existen.

Más aún, de acuerdo con las definiciones 29.2 y 29.3 es claro que se cumple:
\begin{equation*}
m_0 \leq m_1 \leq \cdots \leq m_k \leq \cdots \leq l_k \leq \cdots \leq l_1 \leq l_0,
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n.
\end{equation*}

Observación 29.6.
Dada una sucesión arbitraria de números reales $\{a_n\}_{n\geq0}$, de acuerdo con la definición 7.7 de la entrada 7, tenemos que $\liminf\limits_{n\to\infty} a_n$ y $\limsup\limits_{n\to\infty} a_n$ corresponden, respectivamente, con el menor y mayor punto de acumulación del conjunto $\{a_n : n\in\mathbb{N}\}$.

Es importante notar que $\liminf\limits_{n\to\infty} a_n$ y $\limsup\limits_{n\to\infty} a_n$ no son necesariamente, el valor más pequeño o más grande, respectivamente, del conjunto $\{a_n : n\in\mathbb{N}\}$.

Ejemplo 29.4.
a) Para la sucesión $\{(-1)^n\}_{n\geq 0} = \{1, -1, 1, -1, \ldots\}$ tenemos que:
\begin{equation*}
\sup\{(-1)^n : n\geq k\} = 1 \quad \text{e} \quad \inf\{(-1)^n : n\geq k\} = -1 \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} (-1)^n = -1 \quad \text{y} \quad \limsup_{n\to\infty} (-1)^n = 1.
\end{equation*}

b) Para la sucesión $\{(-1)^n n\}_{n\geq 0} = \{0, -1, 2, -3, \ldots\}$ tenemos que:
\begin{equation*}
\sup\{(-1)^n n : n\geq k\} = \infty \quad \text{e} \quad \inf\{(-1)^n n : n\geq k\} = -\infty \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} (-1)^n n = -\infty \quad \text{y} \quad \limsup_{n\to\infty} (-1)^n n = \infty.
\end{equation*}

c) Para la sucesión $\left\{\dfrac{1}{n}\right\}_{n\geq 1} = \left\{1, \dfrac{1}{2}, \dfrac{1}{3}, \ldots\right\}$ tenemos que:
\begin{equation*}
\sup\left\{\frac{1}{n} : n\geq k\right\} = \frac{1}{k} \quad \text{e} \quad \inf\left\{\frac{1}{n} : n\geq k\right\} = \frac{1}{k} \quad \forall k\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
\liminf_{n\to\infty} \dfrac{1}{n} = 0 = \limsup_{n\to\infty} \dfrac{1}{n},
\end{equation*}

aún cuando cada término de la sucesión es más mayor que $0$.

Teorema 29.1.
Una sucesión de números reales $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge si y solo si $ \liminf\limits_{n\to\infty} a_n$ y $ \limsup\limits_{n\to\infty} a_n$, existen, son finitos y son iguales. En tal caso:
\begin{equation*}
\liminf\limits_{n\to\infty} a_n = \limsup\limits_{n\to\infty} a_n = \lim\limits_{n\to\infty} a_n.
\end{equation*}

Teorema 29.2.
Una sucesión $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge a $L\in\mathbb{R}$ si y solo si toda subsucesión de $\{a_n\}_{n\geq 0}$ converge a $L$.

Lema 29.1.
Una sucesión $\{a_n\}_{n\geq 0} \subset\mathbb{R}$ converge a $L\in\mathbb{R}$ si y solo si las subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen ambas a $L$.

Demostración. Dadas las hipótesis.

$\Rightarrow)$ Si $\lim\limits_{n\to\infty} a_n = L$, entonces, por el teorema 29.2, ambas subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen a $L$.

$(\Leftarrow$ Supongamos que ambas subsucesiones $\{a_{2n}\}_{n\geq 0}$ y $\{a_{2n+1}\}_{n\geq 0}$ convergen a $L$. Sea $\varepsilon>0$, entonces existen $N_1, N_2\in\mathbb{N}$ tales que:
\begin{align*}
\left|a_{2n} – L \right| & <\varepsilon, \quad \text{para toda} \,\,\, n\geq N_1,\\
\left|a_{2n+1} – L \right| & < \varepsilon, \quad \text{para toda} \,\,\, n\geq N_2.
\end{align*}

Sea $N=\max\{2N_1, 2N_2 +1 \}$. Para $n \geq N $, tenemos que $n \geq 2N_1$ y $n \geq 2N_2+1$.

Si $n = 2k$, para algún $k\in\mathbb{N}$, y $n \geq N$, entonces $k \geq N_1$, por lo que:
\begin{equation*}
|a_n – L| = |a_{2k} – L| < \varepsilon.
\end{equation*}

Análogamente, si $n = 2k+1$, para algún $k\in\mathbb{N}$, y $n \geq N$, entonces $k \geq N_2$, por lo que:
\begin{equation*}
|a_{n} – L| = |a_{2k+1} – L| < \varepsilon.
\end{equation*}

De ambos casos concluimos que, dado $\varepsilon>0$ existe $N\in\mathbb{N}$, tal que si $n\geq N$, entonces $ |a_{n} – L| < \varepsilon$.

$\blacksquare$

Ejemplo 29.5.
a) Para la sucesión $\left\{a_n\right\}_{n\geq 1}$, con $a_n = \dfrac{(-1)^n +n}{n}$, tenemos que:
\begin{equation*}
a_{2n} = \dfrac{(-1)^{2n} +2n}{2n} = 1 + \frac{1}{2n} \quad \Longrightarrow \quad \lim_{n\to\infty} a_{2n} = 1,
\end{equation*}

\begin{equation*}
a_{2n+1} = \dfrac{(-1)^{2n+1} +(2n+1)}{2n+1} = 1 – \frac{1}{2n+1} \quad \Longrightarrow \quad \lim_{n\to\infty} a_{2n+1} = 1,
\end{equation*}

por lo que, del lema 29.1 y el teorema 29.1 se sigue que:
\begin{equation*}
\lim_{n\to\infty} a_{n} = 1 = \limsup_{n\to\infty} a_{n} = \liminf_{n\to\infty} a_{n}.
\end{equation*}

Figura : Gráfica de puntos de la sucesión ${a_n}_{n\geq 1}$.

Consideremos a la sucesión $\{b_n\}_{n\geq 1}$ dada por:
\begin{equation*}
b_n = \left\{ \begin{array}{lcc}
\dfrac{n}{n+1} & \text{si} & n=2k, \\
\\ \dfrac{1}{n+1} & \text{si} & n=2k+1,
\end{array}
\right. \quad k\in\mathbb{N}^{+}.
\end{equation*}

Tenemos que:
\begin{equation*}
\{b_n\}_{n\geq 1} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}, \frac{1}{6}, \ldots\right\}.
\end{equation*}

Notemos que para dicha sucesión, los puntos $1$ y $0$ son de acumulación del conjunto $\{b_n : n\in\mathbb{N}^{+}\}$, proposición 8.6, desde que existen las subsucesiones $\left\{b_{2k}\right\}_{k\geq 1}$ y $\left\{b_{2k+1}\right\}_{k\geq 1}$ de la sucesión original tales que $1\neq b_{2k}$ y $0\neq b_{2k+1}$ para toda $k\in\mathbb{N}^{+}$ y se cumple que:
\begin{equation*}
b_{2k} = \dfrac{2k}{2k+1} \quad \Longrightarrow \quad \lim_{k\to\infty} b_{2k} = 1,
\end{equation*}
\begin{equation*}
b_{2k+1} = \dfrac{1}{2k+1} \quad \Longrightarrow \quad \lim_{k\to\infty} b_{2k+1} = 0.
\end{equation*}

Más aún, es claro que la sucesión está acotada superiormente e inferiormente por $1$ y $0$, respectivamente, por lo que:
\begin{equation*}
\limsup_{n\to\infty} b_n = 1 \quad \text{y} \quad \liminf_{n\to\infty} b_n = 0.
\end{equation*}

De acuerdo con el teorema 29.1, tenemos que la sucesión no converge desde que estos límites son distintos.

Figura : Gráfica de puntos de la sucesión ${b_n}_{n\geq 1}$.

Teorema 29.3.
Sea $\{a_n\}_{n\geq 1} \subset\mathbb{R}$ una sucesión de números reales positivos, entonces:
\begin{equation*}
\liminf_{n\to \infty} \frac{a_{n+1}}{a_{n}} \leq \liminf_{n\to \infty} a_{n}^{1/n} \leq \limsup_{n\to \infty} a_{n}^{1/n} \leq \limsup_{n\to \infty} \frac{a_{n+1}}{a_{n}}. \tag{29.6}
\end{equation*}

Corolario 29.2.
Si $\{a_n\}_{n\geq 1} \subset\mathbb{R}$ es una sucesión de números reales positivos tales que $\lim_{n\to \infty} \dfrac{a_{n+1}}{a_{n}}$ existe, entonces las cuatro cantidades dadas en (29.6) son iguales, por lo que:
\begin{equation*}
\lim_{n\to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n\to \infty} a_{n}^{1/n}.
\end{equation*}

Observación 29.7.
Puede suceder que la sucesión $\left\{\sqrt[n]{a_{n}}\right\}_{n\geq 1}$ sea convergente, pero que la sucesión $\left\{\dfrac{a_{n+1}}{a_n}\right\}_{n\geq 1}$ sea divergente.

Ejemplo 29.6.
Sea $\{a_n\}_{n\geq 1}$ dada por:
\begin{equation*}
a_{2n} = a_{2n-1} = \frac{1}{2^n}, \quad n\in\mathbb{N}^+,
\end{equation*}

es decir:
\begin{equation*}
\{a_n\}_{n\geq 1} = \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \ldots , \frac{1}{2^n}, \frac{1}{2^n}, \ldots\right\}.
\end{equation*}

Tenemos que:
\begin{equation*}
\sqrt[2n]{a_{2n}} = \left(\frac{1}{2^n}\right)^{1/2n} = \frac{1}{\sqrt{2}} \quad \Longrightarrow \quad \lim_{n\to\infty} \sqrt[2n]{a_{2n}} = \frac{1}{\sqrt{2}},
\end{equation*}
\begin{equation*}
\sqrt[2n-1]{a_{2n-1}} = \left(\frac{1}{2^n}\right)^{\frac{1}{2n-1}} = \frac{1}{2^{\frac{n}{2n-1}}} \quad \Longrightarrow \quad \lim_{n\to\infty} \sqrt[2n-1]{a_{2n-1}} = \frac{1}{\sqrt{2}}.
\end{equation*}

Entonces, por el lema 29.1, tenemos que:
\begin{equation*}
\lim_{n\to\infty} a_n = \frac{1}{\sqrt{2}},
\end{equation*} es decir, la sucesión $\left\{\sqrt[n]{a_{n}}\right\}_{n\geq 1}$ converge.

Por otra parte, notemos que:
\begin{equation*}
\frac{a_{2n}}{a_{2n-1}} =\dfrac{\dfrac{1}{2^n}}{\dfrac{1}{2^n}} = 1 \quad \Longrightarrow \quad \lim_{n\to\infty} \frac{a_{2n}}{a_{2n-1}} = 1,
\end{equation*}
\begin{equation*}
\frac{a_{2n+1}}{a_{2n}} =\dfrac{\dfrac{1}{2^{n+1}}}{\dfrac{1}{2^n}} = \frac{1}{2} \quad \Longrightarrow \quad \lim_{n\to\infty} \frac{a_{2n+1}}{a_{2n}} = \frac{1}{2},
\end{equation*} por lo tanto, del lema 29.1 se sigue que $\left\{\dfrac{a_{n+1}}{a_n}\right\}_{n\geq 1}$ no converge.

Puede consultarse la prueba de estos resultados en alguno de los siguientes textos:

  • Elementary Analysis: The Theory of Calculus de Kenneth A. Ross.
  • An Introduction to Analysis de William R. Wade.

Una vez recordados estos resultados, procedemos a establecer el resultado esperado para poder determinar el radio de convergencia a través de la sucesión de números complejos dada por los coeficientes de una serie de potencias.

Proposición 29.3. (Fórmula de Cauchy-Hadamard para el radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|}$. Definimos a $R\in[0,\infty]$ como el radio de convergencia de la serie dado por $R = 1/\lambda$, con la definición de $R = 0$ si $\lambda=\infty$ y $R = \infty$ si $\lambda=0$. Entonces:

  1. Si $R=\infty$, la serie converge absolutamente para todo $z\in \mathbb{C}$.
  2. Si $R=0$, la serie solo converge para $z=z_0$.
  3. Si $0<r<R<\infty$ entonces la serie es absolutamente convergente para $|z-z_0|< R$ y uniformemente convergente en $\overline{B}(z_0, r)$. La serie diverge si $|z-z_0|> R$ y no podemos afirmar nada para $|z-z_0|=R$.

Demostración. Dadas las hipótesis.

  1. Si $R=\infty$, entonces tenemos que $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = 0$. Notemos que para todo $z\in \mathbb{C}$ se cumple: \begin{equation*} \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = |z-z_0| \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = |z-z_0| \lambda = 0. \end{equation*} Dado que la sucesión $\left\{\sqrt[n]{|c_n(z-z_0)^n|}\right\}_{n\geq1}$ es una sucesión de números reales no negativos, entonces: \begin{equation*} 0\leq \liminf\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} \leq \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0, \end{equation*} es decir: \begin{equation*} \liminf\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0. \end{equation*} Considerando lo anterior, por el teorema teorema 29.1, tenemos que: \begin{equation*} \lim_{n\to\infty} \sqrt[n]{|c_n(z-z_0)^n|} = 0 < 1, \end{equation*} por lo que, se sigue del criterio de la raíz, proposición 27.6, que la serie $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ es absolutamente convergente para todo $z\in\mathbb{C}$.
  2. Si $R=0$, entonces tenemos que $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \infty$. Es claro que para $z = z_0$ la serie converge: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n = \sum_{n=0}^\infty c_n(z_0-z_0)^n = c_0. \end{equation*} Veamos que la serie no puede converger en ningún otro punto. Procedamos por contradicción, supongamos que la serie converge para $z=a\neq z_0$, entonces, corolario 27.1, se cumple que: \begin{equation*} \lim_{n\to\infty} c_n(a-z_0)^n = 0, \end{equation*} lo cual es equivalente, considerando el ejercicio 6 de la entrada 8, a que: \begin{equation*} \lim_{n\to\infty} \sqrt[n]{|c_n|}|a-z_0| = 0, \end{equation*} es decir, para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \sqrt[n]{|c_n|}|a-z_0| = |\sqrt[n]{|c_n|}|a-z_0|| <\varepsilon, \end{equation*} por lo que: \begin{equation*} \sqrt[n]{|c_n|} < \frac{\varepsilon}{|a-z_0|}, \quad \forall n \geq N, \end{equation*} de donde, teorema 29.1:\begin{equation*} \lim_{n \to \infty} \sqrt[n]{|c_n|} = \limsup_{n \to \infty } \sqrt[n]{|c_n|}= \lambda < \infty, \end{equation*} lo cual contradice nuestro supuesto de que $\lambda = \infty$. Por lo que, la serie solo converge para $z=z_0$.
  3. Supongamos que $|z-z_0|< R$. De acuerdo con la definición 29.3: \begin{equation*} \lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{k\to\infty} \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\}, \end{equation*} por lo que, de la definición del límite tenemos que para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que si $k\geq N$, entonces:\begin{equation*} \left| \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} – \lambda\right| <\varepsilon \quad \Longleftrightarrow \quad – \varepsilon + \lambda < \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} <\varepsilon + \lambda, \end{equation*} de donde: \begin{equation*} -\varepsilon + \lambda < \sqrt[n]{|c_n|} < \varepsilon + \lambda, \quad \forall n\geq N. \end{equation*} Sea $\rho = \dfrac{|z-z_0| + R}{2}>0$, entonces $|z-z_0| < \rho < R$. Tenemos que: \begin{equation*} 0< \rho < R = \dfrac{1}{\lambda} \quad \Longrightarrow \quad \lambda < \frac{1}{\rho}, \end{equation*} por lo que, para $\varepsilon = \dfrac{1}{r} – \lambda >0$ existe $N\in\mathbb{N}$ tal que:
    \begin{equation*} \sqrt[n]{|c_n|} < \frac{1}{\rho} – \lambda + \lambda, \quad \forall n\geq N, \end{equation*} es decir: \begin{equation*}|c_n| < \frac{1}{\rho^n}, \quad \forall n\geq N. \end{equation*} De lo anterior se sigue que: \begin{equation*}|c_n(z-z_0)^n| = |c_n| |z-z_0|^n < \left(\frac{|z-z_0|}{\rho}\right)^n, \quad \forall n\geq N. \end{equation*} Dado que $|z-z_0| < \rho$, entonces la serie geométrica: \begin{equation*} \sum_{n=0}^\infty \left(\frac{|z-z_0|}{\rho}\right)^n, \end{equation*} es convergente. Por tanto, del criterio de comparación, proposición 27.4, se sigue que la serie: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n, \end{equation*} es absolutamente convergente para todo $z\in\mathbb{C}$ tal que $|z-z_0|< R$. Supongamos que $0<r<R$. Sea $\rho = \dfrac{r+R}{2}>0$, entonces $r< \rho < R =1/\lambda$, por lo que $\lambda < 1/\rho$. Entonces, para $\varepsilon = 1/\rho – \lambda >0$ existe $N\in\mathbb{N}$ tal que:\begin{equation*}|c_n| < \frac{1}{\rho^n}, \quad \forall n\geq N. \end{equation*} Como $r < \rho$, tenemos que la serie geométrica convergente:\begin{equation*} \sum_{n=0}^\infty \left(\frac{r}{\rho}\right)^n. \end{equation*} Si $|z-z_0| \leq r$, de lo anterior se sigue que:\begin{equation*}|c_n(z-z_0)^n| = |c_n| |z-z_0|^n \leq \left(\frac{r}{\rho}\right)^n, \quad \forall n\geq N, \end{equation*} por lo que, se sigue del criterio $M$ de Weierstrass, proposición 28.3, que la serie: \begin{equation*} \sum_{n=0}^\infty c_n(z-z_0)^n, \end{equation*} es absolutamente y uniformemente convergente en $\overline{B}(z_0, r)$, para $0<r<R$. Supongamos ahora que $|z-z_0|> R$. Sea $r=\dfrac{|z-z_0|+ R}{2}>0$ tal que $R< r < |z-z_0|$, de donde $1/r < 1/R = \lambda$. Entonces, para $\varepsilon=\lambda – 1/r >0$ existe $N\in\mathbb{N}$ tal que:\begin{equation*}\frac{1}{r} = -\varepsilon + \lambda < \sqrt[n]{|c_n|}, \quad \forall n\geq N, \end{equation*} de donde: \begin{equation*} \left(\frac{|z-z_0|}{r}\right)^n < |c_n| |z-z_0|^n = |c_n (z-z_0)^n|, \quad \forall n\geq N. \end{equation*} Como $0 < r < |z-z_0|$, entonces la serie geométrica:\begin{equation*} \sum_{n=0}^\infty \left(\frac{|z-z_0|}{r}\right)^n, \end{equation*} es divergente. Por el criterio de comparación, proposición 27.4, concluimos que la serie de potencias diverge.

    Por último, consideremos a la serie de potencias: \begin{equation*}\sum_{n=1}^\infty \frac{z^n}{n}.\end{equation*} Es claro que dicha serie está centrada en $z_0 = 0$ y del ejemplo 29.2(b) tenemos que:\begin{equation*}c_n = \left\{ \begin{array}{lcc}\dfrac{1}{n}, & \text{si} & n \geq 1,\\ \\ 0, & \text{si} & n = 0.\\ \end{array} \right. \end{equation*} Dado que: \begin{equation*} \sup\left\{\sqrt[n]{|c_n|} : n\geq k\right\} = \left(\frac{1}{k}\right)^{1/k}, \quad \forall k \geq 1, \end{equation*} entonces:\begin{equation*} \lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|} = \lim\limits_{k\to\infty} \left(\frac{1}{k}\right)^{1/k} = 1.\end{equation*} Notemos que, para $z=1$ tenemos que $|z-z_0| = 1 = R = 1/\lambda$ y la serie armónica: \begin{equation*} \sum_{n=1}^\infty \frac{1}{n}, \end{equation*} la cual diverge.

    Mientras que, para $z=-1$ tenemos que $|z-z_0| = 1 = R = 1/\lambda$ y la serie convergente:\begin{equation*}\sum_{n=1}^\infty \frac{(-1)^n}{n}. \end{equation*} Por lo tanto, no podemos afirmar nada para el caso $|z-z_0|=R$.

$\blacksquare$

Definición 29.4. (Radio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias y sea $\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|c_n|}$. Entonces definimos a $R \in[0,\infty]$ como el radio de convergencia de la serie de potencias, dado por:

  1. $R = \infty$ si $\lambda = 0$.
  2. $R = 0$ si $\lambda = \infty$.
  3. $R = 1/\lambda$ si $0< \lambda < \infty$.
Figura : Disco de convergencia $B(z_0, R)$, de una serie de potencias $\displaystyle\sum_{n=0}^\infty c_n\left(z-z_0\right)^{n}$.

Definición 29.5. (Dominio de convergencia.)
Sea $\displaystyle \sum_{n=0}^\infty c_n\left(z-z_0\right)^n$ una serie de potencias. El conjunto de valores de $z\in\mathbb{C}$ para los cuales la serie de potencias converge es llamado su dominio de convergencia.

Ejemplo 29.7.
Determinemos el radio de convergencia de las siguientes series de potencias y veamos donde la convergencia es uniforme.
a) $\displaystyle \sum_{n=0}^\infty c_n z^n = 1 + 4z + 5^2 z^2 + 4^3 z^3 + 5^4 z^4 + 4^5 z^5 + \cdots$.
b) $\displaystyle \sum_{n=0}^\infty \dfrac{(z-1+i)^n}{(2-i)^n}$.
c) $\displaystyle \sum_{n=1}^\infty z^{n^2}$.

Solución.
a) Tenemos que:
\begin{equation*}
c_0 = 1, \quad c_n = \left\{ \begin{array}{lcc}
5^n, & \text{si} & n = 2k,\\
\\ 4^n, & \text{si} & n = 2k+1,\\
\end{array}
\right. \quad \text{con} \,\, k\in\mathbb{N}^+,
\end{equation*}

por lo que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = \left(5^{k}\right)^{1/k} = 5, \quad \forall k\geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = 5, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \frac{1}{5}.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(0,r)$, con $r < R$.

b) Tenemos que:
\begin{equation*}
z_0 = 1-i, \quad c_0 = 1 \quad \text{y} \quad c_n = \frac{1}{(2-i)^n}, \quad \forall n\in\mathbb{N}^+,
\end{equation*}

por lo que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = \left(\frac{1}{|2-i|^{k}}\right)^{1/k} = \frac{1}{|2-i|} = \frac{1}{\sqrt{5}}, \quad \forall k \geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = \frac{1}{\sqrt{5}}, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \sqrt{5}.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(1-i,r)$, con $r < \sqrt{5}$.

c) Tenemos que:
\begin{equation*}
\sum_{n=0}^\infty z^{n^2} = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
1, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n^2,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 0, \quad c_1 = 1, \quad c_2 =0, \quad c_3 = 0, \quad c_4 = 1, \quad \ldots .
\end{equation*}

Considerando lo anterior es claro que la serie tiene infinitos coeficientes que son $0$. Sin embargo, notemos que:
\begin{equation*}
\sup\{|c_n|^{1/n} : n\geq k\} = |1|^{1/k} = 1, \quad \forall k \geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \limsup_{n\to\infty} |c_n|^{1/n} = \lim_{k\to\infty} \sup\{|c_n|^{1/n} : n\geq k\} = 1, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = 1.
\end{equation*}

De la proposición 29.3 se sigue que la serie converge uniformemente en todo disco cerrado $\overline{B}(0,r)$, con $r < 1$.

Corolario 29.3. (Determinación del radio de convergencia de una serie de potencias.)
El radio de convergencia $R\in[0,\infty]$, de una serie de potencias $\displaystyle\sum_{n=0}^\infty c_n\left(z-z_0\right)^{n}$ puede determinarse por alguno de los siguientes métodos.

  1. Criterio de D’Alembert del radio de convergencia. Si $\lambda = \lim\limits_{n\to\infty} \dfrac{|c_{n+1}|}{|c_n|}$ existe (es finito o infinito), entonces:\begin{equation*} R = \frac{1}{\lambda}.\end{equation*}
  2. Criterio de la raiz de Cauchy. Si $\lambda = \lim\limits_{n\to\infty} |c_n|^{1/n}$ existe (es finito o infinito), entonces:\begin{equation*} R = \frac{1}{\lambda}. \end{equation*}

En ambos casos consideramos la definición natural de $R=0$ si $\lambda =\infty$ y $R=\infty$ si $\lambda =0$.

Demostración. Los dos casos son una consecuencia de la proposición 29.3, de los teoremas 29.1 y 29.3 y del corolario 29.1, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Observación 29.8.
Es posible dar una formulación de los criterios de convergencia de D’Alembert y de la raíz, proposiciones 27.5 y 27.6 respectivamente, en términos del límite superior, es decir, considerando:
\begin{align*}
\lambda = \limsup\limits_{n\to\infty} \frac{|z_{n+1}|}{|z_{n}|},\\
\lambda = \limsup\limits_{n\to\infty} \sqrt[n]{|z_n|},
\end{align*} respectivamente, en cada criterio. Esta formulación de dichos criterios es de gran utilidad cuando los límites $\lim\limits_{n\to\infty}\dfrac{|z_{n+1}|}{|z_{n}|}$, $\lim\limits_{n\to\infty}\sqrt[n]{|z_{n}|}$ no existen.

Ejemplo 29.8.
Veamos que la serie:
\begin{equation*}
\sum_{n=1}^\infty z_n, \quad \text{con} \,\,\, z_n = \frac{1}{2^n}\left[1+(-1)^n\right] + \frac{1}{3^n}\left[1-(-1)^n\right],
\end{equation*} converge.

Solución. Tenemos que:
\begin{equation*}
z_{2n} = \frac{2}{2^{2n}} \quad \text{y} \quad z_{2n+1} = \frac{2}{3^{2n+1}}.
\end{equation*}

Entonces, el límite $\lim\limits_{n\to\infty} \dfrac{|z_{n+1}|}{|z_{n}|} = \lim\limits_{n\to\infty} \dfrac{z_{n+1}}{z_{n}}$ no existe, lema 29.1, desde que las subsucesiones:
\begin{equation*}
\frac{z_{2n+2}}{z_{2n}} = \frac{z_{2n+2}}{z_{2n+1}} \frac{z_{2n+1}}{z_{2n}} \quad \text{y} \quad \frac{z_{2n+3}}{z_{2n+1}} = \frac{z_{2n+3}}{z_{2n+2}} \frac{z_{2n+2}}{z_{2n+1}},
\end{equation*}

tienen diferentes límites:
\begin{align*}
\lim_{n\to\infty} \dfrac{z_{2n+2}}{z_{2n}} = \lim_{n\to\infty} \dfrac{2(2^{-2(n+1)})}{2(2^{-2n})} = \dfrac{1}{4},\\
\lim_{n\to\infty} \frac{z_{2n+3}}{z_{2n+1}} = \lim_{n\to\infty} \frac{2(3^{-(2n+3)})}{2(3^{-(2n+1)})} = \frac{1}{9}.
\end{align*}

Sin embargo, notemos que:
\begin{equation*}
\limsup_{n\to \infty} \frac{|z_{n+1}|}{|z_{n}|} = \limsup_{n\to \infty} \frac{z_{n+1}}{z_{n}} = \frac{1}{4} < 1,
\end{equation*}

por lo que, de acuerdo con el criterio de D’Alembert, la serie converge.

Ejemplo 29.9.
Determinemos el radio de convergencia de las siguientes series de potencias.

a) $\displaystyle \sum_{n=1}^\infty \left(1+\dfrac{1}{n}\right)^{n^2} z^n$.
b) $\displaystyle \sum_{n=1}^\infty \dfrac{(n+1) z^n}{(n+2)(n+3)}$.
c) $\displaystyle \sum_{n=1}^\infty \left(a+ib\right)^{n} z^n$, con $a,b\in\mathbb{R}$ no ambos cero.
d) $\displaystyle \sum_{n=1}^\infty \left(\dfrac{n+2}{3n+1}\right)^{n} (z-4)^n$.

Solución. Para las cuatro series utilizaremos el corolario 29.3.
a) Tenemos que:
\begin{equation*}
\sum_{n=1}^\infty \left(1+\dfrac{1}{n}\right)^{n^2} z^n = \sum_{k=0}^\infty c_k z^{k},
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\left(1+\dfrac{1}{n}\right)^{n^2}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 0 \quad \text{y} \quad c_n = \left(1+\dfrac{1}{n}\right)^{n^2}, \quad \forall n\geq 1.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} |c_n|^{1/n} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e, \quad \Longrightarrow \quad R = \frac{1}{\lambda} = \frac{1}{e}.
\end{equation*}

b) Tenemos que:
\begin{equation*}
c_n = \dfrac{n+1}{(n+2)(n+3)}, \quad \forall n\in\mathbb{N},
\end{equation*}

por lo que:
\begin{equation*}
c_{n+1} = \dfrac{n+2}{(n+3)(n+4)}.
\end{equation*}

Entonces:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|}
& = \lim_{n\to\infty} \frac{(n+2)^2(n+3)}{(n+1)(n+3)(n+4)}\\
& = \lim_{n\to\infty} \frac{n^2+4n+4}{n^2+5n+4}\\
& = 1,
\end{align*} de donde $R = 1/\lambda = 1$.

c) Tenemos que:
\begin{equation*}
c_n = \left(a+ib\right)^{n} \quad \forall n\in\mathbb{N},
\end{equation*} con $a,b\in\mathbb{R}$ no ambos cero, por lo que:
\begin{equation*}
c_{n+1} = \left(a+ib\right)^{n+1}.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = \lim_{n\to\infty} \left| \frac{\left(a+ib\right)^{n+1}}{\left(a+ib\right)^{n}}\right| = \lim_{n\to\infty} |a+ib| = \sqrt{a^2 + b^2},
\end{equation*} de donde $R = 1/\lambda$.

d) Tenemos que:
\begin{equation*}
z_0 = 4, \quad c_0 = 1 \quad \text{y} \quad c_n = \left(\dfrac{n+2}{3n+1}\right)^{n} \quad \forall n\in\mathbb{N}^+.
\end{equation*}

Entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{n\to\infty} \left(\left| \dfrac{n+2}{3n+1}\right|^n\right)^{1/n} = \lim_{n\to\infty} \dfrac{n+2}{3n+1} = \dfrac{1}{3},
\end{equation*} de donde $R = 1/\lambda = 3$.

Ejemplo 29.10.
Determinemos el dominio de convergencia de la siguiente serie de potencias e identifiquemos gráficamente a dicho conjunto en el plano complejo.
\begin{equation*}
\displaystyle\sum_{n=1}^\infty \frac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}\left(\dfrac{1-z}{z}\right)^{n}.
\end{equation*}

Solución. Sea $w = \dfrac{1-z}{z}$, entonces:
\begin{equation*}
\sum_{n=1}^\infty \frac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!} w^{n} = \sum_{k=0}^\infty c_k w^k,
\end{equation*}

de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso,}\\
\end{array}
\right.
\end{equation*}

es decir:
\begin{equation*}
c_0 = 0 \quad \text{y} \quad c_n = \dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!} \quad \forall n\geq 1.
\end{equation*}

Tenemos que:
\begin{equation*}
c_{n+1} = \dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)(2n+1)}{(n+1)!},
\end{equation*}

por lo que:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} & = \lim_{n\to\infty} \left|\dfrac{\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)(2n+1)}{(n+1)!}}{\dfrac{1\cdot3\cdot5 \cdot \ldots \cdot (2n-1)}{n!}}\right|\\
& = \lim_{n\to\infty} \left|\dfrac{(2n+1)n!}{(n+1)!}\right|\\
& = \lim_{n\to\infty} \dfrac{2n+1}{n+1}\\
& = 2,
\end{align*} de donde $R = 1/\lambda = 1/2$.

Entonces, el dominio de convergencia de la serie está dado por la condición $|w|<1/2$, es decir:
\begin{align*}
\left|\frac{1-z}{z}\right| < \frac{1}{2} \quad & \Longrightarrow \quad 2 |1-z|< |z|,\\
& \Longrightarrow \quad 4 |1-z|^2< |z|^2,\\
& \Longrightarrow \quad 4 (1-z)\overline{(1-z)}< z \overline{z},\\
& \Longrightarrow \quad 4 -4\overline{z} – 4z + 3z \overline{z}< 0,\\
& \Longrightarrow \quad z \overline{z} -\frac{4}{3}\overline{z} – \frac{4}{3}z + \frac{4}{3}< 0 \tag{29.7}.
\end{align*}

De acuerdo con los resultados de la entrada 6, sabemos que la ecuación general de una circunfernecia en el plano complejo $\mathbb{C}$ es:
\begin{equation*}
z \overline{z} +a \overline{z} + \overline{a} z + b = 0,
\end{equation*} cuyo centro es el punto $-a$ y $r = \sqrt{|a|^2-b}$ su radio.

De (29.7) tenemos:
\begin{equation*}
z \overline{z} + \left(-\frac{4}{3}\right)\overline{z} + \left(-\frac{4}{3}\right) z + \frac{4}{3} = 0,
\end{equation*}

de donde:
\begin{equation*}
-a = \frac{4}{3}, \quad b= \frac{4}{3} \quad \text{y} \quad r = \sqrt{|a|^2-b} = \sqrt{\frac{4}{9}} = \frac{2}{3}.
\end{equation*}

Por lo que, la expresión en (29.7) corresponde con el interior de la circunferencia $C\left(\dfrac{4}{3}, \dfrac{2}{3}\right)$, es decir, el disco abierto $B\left(\dfrac{4}{3}, \dfrac{2}{3}\right)$ es el dominio de convergencia de la serie de potencias, figura.

Figura : Dominio de convergencia de la serie de potencias del ejemplo 29.10.

Tarea moral

  1. Muestra que el radio de convergencia de la serie de potencias: \begin{equation*} \sum_{n=0}^\infty \frac{(-1)^n}{n} z^{n(n+1)},\end{equation*} es 1 y analiza la convergencia para $z=1$, $z=-1$ y $z=i$.

    Hint: Observa que el $(n+1)$-ésimo coeficiente de la serie no es $\dfrac{(-1)^n}{n}$. Procede como en el ejemplo 29.1.
  2. Determina el dominio de convergencia de las siguientes series de potencias y gráficalo.
    a) $\displaystyle \sum_{n=0}^\infty \left[\dfrac{(iz-1)}{3+4i}\right]^n$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{(z+2)^{n-1}}{(n+1)^3 4^n}$.
  3. Muestra que el radio de convergencia de las siguientes series de potencias es infinito.
    a) $\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{n!}$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{(-1)^n z^{2n}}{(2n)!}$.
    c) $\displaystyle \sum_{n=0}^\infty \dfrac{(-1)^n z^{2n+1}}{(2n+1)!}$.
  4. Considera las tres series del ejemplo 29.2 y obtén su radio de convergencia, ¿en qué conjuntos la convergencia es uniforme?
  5. Prueba el corolario 29.3.
  6. Sean $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n$ y $\displaystyle \sum_{n=0}^\infty d_n (z-z_0)^n$ dos series de potencias con radio de convergencia $R_1$ y $R_2$, respectivamente.
    a) ¿Cuál es el radio de convergencia de la serie $\displaystyle \sum_{n=0}^\infty (c_n+d_n)(z-z_0)^n$?
    b) ¿Cuál es el radio de convergencia de la serie $\displaystyle \sum_{n=0}^\infty (c_n \cdot d_n)(z-z_0)^n$?
  7. Obtén el radio de convergencia de las siguientes series de potencias:
    a) $\displaystyle \sum_{n=1}^\infty \dfrac{z^n}{n}$.
    b) $\displaystyle \sum_{n=0}^\infty \dfrac{z^{4n}}{4n+1}$.
    c) $\displaystyle \sum_{n=0}^\infty n^2\left(\dfrac{z^{2}+1}{1+i}\right)^n$.
    d) $\displaystyle \sum_{n=0}^\infty \left(\dfrac{2i}{x+i+1}\right)^n$.
    e) $\dfrac{1}{2} z + \dfrac{1 \cdot 3}{2\cdot5} z^2 + \dfrac{1 \cdot 3 \cdot 5}{2\cdot 5 \cdot 8} z^3 + \cdots$
    f) $\displaystyle \sum_{n=1}^\infty (\operatorname{ln}(n))^n z^n$.
  8. Si $\displaystyle \sum_{n=0}^\infty c_n z^n$ tiene radio de convergencia $R$, determina el radio de convergencia de las siguientes series de potencias:
    a) $\displaystyle \sum_{n=0}^\infty c_n z^{2n}$.
    b) $\displaystyle \sum_{n=0}^\infty c_n^2 z^{n}$.
    c) $\displaystyle \sum_{n=0}^\infty n^d c_n z^{n}$, para cualquier $d\in\mathbb{N}^+$.

Más adelante…

En esta entrada definimos de manera formal el concepto de serie de potencias y establecimos una serie de resultados relacionados con su convergencia. En particular, vimos que a través del concepto del radio de convergencia de una serie de potencias es posible establecer su dominio de convergencia, que geométricamente corresponde con discos abiertos, a los cuales comúnmente se les llama círculos de convergencia.

En la siguiente entrada estudiaremos algunas propiedades importantes de las series de potencias como la continuidad y analicidad de las mismas, propiedades que nos serán de utilidad en el estudio de las funciones complejas, pues como veremos, toda función compleja que es analítica en un dominio $D\subset\mathbb{C}$ puede tener un desarrollo en series de potencias en todo disco abierto completamente contenido en $D$.

Entradas relacionadas

Variable Compleja I: Sucesiones y series de funciones

Por Pedro Rivera Herrera

Introducción

En la entrada 8 definimos el concepto de sucesión de números complejos y obtuvimos algunos resultados sobre dichos objetos matemáticos. Como vimos, muchas de las definiciones y resultados son similares a los que ya conocíamos sobre sucesiones de números reales con los que ya estábamos familiarizados.

Por otra parte, en la entrada anterior definimos el concepto de serie de números complejos y vimos que para determinar su comportamiento, así como muchas de sus propiedades, requerimos de los resultados de sucesiones de números complejos.

En ésta entrada definiremos el concepto de sucesiones de funciones y series de funciones, desde el enfoque complejo. Al igual que con las sucesiones numéricas, intuimos que para las sucesiones de funciones debe haber una noción de convergencia. Sin embargo, veremos que para el caso de sucesiones de funciones, podemos tener distintos tipos de convergencia, por lo que requeriremos ser muy meticulosos al trabajar con ellas.

Definición 28.1. (Sucesión de funciones.)
Sea $S\subset\mathbb{C}$. Consideremos al conjunto de todas las funciones $f:S \to \mathbb{C}$, es decir, $\mathcal{F}(S)$. Una sucesión de funciones en $S$ es una función $F:\mathbb{N} \to \mathcal{F}$, que a cada $n\in\mathbb{N}$ asigna una función $f\in\mathcal{F}(S)$, es decir, $F(n) = f_n(z)$, lo cual denotamos como $\left\{f_n\right\}_{n\geq 0}$.

Procedemos a definir el primer tipo de convergencia para una sucesión de funciones, el cual es en esencia el más elemental.

Definición 28.2. (Convergencia puntual de una sucesión de funciones.)
Sean $S\subset\mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$. Diremos que la sucesión $\left\{f_n\right\}_{n\geq 0}$ converge puntualmente en $S$ a una función $f: S\to \mathbb{C}$ si: \begin{equation*} \lim_{n\to\infty} f_n(z) = f(z), \end{equation*} para todo $z\in S$. Es decir, si para todo $\varepsilon>0$ y todo $z\in S$ existe $N\in\mathbb{N}$, que depende de $\varepsilon$ y de $z$, tal que si $n \geq N$, entonces:
\begin{equation*}
\left|f_n(z) – f(z)\right| < \varepsilon.
\end{equation*} A la función $f$ que satisface lo anterior la llamaremos el límite puntual de $\left\{f_n\right\}_{n\geq 0}$.

Observación 28.1.
La convergencia puntual es simplemente la convergencia de la sucesión de números complejos $\left\{f_n(z)\right\}_{n\geq 0}$ al número complejo $f(z)$, para cada $z\in S$

Definición 28.3. (Convergencia uniforme de una sucesión de funciones.)
Sean $S\subset\mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$. Diremos que la sucesión $\left\{f_n\right\}_{n\geq 0}$ converge uniformemente en $S$ a una función $f: S\to \mathbb{C}$ si para todo $\varepsilon>0$ existe $N\in\mathbb{N}$, que depende únicamente de $\varepsilon$, tal que si $n \geq N$, entonces:
\begin{equation*}
\left|f_n(z) – f(z)\right| < \varepsilon,
\end{equation*} para todo $z\in S$.

A la función $f$ que satisface lo anterior la llamaremos el límite uniforme de $\left\{f_n\right\}_{n\geq 0}$.

Observación 28.2.
Una vez especificado el tipo de convergencia, utilizaremos la notación $f_n \to f$ para denotar la convergencia de una sucesión de funciones $\left\{f_n\right\}_{n\geq 0}$ a una función $f$.

Ejemplo 28.1.
Sea $f_n : B(0,1) \to \mathbb{C}$ dada por $f_n(z) = z^n$, con $n\in\mathbb{N}^+$. Consideremos a la función $f: B(0,1) \to \mathbb{C}$ dada por $f(z) = 0$. Veamos que la sucesión de funciones $\left\{f_n\right\}_{n\geq 1}$ cumple lo siguiente.

a) $f_n \to f$ puntualmente en $B(0,1)$.
b) $f_n \not \to f$ uniformemente en $B(0,1)$.
c) $f_n \to f$ uniformemente en $\overline{B}(0,r)$, con $0<r<1$.

Solución.
a) Si $z\in B(0,1)$, entonces $|z|<1$. Es claro que para $z =0$ el resultado es inmediato, por lo que supondremos que $0<|z|<1$. Notemos que bajo esta condición se cumple que $\operatorname{ln}|z| < 0$.

Sea $\varepsilon>0$ y $0<|z|<1$. Elegimos $N\in \mathbb{N}^+$ tal que $N > \dfrac{\operatorname{ln}(\varepsilon)}{\operatorname{ln}|z|}$, entonces para todo $n\geq N$ tenemos que:
\begin{equation*}
|f_n(z) -f(z)| = |z^n – 0| = |z|^n \leq |z|^N < \varepsilon,
\end{equation*} es decir, $f_n \to f$ puntualmente en $B(0,1)$.

b) Procedemos por contradicción. Supongamos que $f_n \to f$ uniformemente en $B(0,1)$.

Sea $\varepsilon = \dfrac{1}{3} > 0$, entonces existe $N\in\mathbb{N}^+$ tal que $|z^N| < \varepsilon$, para todo $z\in B(0,1)$.

Notemos que $z = 2^{-1/N} \in B(0,1)$, pero:
\begin{equation*}
|z^N| = \left|\left(\frac{1}{2^{1/N}}\right)^N\right| = \frac{1}{2} > \frac{1}{3}.
\end{equation*}

Por lo que $f_n \not \to f$ uniformemente en $B(0,1)$.

c) Sea $0<r<1$. En tal caso sabemos que $\lim\limits_{n\to\infty} r^n = 0$.

Sea $\varepsilon>0$. De acuerdo con lo anterior tenemos que existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces $|r^n – 0| = r^n < \varepsilon$.

Sea $z\in\overline{B}(0,r)$, entonces:
\begin{equation*}
|f_n(z) -f(z)| = |z^n – 0| = |z|^n \leq r^n < \varepsilon,
\end{equation*} por lo que $f_n \to f$ uniformemente en $\overline{B}(0,r)$, con $0<r<1$.

Ejemplo 28.2.
Para cada $n\in\mathbb{N}$ definimos a la función $f_n : \mathbb{C} \to \mathbb{C}$ como:
\begin{equation*}
f_n(z) = \frac{z+in}{n+1}.
\end{equation*}

Veamos que la sucesión converge puntualmente a la función constante $f(z) = i$, pero que la sucesión no converge uniformemente a $f$.

Solución. Notemos que para cualquier $z\in\mathbb{C}$ se cumple que:
\begin{equation*}
\lim_{n\to\infty} f_n(z) = \lim_{n\to\infty} \frac{z+in}{n+1} = \lim_{n\to\infty} \frac{\dfrac{z}{n} + i}{1 + \dfrac{1}{n}} = i,
\end{equation*} de donde se sigue la sucesión $\left\{f_n\right\}_{n\geq 0}$ converge puntualmente en $\mathbb{C}$ a la función constante $f(z) = i$.

Notemos que para todo $n\in\mathbb{N}$ se cumple que:
\begin{equation*}
f_n(-in) = \frac{-in+in}{n+1} = 0, \quad f(-in) = i,
\end{equation*} por lo que:
\begin{equation*}
f_n(-in) – f(-in) = -i, \quad \forall n\in\mathbb{N}.
\end{equation*}

Entonces, no existe $n\in\mathbb{N}$ tal que $| f_n(z) – f(z)| < 1$ para todo $z\in\mathbb{C}$, por lo que la sucesión $\left\{f_n\right\}_{n\geq 0}$ no converge uniformemente a $f(z)=i$ en $\mathbb{C}$.

Observación 28.3.
Notemos que existe una sutil diferencia entre las definiciones de convergencia puntual y convergencia uniforme. Si $f_n \to f$ puntualmente en $S$, dado $\varepsilon>0$, para cada $z\in S$ existe un $N_{z} \in \mathbb{N}$ tal que si $n\geq N_z$, entonces $\left|f_n(z) – f(z)\right| < \varepsilon$. Lo anterior nos dice que es posible que el valor de $N_z$ sea diferente para cada valor de $z$.

Por otra parte, si $f_n \to f$ uniformemente, entonces el valor de $N\in\mathbb{N}$ se puede elegir de forma que sea el mismo para todo $z\in S$. Esta condición es mucho más fuerte que la primera, por lo que la convergencia uniforme implica la convergencia puntual, pero el recíproco no es cierto.

Entonces, la diferencia clave entre ambos tipos de convergencia radica en dónde consideramos la expresión «para todo $z\in S$» en las definiciones. Para la convergencia uniforme requerimos que la diferencia entre $f_n(z)$ y $f(z)$ sea arbitrariamente pequeña de forma simultánea para todo $z\in S$.

Observación 28.4.
Si definimos $M_n = \operatorname{max}\left\{\left|f_n(z) – f(z)\right| : z \in S\right\}$, entonces una definición equivalente para la convergencia uniforme es:
\begin{equation*}
f_n \to f \,\,\, \text{uniformemente en S}\quad \Longleftrightarrow \quad \lim_{n\to\infty} M_n = 0.
\end{equation*}

En caso de que no se alcance el máximo, basta con tomar $M_n = \operatorname{sup}\left\{\left|f_n(z) – f(z)\right| : z \in S\right\}$.

Ejemplo 28.3.
Sean $x\in[0, 1]$, $n\in\mathbb{N}^+$ y $f(x) = 0$. Consideremos a la sucesión de funciones reales $\{f_n\}_{n\geq 1}$, dada por:
\begin{equation*}
f_n(x) = \frac{2nx}{1+n^2 x^2}.
\end{equation*}

Veamos que:
a) $f_n \to f$ puntualmente en $[0,1]$.
b) $f_n \not \to f$ uniformemente en $[0,1]$.

Solución. Primeramente, podemos visualizar el comportamiento de la sucesión $\{f_n\}_{n\geq 1}$ en el siguiente applet de GeoGebra https://www.geogebra.org/m/shs5mw8b.

a) Es claro que si $x=0$, entonces para todo $n\in\mathbb{N}^+$ se cumple que $f_n(0) = 0$ y en tal caso $f_n \to f$ puntualmente.

Supongamos que $x \neq 0$, entonces $x \in (0,1]$ y en tal caso:
\begin{equation*}
\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{2nx}{1+n^2 x^2} = \lim_{n \to \infty} \frac{1}{n} \left(\dfrac{2x}{\frac{1}{n^2}+ x^2}\right) = 0.
\end{equation*}

Por lo que, para toda $x \in [0,1]$, $f_n \to f$ puntualmente.

Entonces, para cada $x\in[0,1]$, la sucesión de números complejos $\{f_n(x)\}_{n\geq 1}$ converge a $0$, como se puede visualizar en el applet mencionado previamente.

b) Dado que para cada $n\in\mathbb{N}^+$ la función $f_n : [0, 1] \to \mathbb{R}$ es continua y $[0, 1] \subset \mathbb{R}$ es un conjunto compacto, entonces, proposición 10.10, la función $f_n$ alcanza sus valores mínimo y máximo (absolutos) en $[0, 1]$. Sea:\begin{align*}
M_n &= \underset{x \in[0,1]}{\max} \left| f_n(x) – f(x) \right|\\
& = \underset{x \in[0,1]}{\max} \left| \frac{2nx}{1+n^2 x^2} \right|\\
& = \underset{x \in[0,1]}{\max} \dfrac{2nx}{1+n^2 x^2}\\
& = \underset{x \in[0,1]}{\max} f_n(x).
\end{align*}

Es claro que para $x = 0$, la función $f_n$ alcanza su mínimo absoluto, por lo que consideremos a $x\in(0,1]$.

Procedemos a obtener el máximo absoluto de la función $f_n$. Derivando tenemos:
\begin{equation*}
f_n'(x) = \dfrac{2n(1-n^2 x^2)}{(1+n^2 x^2)^2}.
\end{equation*}Entonces, para $x\in(0, 1]$, tenemos que:
\begin{equation*}
f_n'(x) = 0 \quad \Longleftrightarrow \quad 1 – n^2 x^2 = 0 \quad \Longleftrightarrow \quad x = \frac{1}{n}.
\end{equation*}Notemos que:
\begin{equation*}
f_n\left(\frac{1}{n}\right) = \dfrac{2n\left(\frac{1}{n}\right)}{1+n^2\left(\frac{1}{n}\right)^2} = \frac{2}{2} = 1,
\end{equation*} \begin{equation*}
f_n\left(1\right) = \dfrac{2n\left(1\right)}{1+n^2\left(1\right)^2} = \frac{2n}{1+n^2} \leq 1,
\end{equation*} donde esta última desigualdad se sigue del hecho de que $(n-1)^2\geq 0$ para todo $n\in\mathbb{N}^+$, por lo que, en $x=\dfrac{1}{n}$ la función alcanza su máximo absoluto.

Entonces:
\begin{equation*}
M_n = \underset{x \in[0,1]}{\max} f_n(x) = 1,
\end{equation*}de donde:
\begin{equation*}
\lim_{n\to\infty} M_n = 1 \neq 0,
\end{equation*} por lo que, observación 28.4, $f_n \not \to f$ uniformemente en $[0,1]$.

Ahora procedemos a probar un resultado que nos permite garantizar la continuidad de la función límite de una sucesión convergente de funciones continuas, bajo la convergencia uniforme. Cabe mencionar que este resultado es válido en general para dos espacios métricos $(X, d_X)$ y $(Y, d_Y)$ que cumplan las condiciones dadas.

En este punto, es importante que enfaticemos en que dada una sucesión de funciones, podemos hablar de su convergencia puntual y/o uniforme, por lo que, antes de probar el resultado mencionado, consideremos el siguiente ejemplo, el cual nos deja ver una de las principales diferencias entre la convergencia puntual y la convergencia uniforme.

Ejemplo 28.4.
Consideremos a la sucesión de funciones reales $f_n:[0,1] \to \mathbb{R}$ dada por $f_n(x) = x^n$, con $n\in\mathbb{N}^+$. Claramente, para cada $n\in\mathbb{N}^+$ la función $f_n$ es continua en el intervalo $[0,1]$.

Sin embargo, el límite puntual de la sucesión $\left\{f_n\right\}_{n\geq 1}$, es decir, la función:
\begin{equation*}
f(x)= \lim_{n\to\infty} f_n(x) = \left\{ \begin{array}{lcc}
0 & \text{si} & 0 \leq x < 1, \\
\\ 1 & \text{si} & x=1, \end{array}
\right.
\end{equation*} no es continua en $[0,1]$, por lo que la convergencia puntual de la sucesión de funciones continuas $\left\{f_n\right\}_{n\geq 1}$ no garantiza la continuidad de la función $f$ en el intervalo real $[0,1]$.

El ejemplo anterior nos deja ver que, en general, la función límite de una sucesión de funciones continuas que converge puntualmente, puede no ser continua. Pero, ¿qué sucede si la convergencia de la sucesión de funciones continuas es uniforme?

Proposición 28.1.
Sean $S\subset \mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones continuas en $S$. Supongamos que la sucesión $\left\{f_n\right\}_{n\geq 0}$ converge uniformemente a una función $f:S\to\mathbb{C}$, entonces $f$ es continua.

Demostración. Dadas las hipótesis, tomemos al punto $a \in S$ fijo y sea $\varepsilon>0$.

Como la sucesión converge uniformemente a $f$, existe $N(\varepsilon)\in\mathbb{N}$ tal que si $n\geq N$, entonces:
\begin{equation*}
\left|f_n(z) – f(z) \right| < \frac{\varepsilon}{3}, \quad \forall z\in S.
\end{equation*}

Por otra parte, para cada $n\in\mathbb{N}$ tenemos que la función $f_n$ es continua en $S$, en particular es continua en $a$, por lo que para el $\varepsilon>0$ dado, existe $\delta>0$ tal que si $z\in S$ y $|z-a|<\delta$, entonces:
\begin{equation*}
\left|f_n(z) – f_n(a) \right| < \frac{\varepsilon}{3}.
\end{equation*}

Entonces, para todo $z\in S$ tal que $|z-a|<\delta$, se cumple que:
\begin{align*}
\left|f(z) – f(a) \right| & \leq \left|f_n(z) – f(z) \right| + \left|f_n(z) – f_n(a) \right| + \left|f_n(a) – f(a) \right|\\
& < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
\end{align*}Por lo que, $f$ es continua en $a\in S$.

$\blacksquare$

Observación 28.5.
La proposición 28.1 suele utilizarse para determinar cuándo una sucesión de funciones no converge uniformemente, es decir, considerando la contrapuesta se deduce que si una sucesión de funciones continuas converge puntualmente a una función discontinua, entonces la convergencia no es uniforme. Sin embargo, no se cumple el recíproco, ya que puede suceder que el límite puntual de una sucesión de funciones sea una función continua y que dicha sucesión no converga uniformemente.

Ejemplo 28.5.
De acuerdo con el ejemplo 28.3, sabemos que la función límite puntual de la sucesión de funciones continuas $f_n(x) = \dfrac{2nx}{1+n^2 x^2}$, con $x\in[0, 1]$ y $n\in\mathbb{N}^+$, es la función continua $f(x) = 0$. Sin embargo, la sucesión $\left\{f_n\right\}_{n\geq 1}$ no converge uniformemente a $f$ en el intervalo real $[0, 1]$.

Ejemplo 28.6.
Por el ejemplo 28.4, tenemos que la función límite (puntual) de la sucesión de funciones continuas $\left\{f_n\right\}_{n\geq 1}$, dada por $f_n(x) = x^n$ con $x\in[0, 1]$, es una función discontinua, por lo que, la convergencia de la sucesión no puede ser uniforme.

Observación 28.6.
Recordemos que en Matemáticas muchos problemas difíciles se simplifican al saber bajo qué condiciones es posible el intercambio de límites, por lo que, la proposición 28.1 es de gran ayuda en este hecho.

Dada una sucesión de funciones $\left\{f_n\right\}_{n\geq 0}$ en $S\subset\mathbb{C}$ que converge uniformemente en $S$ se cumple que:
\begin{equation*}
\lim_{z\to z_0} \lim_{n\to\infty} f_n(z) = \lim_{n\to\infty} \lim_{z\to z_0} f_n(z) = \lim_{n\to\infty} f_n(z_0),
\end{equation*} para todo $z_0\in S$ que es un punto de acumulación de $S$.

Definición 28.4. (Sucesión de funciones uniformemente de Cauchy.)
Sea $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S\subset\mathbb{C}$. Diremos que $\left\{f_n\right\}_{n\geq 0}$ es {\bf uniformemente de Cauchy} en $S$ si para todo $\varepsilon>0$ existe $N(\varepsilon)\in\mathbb{N}$ tal que si $m, n\geq N$, con $n>m$, entonces:
\begin{equation*}
|f_n(z) – f_m(z)| < \varepsilon, \quad \forall z\in S.
\end{equation*}

Proposición 28.2. (Criterio de Cauchy para convergencia uniforme.)
Sea $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S\subset\mathbb{C}$. Entonces, $\left\{f_n\right\}_{n\geq 0}$ converge uniformemente en $S$ si y solo si es una sucesión uniformemente de Cauchy en $S$.

Demostración. Dadas las hipótesis.

$\Longrightarrow)$

Sea $\varepsilon>0$. Supongamos que $\left\{f_n\right\}_{n\geq 0}$ converge uniformemente en $S$ a una función $f:S\to\mathbb{C}$, por lo que existe $N(\varepsilon)\in\mathbb{N}$ tal que si $n\geq N$ entonces:
\begin{equation*}
|f_n(z) – f(z)| < \frac{\varepsilon}{2}, \quad \forall z\in S.
\end{equation*}

De la desigualdad del triángulo, para $z\in S$ y $n>m \geq N$, se sigue que:
\begin{equation*}
|f_n(z) – f_m(z)| \leq |f_n(z) – f(z)| + |f(z) – f_m(z)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\end{equation*}

Por lo que $\left\{f_n\right\}_{n\geq 0}$ es uniformemente de Cauchy en $S$.

$(\Longleftarrow$

Supongamos que $\left\{f_n\right\}_{n\geq 0}$ es uniformemente de Cauchy en $S$.

Notemos que para cada $z\in S$, tenemos que la sucesión de números complejos $\left\{f_n(z)\right\}_{n\geq 0}$ es de Cauchy, por lo que es una sucesión convergente, entonces existe $f: S\to \mathbb{C}$ dada por:
\begin{equation*}
f(z) = \lim_{n\to\infty} f_n(z), \quad \forall z\in S,
\end{equation*} es decir, $f_n \to f$ puntualmente en $S$.

Sea $\varepsilon>0$. Por hipótesis sabemos que existe $N\in\mathbb{N}$ tal que si $m,n \geq N$, con $n>m$, entonces:
\begin{equation*}
|f_n(z) – f_m(z)| < \frac{\varepsilon}{2}, \quad \forall z\in S.
\end{equation*}

Si fijamos $m\in\mathbb{N}$, con $m\geq N$, y $z\in S$, entonces:
\begin{equation*}
|f(z) – f_m(z)| = \lim_{n\to \infty} |f_n(z) – f_m(z)| \leq \frac{\varepsilon}{2} <\varepsilon.
\end{equation*}

Como $m\geq N$ era arbitrario, entonces:
\begin{equation*}
|f(z) – f_m(z)| < \varepsilon.
\end{equation*}

Por lo que $f_n \to f$ uniformemente en $S$.

$\blacksquare$

Definición 28.5. (Sucesión de sumas parciales de una sucesión de funciones.)
Sean $S\subset\mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$. Para cada $k\in\mathbb{N}$ definimos a la función $s_k : S \to \mathbb{C}$ como:
\begin{equation*}
s_n(z) = \sum_{k=0}^n f_k(z).
\end{equation*}

A las funciones $s_n$ las llamaremos las sumas parciales de la sucesión de funciones $\left\{f_n\right\}_{n\geq 0}$ y a la sucesión de sumas parciales la denotamos como $\left\{s_n\right\}_{n\geq 0}$.

Definición 28.6. (Convergencia puntual y convergencia uniforme de una serie de funciones.)
Sean $S\subset\mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$. Diremos que la serie de funciones $\displaystyle \sum_{n=0}^\infty f_n$ {\bf converge puntualmente} en $S$ si la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ converge puntualmente en $S$ a una función $s: S\to \mathbb{C}$.

Por otra parte, si la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ converge uniformemente en $S$ a una función $s: S\to \mathbb{C}$, diremos que la serie de funciones $\displaystyle\sum_{n=0}^\infty f_n$ {\bf converge uniformemente} en $S$.

En cualquiera de ambos casos, una vez especificado el tipo de convergencia, denotaremos la convergencia de la serie de funciones a la función $s$ como:
\begin{equation*}
s(z) = \sum_{n=0}^\infty f_n(z),
\end{equation*}

y a la función $s$ la llamaremos la función suma de la serie.

De acuerdo con la definición anterior y considerando el corolario 27.1, no es difícil probar el siguiente:

Corolario 28.1.
Sea $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S\subset \mathbb{C}$. Si la serie $\displaystyle\sum_{n=0}^\infty f_n$ converge puntualmente en $S$, entonces la sucesión $\left\{f_n\right\}_{n\geq 0}$ converge puntualmente a $0$ en $S$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Observación 28.7.
Considerando la observación 28.3 y la definición 28.6, debe ser claro que la convergencia uniforme de una serie de funciones implica la convergencia puntual de la misma.

Definición 28.7. (Serie de funciones absolutamente convergente.)
Sea $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S\subset\mathbb{C}$. Diremos que la serie de funciones $\displaystyle \sum_{n=0}^\infty f_n$ es {\bf absolutamente convergente} en $S$ si la serie $\displaystyle \sum_{n=0}^\infty |f_n|$ es puntualmente convergente en $S$.

Observación 28.8.
Al igual que con las series de números complejos, una serie de funciones absolutamente convergente es puntualmente convergente.

Como lo hicimos con las sucesiones de funciones, podemos preguntarnos qué pasa en el caso de tener una serie infinita de funciones continuas que es convergente, ¿su función límite será continua? Para responder esta pregunta debemos recordar que al hablar de una serie de funciones convergente podemos tener la convergencia puntual y/o la convergencia uniforme de la sucesión de sumas parciales. Es claro que en el caso de una suma finita de funciones continuas, la función suma también será continua. Sin embargo, de acuerdo con la proposición 28.1, inferimos que la continuidad de la función límite de una serie convergente de funciones continuas se dará siempre que la convergencia sea uniforme.

Corolario 28.2.
Sean $S\subset \mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones continuas en $S$. Si la serie $\displaystyle\sum_{n=0}^\infty f_n$ converge uniformemente en $S$ a la función $s:S\to\mathbb{C}$, entonces $s$ es continua.

Demostración. Se sigue de la proposición 28.1, por lo que los detalles de la prueba se dejan como ejercicio al lector.

$\blacksquare$

Ejemplo 28.7.
Veamos que la serie:
\begin{equation*}
\displaystyle \sum_{n=1}^{\infty} 2^n \operatorname{sen}\left(\frac{1}{3^n z}\right),
\end{equation*} es absolutamente convergente en $\mathbb{C}\setminus\{0\}$, pero que la serie no converge uniformemente en $\mathbb{C}$.

Solución. Primeramente, notemos que para cada $z\neq 0$ la sucesión de funciones $\left\{f_n\right\}_{n\geq 1}$, dada por:
\begin{equation*}
f_n(z) = 2^n \operatorname{sen}\left(\frac{1}{3^n z}\right),
\end{equation*} define una sucesión de números complejos, es decir, $\left\{f_n(z)\right\}_{n\geq 1}$. Por lo que, para $z\neq 0$ podemos verificar que la serie es absolutamente convergente utilizando el criterio del cociente de D’Alembert.

De acuerdo con el ejemplo 22.5 sabemos que:
\begin{equation*}
\lim_{w\to 0} \frac{\operatorname{sen}(w)}{w} = 1,
\end{equation*}

y del ejercicio 3 de la entrada 14 se sigue que:
\begin{equation*}
\lim_{w\to 0} \left|\frac{\operatorname{sen}(w)}{w}\right| = \lim_{n\to\infty} \left|\dfrac{\operatorname{sen}\left(\dfrac{1}{3^{n+1} z}\right)}{\dfrac{1}{3^{n+1} z}}\right| = 1, \quad z\neq 0.
\end{equation*}

Sea $z\neq 0$, entonces:
\begin{align*}
\lim_{n\to\infty} \frac{\left|f_{n+1}(z)\right|}{\left|f_{n}(z)\right|} & = \lim_{n\to\infty} \left|\dfrac{2^{n+1} \operatorname{sen}\left(\dfrac{1}{3^{n+1} z}\right)}{2^n \operatorname{sen}\left(\dfrac{1}{3^n z}\right)}\right|\\
& = \lim_{n\to\infty} 2 \left|\dfrac{\dfrac{\operatorname{sen}\left(\dfrac{1}{3^{n+1} z}\right)}{\dfrac{1}{3^{n+1} z}}}{\dfrac{\operatorname{sen}\left(\dfrac{1}{3^{n} z}\right)}{\dfrac{1}{3^{n} z}}}\right| \left|\dfrac{\dfrac{1}{3^{n+1} z}}{\dfrac{1}{3^n z}}\right|\\
& = \lim_{w\to 0 } \frac{2}{3} \left| \dfrac{\dfrac{\operatorname{sen}(w)}{w}}{\dfrac{\operatorname{sen}(3w)}{3w}} \right|\\
&= \frac{2}{3} < 1.
\end{align*}

Entonces, para todo $z\neq 0$ la serie $ \displaystyle \sum_{n=1}^{\infty} 2^n \operatorname{sen}\left(\frac{1}{3^n z}\right)$ es absolutamente convergente y por tanto la serie converge puntualmente en $\mathbb{C}\setminus\{0\}$.

Por otra parte, es claro que las funciones de la sucesión $\left\{f_n\right\}_{n\geq 1}$ son continuas para todo $z\neq 0$. Sin embargo, para $z = 0$ dichas funciones no están definidas y como $\lim\limits_{z \to 0} f_n(z)$ no existe, entonces la función límite puntual $s(z) = \displaystyle \sum_{n=1}^{\infty} 2^n \operatorname{sen}\left(\frac{1}{3^n z}\right)$ no es continua en $z=0$, por lo que, corolario 28.2, la serie no converge uniformemente en $\mathbb{C}$.

Proposición 28.3. (Criterio $M$ de Weierstrass.)
Sean $S\subset \mathbb{C}$ y $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$. Si para cada $n\in\mathbb{N}$ existe $M_n\geq 0$ tal que $\left|f_n(z)\right| \leq M_n$ para todo $z\in S$ y la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge, entonces la serie de funciones $\displaystyle\sum_{n=0}^\infty f_n$ converge absolutamente y uniformemente en $S$.

Demostración. Dadas las hipótesis, tenemos que para todo $z\in S$ se cumple que:
\begin{equation*}
|f_n(z)| \leq M_n, \quad \forall n\in\mathbb{N}.
\end{equation*}

Dado que la serie $\displaystyle\sum_{n=0}^\infty M_n$ es convergente, se sigue del criterio de comparación, proposición 27.4, que la serie $\displaystyle\sum_{n=0}^\infty f_n$ es absolutamente convergente. Más aún, de la convergencia absoluta de la serie se sigue que la serie $\displaystyle\sum_{n=0}^\infty f_n$ converge, proposición 27.3, para todo $z\in S$.

Definimos a la función $f:S\to\mathbb{C}$ como:
\begin{equation*}
f(z) = \lim_{n\to\infty} \sum_{k=0}^n f_k(z) = \sum_{n=0}^\infty f_n(z), \quad \forall z\in S.
\end{equation*}

Sea $\left\{s_n\right\}_{n\geq 0}$ la sucesión de sumas parciales de la serie. Veamos que dicha sucesión de funciones converge uniformemente a $f$ en $S$.

Sea $\varepsilon>0$. Por el criterio de Cauchy, proposición 27.1, tenemos que existe $N(\varepsilon)\in\mathbb{N}$ tal que si $n, m\geq N$, con $n>m$, entonces:
\begin{equation*}
\sum_{k=m+1}^n M_k = \left|\sum_{k=m+1}^n M_k\right| < \varepsilon.
\end{equation*}

Por la desigualdad del triángulo, para todo $n,m\geq N$, con $n>m$ y todo $z\in S$, se tiene que:
\begin{align*}
|s_n(z) – s_m(z)| = \left|\sum_{k=0}^n f_k(z) – \sum_{k=0}^m f_k(z) \right|
& = \left|\sum_{k=m+1}^n f_k(z) \right|\\
& \leq \sum_{k=m+1}^n \left| f_k(z) \right|\\
& \leq \sum_{k=m+1}^n M_k < \varepsilon.
\end{align*}

Entonces, la sucesión de funciones $\left\{s_n\right\}_{n\geq 0}$ es uniformemente de Cauchy en $S$, por lo que, proposición 28.2, converge uniformemente a $f$ en $S$.

$\blacksquare$

Ejemplo 28.8.
Veamos que la serie geométrica $\displaystyle\sum_{n=0}^\infty z^n$ converge uniformemente a la función $s(z) =\dfrac{1}{1-z}$ en todo subdisco cerrado $\overline{B}(0,r)$, con $0<r<1$, del disco abierto $B(0,1)$, pero que la convergencia en $B(0,1)$ es solo puntual y no uniforme.

Solución. De acuerdo con el ejemplo 27.3, sabemos que la serie geométrica $\displaystyle\sum\displaystyle_{n=0}^\infty z^n$ converge a $\dfrac{1}{1-z}$ si $|z|<1$.

Sean $z \in \overline{B}(0,r)$, con $0< r < 1$, y $f_n(z) = z^n$ para todo $n\in\mathbb{N}$.

Notemos que:
\begin{equation*}
|f_n(z)| = |z^n| = |z|^n \leq r^n = M_n, \quad z \in \overline{B}(0,r).
\end{equation*}

Es claro que la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge para $0 < r < 1$. Por lo que, de acuerdo con el criterio $M$ de Weierstrass, la serie $\displaystyle\sum_{n=0}^\infty z^n$ converge uniformemente a la función $f(z) =\dfrac{1}{1-z}$ en todo disco cerrado $\overline{B}(0,r) \subset B(0,1)$ si $|z| \leq r < 1$.

Por otra parte, sabemos que la $n$-ésima suma parcial de la serie geométrica es:
\begin{equation*}
s_n(z) = \frac{1 – z^{n+1}}{1-z},
\end{equation*}

de donde:
\begin{equation*}
f(z) = \lim_{n \to \infty} s_n(z) = \frac{1}{1-z}, \quad \forall z \in B(0,1),
\end{equation*}

es decir que la convergencia es puntual en el disco abierto $B(0,1)$.

Por último, notemos que si $z=x\in\mathbb{R}$, con $0<x<1$, entonces:
\begin{equation*}
|f(z) – s_n(z)| = \left|\frac{1}{1-x} – \frac{1 – x^{n+1}}{1-x}\right| = \frac{\left|x^{n+1}\right|}{\left|1-x\right|} = \frac{x^{n+1}}{1-x}.
\end{equation*}

Claramente $|f(z) – s_n(z)| \to \infty$ si $x\to 1^{-}$. Entonces, no existe $n\in\mathbb{N}$ tal que:
\begin{equation*}
|f(z) – s_n(z)| = \frac{x^{n+1}}{1-x} <\varepsilon, \quad \forall x\in (0,1).
\end{equation*}

Por lo que la convergencia no es uniforme en $B(0,1)$.

Ejemplo 28.9.
Consideremos las siguientes series de funciones:
a) $\displaystyle\sum_{n=0}^\infty \dfrac{z^n+6i}{2^n +1}$, para $z\in B(0,1)$.
b) Función zeta de Riemann: \begin{equation*} \zeta(z) = \displaystyle \sum_{n=1}^\infty n^{-z}, \end{equation*} donde consideramos la rama principal de $n^{-z}$, para $z \in S_\sigma = \left\{z\in\mathbb{C} : \operatorname{Re}(z) \geq \sigma\right\}$, con $\sigma>1$.

Veamos que ambas series son uniformemente y absolutamente convergentes en el dominio dado.

Solución.
a) Primeramente recordemos que si $z\in B(0,1)$, entonces $|z|<1$.

Por la desigualdad del triángulo, para todo $n\in\mathbb{N}$ tenemos que:
\begin{equation*}
\left| \frac{z^n+6i}{2^n +1} \right| = \frac{\left|z^n+6i\right|}{2^n +1} \leq \frac{|z|^n + 6}{2^n + 1} \leq \frac{7}{2^n}.
\end{equation*}

Sea $M_n = 7/2^n$, entonces $M_n>0$ para todo $n\in\mathbb{N}$. Más aún, dado que $\left|1/2\right| < 1$, entonces la serie geométrica $\displaystyle\sum_{n=0}^\infty \, \dfrac{1}{2^n}$ es convergente y por la proposición 27.2 tenemos que:
\begin{equation*}
\displaystyle\sum_{n=0}^\infty \dfrac{7}{2^n} = 7 \, \, \displaystyle\sum_{n=0}^\infty \dfrac{1}{2^n}= 7 \left(\frac{1}{1-\dfrac{1}{2}}\right) = 14,
\end{equation*} entonces la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge, por lo que, de acuerdo con el criterio $M$ de Weierstrass, la serie $\displaystyle\sum_{n=0}^\infty \dfrac{z^n+6i}{2^n +1}$ es absoluta y uniformemente convergente en $B(0,1)$.

Por último, notemos que para cada $n\in\mathbb{N}$, la función $f_n(z) = \dfrac{z^n+6i}{2^n +1}$ es una función polinomial, por lo que es continua en todo $\mathbb{C}$, en particular en el disco $B(0,1)$. Entonces, por el corolario 28.2, concluimos que la función $s: B(0,1) \to \mathbb{C}$ a la que converge la serie, es una función continua.

b) Considerando la rama principal de la función multivaluada $n^{-z}$, definición 21.6, para cada $n\in\mathbb{N}^+$ tenemos la función:
\begin{equation*}
f_n(z) = n^{-z} = e^{-z \operatorname{Log}(n)}.
\end{equation*}

Si $z = x+iy \in S_\sigma$, entonces $x\geq \sigma > 1$ y por la proposición 20.2 tenemos que:
\begin{align*}
\left|f_n(z)\right| = \left|n^{-z}\right| & = \left| e^{-(x+iy) \operatorname{Log}(n)}\right|\\
& = \left| e^{-x\operatorname{Log}(n)} e^{-iy\operatorname{Log}(n)}\right|\\
& = \left| e^{-x\operatorname{Log}(n)} \right| \left|e^{-iy\operatorname{Log}(n)}\right|\\
& = e^{-x \operatorname{Log}(n)}\\
& \leq e^{-\sigma \operatorname{Log}(n)}\\
& = n^{-\sigma}.
\end{align*}

Para cada $n\geq 1$ sea $M_n = n^{-\sigma}$, con $\sigma >1$.

Considerando el criterio de convergencia de las series reales $p$, es decir, las series de la forma:
\begin{equation*}
\sum_{n=1}^{\infty} n^{-p}
\end{equation*}

visto en nuestros cursos de Cálculo, sabemos que estas series son convergentes si y solo si $p>1$. Entonces, dado que $\sigma>1$, es claro que la serie:
\begin{equation*}
\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} n^{-\sigma},
\end{equation*}

es convergente, por lo que, de acuerdo con el cirterio $M$ de Weierstrass, la función zeta de Riemann, $\zeta(z) = \displaystyle \sum_{n=1}^\infty n^{-z}$, es absoluta y uniformemente convergente en $S_\sigma$, con $\sigma>1$.

Ejemplo 28.10.
Veamos que las siguientes series de funciones son uniformemente y absolutamente convergentes en todo disco cerrado $\overline{B}(0, R)$, con $R>0$.
a)$\displaystyle\sum_{n=0}^\infty \dfrac{z^n}{n!}$.
b) $\displaystyle\sum_{n=0}^\infty \frac{(-1)^n z^{2n+1}}{(2n+1)!}$.
c) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^n z^{2n}}{(2n)!}$.

Solución. Sea $z\in \overline{B}(0, R)$, con $R>0$, entonces $|z|\leq R$. El procedimiento es completamente análogo en los tres casos, por lo que los detalles de los últimos dos incisos se dejan como ejercicio al lector.

a) Para cada $n\in\mathbb{N}$ definimos:
\begin{equation*}
f_n(z) = \frac{z^n}{n!}.
\end{equation*}

Notemos que:
\begin{equation*}
\left|f_n(z)\right| = \left|\frac{z^n}{n!}\right| = \frac{\left|z\right|^n}{n!} \leq \frac{R^n}{n!}.
\end{equation*}

Para cada $n\in\mathbb{N}$ sea $M_n = \dfrac{R^n}{n!}$. Dado que $R>0$, es claro que $M_n > 0$ para todo $n\geq 0$.

Tenemos que:
\begin{equation*}
\lim_{n\to\infty} \frac{M_{n+1}}{M_n} = \lim_{n\to\infty} \dfrac{\dfrac{R^{n+1}}{(n+1)!}}{\dfrac{R^n}{n!}} = \lim_{n\to\infty} \frac{R}{n+1} = 0 < 1,
\end{equation*} entonces, por el criterio del cociente de D’Alembert, proposición 27.5, la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge.

Por lo tanto, de acuerdo con el criterio $M$ de Weierstrass, concluimos que la serie:
\begin{equation*}
\displaystyle\sum_{n=0}^\infty f_n(z) = \displaystyle\sum_{n=0}^\infty \dfrac{z^n}{n!},
\end{equation*} es absoluta y uniformemente convergente en todo disco cerrado $\overline{B}(0,R)$, con $R>0$.

b) Para cada $n\in\mathbb{N}$ definimos:
\begin{equation*}
f_n(z) = \frac{(-1)^n z^{2n+1}}{(2n+1)!} \quad \text{y} \quad M_n(z) = \frac{R^{2n+1}}{(2n+1)!}.
\end{equation*}

Por el criterio del cociente de D’Alembert, proposición 27.5, la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge.

Notemos que para todo $n\in \mathbb{N}$ y todo $z\in \overline{B}(0,R)$, con $R>0$, se cumple que $|f_n(z)| \leq M_n$, entonces por el criterio $M$ de Weierstrass se tiene que la serie $\displaystyle\sum_{n=0}^\infty \frac{(-1)^n z^{2n+1}}{(2n+1)!}$ es absoluta y uniformemente convergente en todo disco cerrado $\overline{B}(0,R)$.

c) Para cada $n\in\mathbb{N}$ sea:
\begin{equation*}
f_n(z) = \frac{(-1)^n z^{2n}}{(2n)!} \quad \text{y} \quad M_n(z) = \frac{R^{2n}}{(2n)!}.
\end{equation*}

Del criterio de D’Alembert, proposición 27.5, se sigue que la serie $\displaystyle\sum_{n=0}^\infty M_n$ converge.

Como para todo $n\in \mathbb{N}$ y todo $z\in \overline{B}(0,R)$, con $R>0$, se cumple que $|f_n(z)| \leq M_n$, entonces por el criterio $M$ de Weierstrass se tiene que la serie $\displaystyle \sum_{n=0}^\infty \frac{(-1)^n z^{2n}}{(2n)!}$ es absoluta y uniformemente convergente en todo disco cerrado $\overline{B}(0,R)$.

Ejemplo 28.11.
Determinemos el conjunto $S \subset \mathbb{C}$ dónde la serie $\displaystyle \sum_{n=1}^\infty \dfrac{\operatorname{cos(nz)}}{n^3}$ es absoluta y uniformemente convergente.

Solución. Para cada $n\in\mathbb{N}^+$ definimos:
\begin{equation*}
f_n(z) = \frac{\operatorname{cos}(nz)}{n^3} = \frac{e^{i(nz)} + e^{-i(nz)}}{2n^3}.
\end{equation*}

Sea $z=x+iy\in\mathbb{C}$. De acuerdo con la proposición 20.2 tenemos que:
\begin{align*}
\left|f_n(z)\right| & = \left|\frac{e^{i(nz)} + e^{-i(nz)}}{2n^3}\right|\\
& \leq \frac{1}{2n^3}\left(\left|e^{in(x+iy)}\right| + \left|e^{-in(x+iy)}\right|\right)\\
& = \frac{1}{2n^3}\left(\left|e^{inx}\right| \left|e^{-ny}\right| + \left|e^{-inx}\right| \left|e^{ny}\right|\right)\\
& = \frac{1}{2n^3}\left(e^{-ny} + e^{ny}\right)\\
& =: M_n.
\end{align*}

De acuerdo con la proposición 27.2, sabemos que:
\begin{align*}
\sum_{n=1}^\infty M_n & = \sum_{n=1}^\infty \frac{e^{-ny} + e^{ny}}{2n^3}\\
& = \sum_{n=1}^\infty \frac{e^{-ny}}{2n^3} + \sum_{n=1}^\infty \frac{e^{ny}}{2n^3},
\end{align*} si y solo si las series del lado derecho de la igualdad son convergentes.

Analicemos a las series:
\begin{equation*}
\sum_{n=1}^\infty \frac{e^{-ny}}{2n^3} \quad \text{y} \quad \sum_{n=1}^\infty \frac{e^{ny}}{2n^3}.
\end{equation*}

Para $z=x+iy \in\mathbb{C}$ tenemos que $y>0$, $y<0$ ó $y=0$.

Si $y>0$, entonces $\lim\limits_{n\to\infty} \dfrac{e^{ny}}{2n^3} \neq 0$. Por lo que, la serie $\displaystyle \sum_{n=1}^\infty \frac{e^{ny}}{2n^3}$ diverge para $y>0$.

Análogamente, si $y<0$, entonces $\lim\limits_{n\to\infty} \dfrac{e^{-ny}}{2n^3} \neq 0$. Por lo que, la serie $\displaystyle \sum_{n=1}^\infty \frac{e^{-ny}}{2n^3}$ diverge para $y<0$.

Por último, si $y=0$, entonces ambas series convergen por el criterio de convergencia de las series $p$, con $p=3>1$. En tal caso:
\begin{equation*}
\sum_{n=1}^\infty M_n = \sum_{n=1}^\infty \frac{e^{-ny} + e^{ny}}{2n^3} = \sum_{n=1}^\infty \frac{2}{2n^3} = \sum_{n=1}^\infty \frac{1}{n^3},
\end{equation*} la cual es una serie convergente.

Es claro que para $y=0$ tenemos que $z=x\in\mathbb{C}$, entonces el conjunto $S\subset\mathbb{C}$ de convergencia de la serie es $S =\mathbb{R}$, es decir, la recta real.

Para $z = x \in \mathbb{R}$, tenemos que:
\begin{equation*}
\left|f_n(z)\right| = \left|\frac{\operatorname{cos}(nx)}{n^3}\right| \leq M_n, \quad \forall n\in\mathbb{N}^+.
\end{equation*}

Entonces, por el criterio $M$ de Weierstrass, concluimos que la serie $\displaystyle \sum_{n=1}^\infty \dfrac{\operatorname{cos(nz)}}{n^3}$ es absolutamente y uniformemente convergente en $\mathbb{R}$.

Tarea moral

  1. Prueba la observación 28.4. Sean $S\subset \mathbb{C}$, $\left\{f_n\right\}_{n\geq 0}$ una sucesión de funciones en $S$ y $f: S\to\mathbb{C}$ una función. Supón que para todo $n\in\mathbb{N}$ existe: \begin{equation*} M_n = \operatorname{sup}\left\{\left|f_n(z) – f(z)\right| : z \in S\right\}. \end{equation*} Prueba que $f_n \to f$ uniformemente si y solo si $\lim\limits_{n\to\infty} M_n = 0$.
  2. Considera las siguientes sucesiones de funciones. Para cada una (i) determina si la sucesión converge puntualmente, en caso afirmativo obtén su función límite, (ii) analiza si la función converge uniformemente en el dominio $S \subset \mathbb{C}$ dado y (iii) si la convergencia uniforme no se da en $S$ determina algún subconjunto cerrado y acotado de $S$ donde se de la convergencia uniforme.
    a) $f_n(z) = \dfrac{\operatorname{sen}(nz)}{n^2}$, para $S = \left\{z\in\mathbb{C} : |z| \leq 1\right\}$.
    b) $f_n(z) = \dfrac{z^2+nz+1}{n^2 z + 1}$, para $S = \left\{z\in\mathbb{C} : 2 < |z|\right\}$.
    c) $f_n(z) = \dfrac{1}{(z+n+1)^2}$, para $S = \left\{z\in\mathbb{C} : \operatorname{Re}(z) > 0\right\}$.
    d) $f_n(z) = \dfrac{z^n+z}{n+1}$, para $S = \left\{z\in\mathbb{C} : |z| \leq 1\right\}$.
  3. Utiliza el criterio $M$ de Weierstrass para mostrar que las siguientes series convergen uniformemente en la región dada.
    a) $\displaystyle\sum_{n=1}^\infty \operatorname{Re}\left(\dfrac{(z + i)^n}{3^n}\right)$ en $B(0,1)$.
    b) $\displaystyle\sum_{n=1}^\infty \dfrac{1+z^n}{2^n – z}$ en $B(0,1)$.
    c) $\displaystyle\sum_{n=0}^\infty \dfrac{1}{(5-z)^n}$ para $|z|\leq \dfrac{7}{2}$.
    d) $\displaystyle\sum_{n=0}^\infty \dfrac{(z+1-3i)^n}{4^n}$ para $|z-3i|\leq \dfrac{1}{2}$.
  4. Considera la sucesión de funciones dada por: \begin{equation*} f_n(z)= \left\{ \begin{array}{lcc} n|z| & \text{si} & |z| \leq \dfrac{1}{n}, \\ \\ 1 & \text{si} & \dfrac{1}{n} \leq |z| \leq 1. \end{array} \right. \end{equation*} ¿La sucesión de funciones $\left\{f_n\right\}_{n\geq 1}$ converge puntualmente en el disco cerrado $\overline{B}(0,1)$?

    Hint: Analiza la continuidad de la función límite puntual en $\overline{B}(0,1)$ y considera la proposición 28.1.
  5. La $n$-ésima suma parcial de una serie de funciones está dada por la función $s_n(z) = \dfrac{z^n}{n}$ para $|z|\leq 1$. Considerando la $n$-ésima suma parcial construye la serie. ¿Dicha serie converge uniformemente en el disco cerrado $\overline{B}(0,1)$?
  6. Muestra que las siguientes series son absolutamente y uniformemente convergentes en el dominio dado.
    a) $\displaystyle\sum_{n=1}^\infty \dfrac{z^{2n}}{1- z^{2n}}$ en todo disco cerrado $\overline{B}(0,r)$, con $0<r<1$.
    b) $\displaystyle\sum_{n=1}^\infty \dfrac{z^n}{n\sqrt{n+1}}$ en $\overline{B}(0,1)$.
    c) $\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^2+z^2}$ para $1<|z|<2$.
    d) $\displaystyle\sum_{n=1}^\infty \dfrac{e^{inz}}{n^2}$ en $S = \{z\in\mathbb{C} : \operatorname{Im}(z) > 0\}$.
  7. Demuestra los corolarios 28.1 y 28.2.
  8. Muestra que la serie:\begin{equation*} \sum_{n=1}^\infty \frac{z^{n-1}}{(1-z^n)(1-z^{n+1})},\end{equation*} converge a $\dfrac{1}{(1-z)^2}$ si $|z|<1$ y a $\dfrac{1}{z(1-z)^2}$ si $|z|>1$. Prueba que la convergencia es uniforme para $|z|\leq r<1$ en el primer caso y para $|z|\geq \rho>1$ en el segundo caso.

    Hint: Multiplica y divide cada término de la serie por $1-z$ y utiliza una descomposición por fracciones parciales para obtener una suma telescópica.

Más adelante…

En esta entrada hemos abordado las definiciones de sucesión y serie de funciones complejas, que como vimos resultaron idénticas a las que teníamos para el caso real. Además, probamos una serie de resultados, con los que ya estábamos familiarizados para la versión real, que extienden las propiedades de convergencia uniforme y puntual para el caso complejo, a través de los cuales podemos estudiar la convergencia de las sucesiones y series de funciones complejas.

En particular, vimos que al igual que en el caso real, el criterio $M$ de Weierstrass resulta de gran utilidad para el estudio de la convergencia uniforme de una serie.

Por otra parte, vimos que podemos garantizar la continuidad del límite uniforme de una sucesión de funciones continuas, así como la continuidad de la función suma de una serie de funciones continuas que converge uniformemente, lo cual resulta de gran interés pues nos permite el intercambio formal de los límites que definen la continuidad y la convergencia, observación 28.6.

En la siguiente entrada veremos el concepto de series de potencias para el caso complejo y probaremos una serie de resultados importantes que nos permitirán caracterizar propiedades de estas series como la continuidad y analicidad. Aunque podemos pensar a una serie de potencias como una serie de funciones complejas o como una serie de números complejos con una forma muy particular, veremos que el estudio de este tipo de series es de gran interés y utilidad pues nos permitirán escribir a las funciones complejas, en particular a las funciones elementales, como una serie de números complejos y así aprovechar las propiedades de convergencia de la serie.

Entradas relacionadas

Variable Compleja I: Preliminares de series de números complejos

Por Pedro Rivera Herrera

Introducción

En esta entrada daremos algunas definiciones básicas sobre series de números complejos, así como algunos resultados importantes sobre la convergencia de dichas series, por lo que se recomienda revisar los resultados sobre sucesiones de números complejos vistos en la entrada 8 de la primera unidad.

Los resultados de esta entrada serán de utilidad al trabajar con series de funciones y series de potencias en las siguientes entradas.

Definición 27.1. (Serie de números complejos.)
Sea $\left\{z_n\right\}_{n\in\mathbb{N}} \subset\mathbb{C}$ una sucesión de números complejos. Una serie infinita de números complejos o simplemente una serie de números complejos es una expresión de la forma: \begin{equation*} \sum_{n=0}^\infty z_n, \end{equation*} donde $z_n$ es llamado el $(n+1)$-ésimo término de la serie.

Definimos a la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ como: \begin{equation*} s_n = \sum_{k=0}^n z_k = z_0 + z_1 + \cdots + z_n. \end{equation*}

Notemos que a cada serie de números complejos $\sum_{n=0}^\infty z_n$ le podemos asociar una sucesión de sumas parciales $\left\{s_n\right\}{n\geq 0}$.

Observación 27.1.
En la entrada 8 trabajamos con sucesiones cuyo subíndice tomaba valores en $\mathbb{N}^+$, sin embargo, en el caso de las series de números complejos muchas ocasiones será conveniente trabajar con $\mathbb{N}$ (o subconjuntos de este conjunto) como conjunto de índices, es decir, podremos tener series que inicien desde distintos índices como: \begin{equation*} \sum_{n=0}^\infty z_n, \quad \sum_{n=1}^\infty z_n, \quad \sum_{n=2}^\infty z_n, \quad \ldots,\,\,\text{etc.} \end{equation*}

Por lo que, de manera indistinta trabajaremos con estos conjuntos de índices según sea conveniente.

Definición 27.2. (Serie de números complejos convergente.)
Diremos que una serie de números complejos $\sum_{n=0}^\infty z_n$ converge, o es convergente, a un número complejo $s$, si la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ converge a $s$, es decir si para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*}
\left|s_n – s\right| = \left|\sum_{k=0}^n z_k – s\right| < \varepsilon,
\end{equation*} lo cual denotamos como $s = \lim\limits_{n\to \infty} s_n = \sum_{n=0}^\infty z_n$. Si la sucesión de sumas parciales no converge o diverge a infinito, diremos que la serie $\sum_{n=0}^\infty z_n$ diverge o es divergente.

Observación 27.2.
De acuerdo con la definición anterior, debe ser claro que para el estudio de la convergencia de una serie de números complejos, así como de sus propiedades, utilizaremos los resultados de la entrada 8.

Proposición 27.1. (Criterio de convergencia de Cauchy para series).
Una serie de números complejos $\sum_{n=0}^\infty z_n$ es convergentes si y solo si para todo $\varepsilon>0$ existe $N = N(\varepsilon)\in\mathbb{N}$ tal que si $n, m \geq N$, con $n>m$, entonces:
\begin{equation*}
\left|\sum_{k=m+1}^n z_k \right| < \varepsilon.
\end{equation*}

Demostración. Sea $\left\{s_n\right\}_{n\geq 0}$ la sucesión de sumas parciales de la serie $\sum_{n=0}^\infty z_n$.

Notemos que para $n,m\in\mathbb{N}$, con $n>m$, tenemos que:
\begin{equation*}
\sum_{k=m+1}^n z_k = \sum_{k=0}^n z_k -\sum_{k=0}^m z_k = s_n – s_m.
\end{equation*}

$\Longrightarrow)$

Sea $\varepsilon>0$. Supongamos que $\sum_{n=0}^\infty z_n$ es convergente, entonces la sucesión $\left\{s_n\right\}_{n\geq 0}$ converge, por lo que es una sucesión de Cauchy, proposición 8.4, es decir, para el $\varepsilon>0$ dado existe $N\in\mathbb{N}$ tal que si $n,m\geq N$, con $n>m$, entonces:
\begin{equation*}
|s_n – s_m|<\varepsilon.
\end{equation*} Por lo que:
\begin{equation*}
\left|\sum_{k=m+1}^n z_k \right| = \left| s_n – s_m\right| < \varepsilon.
\end{equation*}

$(\Longleftarrow$

Sea $\varepsilon>0$, entonces existe $N(\varepsilon)\in\mathbb{N}$ tal que si $n, m \geq N$, con $n>m$, se cumple que:
\begin{equation*}
|s_n – s_m| = \left|\sum_{k=m+1}^n z_k \right| < \varepsilon.
\end{equation*}

Por lo que, la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ es de Cauchy. Como $\mathbb{C}$ es completo, proposición 8.5, entonces la sucesión $\left\{s_n\right\}_{n\geq 0}$ es convergente, por lo que $\sum_{n=0}^\infty z_n$ converge.

$\blacksquare$

Corolario 27.1. (Criterio de divergencia de una serie.)
Si una serie de números complejos $\sum_{n=0}^\infty z_n$ converge, entonces $\lim\limits_{n\to\infty} z_n = 0$, es decir la sucesión de números complejos $\left\{z_n\right\}_{n\geq 0}$ converge a $0$.

Demostración. Dadas las hipótesis, sea $\varepsilon>0$.

De la proposición 27.1 se sigue que existe $N\in\mathbb{N}$ tal que si $n,n-1\geq N$, entonces:

\begin{equation*}
|z_n – 0| = |z_n| = |s_n – s_{n-1}| = \left|\sum_{k=n}^n z_k \right|<\varepsilon,
\end{equation*} es decir $\lim\limits_{n\to\infty} z_n = 0$.

$\blacksquare$

Observación 27.3.
La utilidad de este corolario es mucha, pues nos permite tener un primer criterio de divergencia al considerar su contrapuesta, es decir si $\lim\limits_{n\to\infty} z_n \neq 0$ ó $\lim\limits_{n\to\infty} z_n = \infty$, entonces $\sum_{n=0}^\infty z_n$ diverge.

Ejemplo 27.1.
Veamos que la serie $\sum_{n=0}^\infty \left(1+i\right)^n$ es divergente.

Solución. Sea $z_n = \left(1+i\right)^n$ el $(n+1)$-ésimo término de la serie. Notemos que:
\begin{equation*}
\lim_{n\to \infty} |z_n| = \lim_{n\to \infty} |\left(1+i\right)^n| = \lim_{n\to \infty} |1+i|^n = \lim_{n\to \infty} \left(\sqrt{2}\right)^n = \infty.
\end{equation*} Por lo que, de acuerdo con el ejercicio 6 de la entrada 8, $\lim_{n\to \infty} z_n \neq 0$. Entonces la serie diverge.

Notemos que el recíproco del corolario 27.1 no es válido, es decir, la condición $\lim\limits_{n\to\infty} z_n = 0$ no es suficiente para garantizar la convergencia de una serie.

Ejemplo 27.2.
Consideremos la serie armónica:
\begin{equation*}
\sum_{n=1}^\infty z_n = \sum_{n=1}^\infty \frac{1}{n}.
\end{equation*}

De nuestros cursos de Cálculo sabemos que $\lim\limits_{n\to\infty} z_n = 0$. Sin embargo la serie armónica es divergente.

Para verificar esto supongamos que $\sum_{n=0}^\infty \dfrac{1}{n} = L \in \mathbb{R}$.

Notemos que:
\begin{align*}
L & = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots\\
& > \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{6} + \frac{1}{6} + \cdots\\
& = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots\\
& = L,
\end{align*} es decir $L>L$, lo cual claramente no es posible, por lo que la serie diverge.

Para $m\geq 1$ la expresión $\sum_{n=m+1}^\infty z_n$ es llamada una cola de la serie $\sum_{n=0}^\infty z_n$. Para un $m$ fijo la cola de una serie es en sí misma una serie, la cual difiere en una cantidad finita de la serie original.

Corolario 27.2.
Una serie de números complejos $\sum_{n=0}^\infty z_n$ converge si y solo si su cola $\sum_{n=M}^\infty$ converge, donde $M$ es un número natural fijo.

Demostración. Dadas las hipótesis, consideremos a $s_n = \sum_{k=0}^n z_k$ como la $n$-ésima suma parcial de la serie $\sum_{n=0}^\infty z_n$. Definimos:
\begin{equation*}
s_n^M = \sum_{k=M}^n z_k,
\end{equation*} como la $n$-ésima suma parcial de la cola $\sum_{n=M}^\infty z_n$.

Notemos que si $n,m\geq M$, con $n>m$, entonces:
\begin{equation*}
s_n^M – s_m^M = \sum_{k=m+1}^n z_n = s_n – s_m.
\end{equation*}

De acuerdo con lo anterior, es claro que el resultado se sigue del criterio de convergencia de Cauchy tomando $M > N$ en la proposición 27.1.

$\blacksquare$

Observación 27.4.
En este punto es importante recordar la convención que establecimos en la observación 4.7, sobre que $z^0 = 1$ para todo $z\in\mathbb{C}$.

Ejemplo 27.3.
Veamos que la serie geométrica $\sum_{n=0}^\infty z^n$ es convergente si $|z|<1$ y en tal caso:
\begin{equation*}
\sum_{n=0}^\infty z^n = \frac{1}{1-z}.
\end{equation*} Mientras que la serie diverge si $|z|\geq 1$.

Solución. Consideremos a la $(n+1)$-ésima suma parcial, es decir:
\begin{equation*}
s_n = 1 + z + z^2 + \cdots + z^n.
\end{equation*}

Multiplicando por $z$ y sumando 1 en la igualdad anterior tenemos:
\begin{equation*}
1 + z s_n = 1 + z + z^2 + z^3 + \cdots + z^{n+1} = s_n + z^{n+1},
\end{equation*} de donde $s_n(z-1) = z^{n+1} – 1$.

Para $z\neq 1$, tenemos que:
\begin{equation*}
s_n = \frac{z^{n+1} – 1}{z-1} = \frac{1 – z^{n+1}}{1-z} = \frac{(1 + z + z^2 + \cdots + z^n)(1-z)}{(1-z)}.
\end{equation*}

De acuerdo con el ejercicio 4 de la entrada 8, sabemos que la sucesión $\left\{z^n\right\}_{n\geq 0}$ converge a $0$ si $|z|<1$ y diverge si $|z|> 1$.

Entonces, para $|z|<1$ tenemos que:
\begin{equation*}
\lim_{n\to\infty} s_n = \lim_{n\to\infty} (1 + z + z^2 + z^3 + \cdots + z^{n}) = \lim_{n\to\infty} \frac{1 – z^{n+1}}{1-z} = \frac{1}{1-z},
\end{equation*}

de donde:
\begin{equation*}
\sum_{n=0}^\infty z^n = \frac{1}{1-z}, \quad \text{si} \,\,\, |z|<1.
\end{equation*}

Es claro que en nuestro desarrollo anterior la condición $z\neq 1$ es necesaria y está dada si $|z|\neq 1$, pero ¿qué pasa si $|z| = 1$?

Si $|z| = 1$, entonces:
\begin{equation*}
\lim_{n\to \infty}\left| z^n \right| = \lim_{n\to \infty} \left|z \right|^n = 1 \neq 0,
\end{equation*} por lo que, de acuerdo con el ejercicio 6 de la entrada 8, $\lim\limits_{n\to \infty} z^n \neq 0$, entonces si $|z|\geq 1$ la serie diverge.

Podemos visualizar la convergencia o divergencia de la serie geométrica en el plano complejo $\mathbb{C}$ mediante el siguiente Applet en GeoGebra: https://www.geogebra.org/m/jj65zt24.

La serie geométrica suele aparecer en muchos problemas prácticos, por lo que conocer su región de convergencia nos es de gran utilidad.

Ejemplo 27.4.
Obtengamos la mayor región de convergencia de la serie $\sum_{n=0}^\infty \left(4+2z\right)^{-n}$. Después determinemos el valor al que converge.

Solución. Primeramente notemos que si $z=-2$, entonces la expresión en el denominador se anula, por lo que dicho punto no puede estar en la región de convergencia de la serie.

Por otra parte, si hacemos $w=\dfrac{1}{4+2z}$, entonces la serie dada tiene la forma de una serie geométrica $\sum_{n=0}^\infty w^n$.

De acuerdo con el ejemplo anterior, sabemos que la serie geométrica $\sum_{n=0}^\infty w^n$ converge a $\dfrac{1}{1-w}$ si $|w|<1$.

Tenemos que:
\begin{equation*}
|w|<1 \quad \Longleftrightarrow \quad \left| \frac{1}{4+2z}\right| <1 \quad \Longleftrightarrow \quad 1 < \left|4+2z\right| \quad \Longleftrightarrow \quad \frac{1}{2} < \left|z-(-2)\right|.
\end{equation*}

De acuerdo con los resultados de la entrada 6, sabemos que este conjunto corresponde con los puntos en el plano complejo que caen fuera de la circunferencia centrada en el punto $-2$ y de radio $\frac{1}{2}$, es decir, los $z \in \mathbb{C}$ tales que su distancia al punto $-2$ es estrictamente mayor que $\frac{1}{2}$. Bajo esta condición es claro que $z\neq -2$, figura .

Entonces, la región de convergencia de la serie está dada por los $z\in\mathbb{C}$ tales que $\frac{1}{2} < \left|z-(-2)\right|$. Para dichos $z$ se tiene que:
\begin{equation*}
\sum_{n=0}^\infty \frac{1}{\left(4+2z\right)^n} = \dfrac{1}{1 – \dfrac{1}{4+2z}} = \dfrac{4+2z}{3+2z}.
\end{equation*}

Figura : Región de convergencia de la serie geométrica $\sum_{n=0}^\infty\left(4+2z\right)^{-n}$.

Proposición 27.2.
Sean $\sum_{n=0}^\infty z_n$, $\sum_{n=0}^\infty w_n$ dos series de números complejos convergentes y $\alpha, \beta \in\mathbb{C}$ constantes. Entonces:

  1. $\sum_{n=0}^\infty \left(\alpha z_n \pm \beta w_n\right) = \alpha \sum_{n=0}^\infty z_n \pm \beta \sum_{n=0}^\infty w_n$.
  2. La serie $\sum_{n=0}^\infty\,\overline{z_n}$ converge y $\overline{\sum_{n=0}^\infty z_n} = \sum_{n=0}^\infty \,\overline{z_n}$.

Demostración. Dadas las hipótesis.

  1. Se deja como ejercicio al lector.
  2. Sea $\varepsilon>0$. Como la serie $\sum_{n=0}^\infty z_n$ converge, digamos a $s\in\mathbb{C}$, tenemos que existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \left|\sum_{k=0}^n \overline{z_k} – \overline{s}\right| = \left|\overline{\sum_{k=0}^n z_k} – \overline{s}\right| = \left|\overline{\sum_{k=0}^n z_k – s}\right| = \left|\sum_{k=0}^n z_k – s\right| = \left|s_n – s\right| < \varepsilon, \end{equation*} es decir $\overline{\sum_{n=0}^\infty z_n} = \sum_{n=0}^\infty \, \overline{z_n} = \overline{s} \in \mathbb{C}$.

$\blacksquare$

Ejemplo 27.5.
Estudiemos la convergencia de la serie $\sum_{n=3}^\infty \left(\dfrac{i}{2}\right)^n$.

Solución. Tenemos que:
\begin{align*}
\sum_{n=3}^\infty \left(\frac{i}{2}\right)^n = \sum_{n=3}^\infty \left(\frac{i}{2}\right)^3 \left(\frac{i}{2}\right)^{n-3} & = \left(\frac{i}{2}\right)^3 \sum_{n=3}^\infty \left(\frac{i}{2}\right)^{n-3},\quad\quad \text{proposición 27.2,}\\
& = \left(\frac{i}{2}\right)^3 \sum_{k=0}^\infty \left(\frac{i}{2}\right)^{k},\quad \quad \text{cambio de índice} \,\,\, k=n-3,\\
& = \left(\frac{i}{2}\right)^3 \left(\frac{1}{1-\dfrac{i}{2}}\right),\quad \quad \left|\frac{i}{2}\right| = \frac{1}{2} < 1,\\
& =\frac{1}{20} \left(1-2i\right).
\end{align*}

Corolario 27.3.
Sea $z_n = x_n + iy_n \in \mathbb{C}$, con $x_n, y_n \in\mathbb{R}$, para todo $n\in\mathbb{N}$. Entonces, la serie de números complejos $\sum_{n=0}^\infty z_n$ converge a $s=x+iy \in\mathbb{C}$ si y solo si las series de números reales $\sum_{n=0}^\infty x_n$ y $\sum_{n=0}^\infty y_n$ convergen a $x$ y a $y$, respectivamente. En tal caso:
\begin{equation*}
\sum_{n=0}^\infty z_n = \sum_{n=0}^\infty x_n + i \sum_{n=0}^\infty y_n.
\end{equation*}

Demostración. De acuerdo con la proposición 8.3, tenemos que:
\begin{align*}
\sum_{n=0}^\infty z_n = s \quad & \Longleftrightarrow \quad \sum_{n=0}^\infty (x_n+iy_n) = x+iy,\\
\quad & \Longleftrightarrow \quad \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left( \sum_{k=0}^n x_k + i \sum_{k=0}^n y_k\right) = x+iy,\\
\quad & \Longleftrightarrow \quad \lim_{n \to \infty} \sum_{k=0}^n x_k = x \,\,\, \text{y} \,\,\, \lim_{n \to \infty} \sum_{k=0}^n y_k = y,\\
\quad & \Longleftrightarrow \quad \sum_{n=0}^\infty x_n = x \,\,\, \text{y} \,\,\, \sum_{n=0}^\infty y_n = y,\\
\quad & \Longleftrightarrow \quad \sum_{n=0}^\infty x_n +i \sum_{n=0}^\infty y_n = \sum_{n=0}^\infty (x_n + i y_n) = \sum_{n=0}^\infty z_n.
\end{align*}

$\blacksquare$

Observación 27.5.
Del corolario anterior se sigue que para toda serie convergente de números complejos, $\sum_{n=0}^\infty z_n$, se cumple que:
\begin{equation*}
\operatorname{Re}\left( \sum_{n=0}^\infty z_n \right) = \sum_{n=0}^\infty \operatorname{Re}(z_n) \quad \text{e} \quad \operatorname{Im}\left( \sum_{n=0}^\infty z_n \right) = \sum_{n=0}^\infty \operatorname{Im}(z_n).
\end{equation*}

Ejemplo 27.6.
Estudiemos la convergencia de la serie:
\begin{equation*}
\sum_{n=0}^\infty z_n = \sum_{n=0}^\infty \left(\frac{1}{2^n} + \frac{i}{3^n}\right).
\end{equation*}

Solución. Notemos que el $(n+1)$-ésimo término de la serie es $z_n = \dfrac{1}{2^n} + \dfrac{i}{3^n}$, por lo que:
\begin{equation*}
\operatorname{Re}(z_n) = \frac{1}{2^n}, \quad \operatorname{Im}(z_n) = \frac{1}{3^n}.
\end{equation*}

De lo anterior es claro que las dos series reales, correspondientes a las partes real e imaginaria de la serie, son ambas series geométricas convergentes, es decir:
\begin{equation*}
\sum_{n=0}^\infty \operatorname{Re}(z_n) = \sum_{n=0}^\infty \frac{1}{2^n} = \frac{1}{1-\dfrac{1}{2}} = 2,
\end{equation*}
\begin{equation*}
\sum_{n=0}^\infty \operatorname{Im}(z_n) = \sum_{n=0}^\infty \frac{1}{3^n} = \frac{1}{1-\dfrac{1}{3}} = \frac{3}{2}.
\end{equation*}

Por lo tanto, del corolario 27.2 se sigue que la serie $\sum_{n=0}^\infty z_n$ es convergente y su suma es:
\begin{equation*}
\sum_{n=0}^\infty z_n = \sum_{n=0}^\infty \left(\frac{1}{2^n} + \frac{i}{3^n}\right) = \sum_{n=0}^\infty \frac{1}{2^n} + i \sum_{n=0}^\infty \frac{1}{3^n} = 2 + i \frac{3}{2}.
\end{equation*}

Definición 27.3. (Serie absolutamente convergente.)
Una serie de números complejos $\sum_{n=0}^\infty z_n$ es absolutamente convergente si la serie $\sum_{n=0}^\infty |z_n|$ es convergente.

Definición 29.4. (Serie condicionalmente convergente.)
Una serie de números complejos $\sum_{n=0}^\infty z_n$ es condicionalmente convergente si la serie $\sum_{n=0}^\infty z_n$ es convergente, pero no es absolutamente convergente.

Proposición 27.3.
Una serie de números complejos $\sum_{n=0}^\infty z_n$ absolutamente convergente, es convergente y cumple que:
\begin{equation*}
\left|\sum_{n=0}^\infty z_n\right| \leq \sum_{n=0}^\infty |z_n|.
\end{equation*}

Demostración.
Dadas las hipótesis, sea $\left\{s_n\right\}_{n\geq 0}$ la sucesión de sumas parciales de la serie $\sum_{n=0}^\infty z_n$.

Sea $\varepsilon>0$. De acuerdo con el criterio de convergencia de Cauchy, proposición 27.1, tenemos que existe $N\in\mathbb{N}$ tal que si $n,m \geq N$, con $n>m$, entonces:
\begin{equation*}
\sum_{k=m+1}^n |z_k| = \left|\sum_{k=m+1}^n |z_k|\right| < \varepsilon.
\end{equation*}

Por la desigualdad del triángulo, observación 3.6 entrada 3, se cumple que:
\begin{equation*}
|s_n – s_m| = \left|\sum_{k=0}^n z_k – \sum_{k=0}^m z_k\right| = \left|\sum_{k=m+1}^n z_k\right| \leq \sum_{k=m+1}^n |z_k| < \varepsilon,
\end{equation*} es decir que la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$ es de Cauchy, por lo que, al ser $\mathbb{C}$ un espacio métrico completo, proposición 8.5, se tiene que la sucesión $\left\{s_n\right\}_{n\geq 0}$ es convergente, entonces la serie $\sum_{n=0}^\infty z_n$ converge.

De acuerdo con el ejercicio 3 de la entrada 8, sabemos que si una sucesión $\left\{w_n\right\}_{n\geq 0}$ converge a $w\in\mathbb{C}$, entonces la sucesión $\left\{|w_n|\right\}_{n\geq 0}$ converge a $|w|$.

Como la sucesión $\left\{s_n\right\}_{n\geq 0}$ converge, digamos a $s\in\mathbb{C}$, entonces:
\begin{equation*}
\lim_{n\to\infty} |s_n| = \lim_{n\to\infty} \left|\sum_{k=0}^n z_k\right| = \left|\sum_{n=0}^\infty z_n\right| = |s|.
\end{equation*}

Análogamente, como la serie $\sum_{n=0}^\infty |z_n|$ es convergente, tenemos que:
\begin{equation*}
\lim_{n\to\infty} \left|\sum_{k=0}^n |z_k|\right| = \lim_{n\to\infty} \sum_{k=0}^n |z_k| = \sum_{n=0}^\infty |z_n|.
\end{equation*}

Nuevamente, de la desigualdad del triángulo, observación 3.6, se sigue que:
\begin{equation*}
\left|\sum_{k=0}^n z_k\right| \leq \sum_{k=0}^n |z_k|.
\end{equation*}

Considerando lo anterior y el ejercicio 8 de la entrada 8, concluimos que:
\begin{equation*}
\left|\sum_{n=0}^\infty z_n\right| \leq \sum_{n=0}^\infty |z_n|.
\end{equation*}

$\blacksquare$

Corolario 27.4.
Sea $z_n = x_n + iy_n \in \mathbb{C}$, con $x_n, y_n \in\mathbb{R}$, para todo $n\in\mathbb{N}$. Entonces, la serie de números complejos $\sum_{n=0}^\infty z_n$ converge absolutamente a $s=x+iy \in\mathbb{C}$ si y solo si las series de números reales $\sum_{n=0}^\infty x_n$ y $\sum_{n=0}^\infty y_n$ convergen absolutamente a $x$ y a $y$, respectivamente. En tal caso:
\begin{equation*}
\sum_{n=0}^\infty z_n = \sum_{n=0}^\infty x_n + i \sum_{n=0}^\infty y_n.
\end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 27.4. (Criterio de comparación de Weierstrass.)
Sea $\left\{a_n\right\}_{n\geq 0}$ una sucesión de números reales no negativos y sea $\left\{z_n\right\}_{n\geq 0}$ una sucesión de números complejos. Supongamos que $|z_n| \leq a_n$ para todo $n\geq j$, para algún $j\in\mathbb{N}$.

  1. Si la serie $\sum_{n=0}^\infty a_n$ converge, entonces la serie $\sum_{n=0}^\infty z_n$ es absolutamente convergente.
  2. Si la serie $\sum_{n=0}^\infty z_n$ diverge, entonces la serie $\sum_{n=0}^\infty a_n$ es divergente.

Demostración. Dadas las hipótesis, sea $\left\{s_n\right\}_{n\geq 0}$ la sucesión de sumas parciales de la serie $\sum_{n=0}^\infty |z_n|$.

  1. Sea $\varepsilon>0$. Por el criterio de Cauchy, proposición 27.1, tenemos que existe $N\in\mathbb{N}$ tal que si $n>m\geq N > j$, entonces:
    \begin{equation*}
    \left|s_n – s_m \right| = \left|\sum_{k=m+1}^n |z_k|\right| = \sum_{k=m+1}^n |z_k| \leq \sum_{k=m+1}^n a_k = \left|\sum_{k=m+1}^n a_k \right| <\varepsilon, \end{equation*} es decir, la sucesión $\left\{s_n\right\}_{n\geq 0}$ es de Cauchy, por lo que, al ser $\mathbb{C}$ un espacio métrico completo, la sucesión de sumas parciales converge, entonces la serie $\sum_{n=0}^\infty |z_n|$ converge y por tanto la serie $\sum_{n=0}^\infty z_n$ es absolutamente convergente.
  2. Es la contrapuesta del caso anterior.

$\blacksquare$

Ejemplo 27.7.
Veamos que las siguientes series son convergentes.
a) $\displaystyle \sum_{n=0}^\infty \dfrac{3+2i}{\left(n+1\right)^n}$.
b) $\displaystyle \sum_{n=0}^\infty \dfrac{2\operatorname{cos}(n\theta) + i 2\operatorname{sen}(n\theta)}{n^2+3}$.

Solución.

a) Procedemos a probar la convergencia de la serie utilizando el criterio de comparación. Para ello consideremos a la serie geométrica:
\begin{equation*}
\sum_{n=0}^\infty \frac{1}{2^n},
\end{equation*} la cual es convergente.

Notemos que:
\begin{equation*}
|3+2i| = \sqrt{3^2+2^2} = \sqrt{13} < 4,
\end{equation*}

por lo que:
\begin{equation*}
\left|\frac{3+2i}{\left(n+1\right)^n}\right| = \frac{|3+2i|}{\left(n+1\right)^n} = \frac{\sqrt{13}}{\left(n+1\right)^n} < \frac{4}{\left(n+1\right)^n}.
\end{equation*}

Por otra parte, es sencillo verificar que para $n\geq 3$ se cumple que:
\begin{equation*}
\left|\frac{3+2i}{\left(n+1\right)^n}\right| < \frac{4}{\left(n+1\right)^n} < \frac{1}{2^n},
\end{equation*}

por lo que se deja como ejercicio al lector.

Entonces, por el criterio de comparación, concluimos que la serie dada es absolutamente convergente y por tanto converge.

b) De nueva cuenta, procedemos a probar la convergencia de la serie utilizando el criterio de comparación. Consideremos a la serie convergente:
\begin{equation*}
\sum_{n=1}^\infty \frac{2}{n^2}.
\end{equation*}

Notemos que:
\begin{equation*}
\left|\dfrac{2\operatorname{cos}(n\theta) + i 2\operatorname{sen}(n\theta)}{n^2+3}\right| \leq \dfrac{2 \left| \operatorname{cos}(n\theta) + i \operatorname{sen}(n\theta)\right|}{n^2} = \dfrac{2}{n^2}.
\end{equation*}

Entonces, por el criterio de comparación, concluimos que la serie:
\begin{equation*}
\sum_{n=1}^\infty \dfrac{2\operatorname{cos}(n\theta) + i 2\operatorname{sen}(n\theta)}{n^2+3},
\end{equation*}

es convergente, por lo que, de acuerdo con el corolario 27.2, la serie original converge.

Proposición 27.5. (Criterio de la razón o del cociente de D’Alembert.)
Sea $\left\{ z_n\right\}_{n\geq 0}$ una sucesión de números complejos distintos de cero, tales que:
\begin{equation*}
\lim_{n\to \infty} \frac{|z_{n+1}|}{|z_{n}|} = \lambda,
\end{equation*} existe o es infinito.

  1. Si $\lambda <1$, entonces la serie $\sum_{n=0}^\infty z_n$ es absolutamente convergente.
  2. Si $\lambda >1$ ó $\lambda=\infty$, entonces la serie $\sum_{n=0}^\infty z_n$ es divergente.
  3. Si $\lambda =1$, entonces la serie $\sum_{n=0}^\infty z_n$ puede diverger o converger.

Demostración. Dadas las hipótesis, como $z_n \neq 0$ para todo $n\in\mathbb{N}$, entonces:
\begin{equation*}
\left| \frac{z_{n+1}}{z_{n}} \right| = \frac{|z_{n+1}|}{|z_{n}|} > 0, \quad \forall n\in\mathbb{N}.
\end{equation*}

De lo anterior es claro que si $\lim_{n\to \infty} \dfrac{|z_{n+1}|}{|z_{n}|} = \lambda \in \mathbb{R}$, entonces $\lambda\geq 0$.

  1. Supongamos que $\lambda \in \mathbb{R}$ con $0 \leq \lambda <1$. Sea $r = \dfrac{\lambda+1}{2}$, entonces $0\leq \lambda < r < 1$.
    Para $\varepsilon = r – \lambda>0$, tenemos que existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \left| \left| \frac{z_{n+1}}{z_{n}} \right| – \lambda \right| < \varepsilon \quad \Longrightarrow \quad \frac{|z_{n+1}|}{|z_{n}|} < \varepsilon + \lambda = r, \end{equation*} de donde se sigue que: \begin{equation*} |z_{n+1}| < r |z_{n}| \quad \forall n\geq N. \end{equation*} Considerando lo anterior, para $ n\geq N$ tenemos que: \begin{align*}
    |z_{N+1}| & < r |z_{N}|\\
    |z_{N+2}| & < r |z_{N+1}| < r^2 |z_{N}|\\
    |z_{N+3}| & < r |z_{N+2}| < r^3 |z_{N}|\\
    & \,\,\,\,\vdots\\
    |z_{n}| & < r^{n-N} |z_{N}|\\
    & \,\,\,\,\vdots
    \end{align*} Dado que $r<1$, notemos que: \begin{equation*} \sum_{n = N}^{\infty} r^{n-N} = \sum_{k = 0}^{\infty} r^{k},\end{equation*} es una serie geométrica convergente. Por lo que, de acuerdo con la proposición 27.2, tenemos que la serie $\sum_{n=N}^\infty r^{n-N} |z_{N}|$ converge, entonces por el criterio de comparación se sigue que la serie $\sum_{n=N}^\infty |z_{n}|$ converge y por el corolario 27.2 concluimos que la serie $\sum_{n=0}^\infty |z_{n}|$ converge.

    Entonces, la serie $\sum_{n=0}^\infty z_{n}$ es absolutamente convergente y por tanto converge, proposición 27.3.
  2. Supongamos que $\lambda>1$. Sea $r=\dfrac{\lambda +1}{2}$, el cual cumple que $1<r<\lambda$. Procediendo como en el caso anterior, para $\varepsilon = \lambda – r > 0$ existe $N\in\mathbb{N}$ tal que si $n\geq N$ entonces: \begin{equation*} |z_{n+1}| > r |z_{n}|, \end{equation*} de donde se sigue que: \begin{equation*} |z_{n}| > r^{n-N} |z_{N}| > 0, \quad \forall n\geq N, \end{equation*} por lo que $\lim\limits_{n\to\infty} |z_{n}| \neq 0$, entonces $\lim\limits_{n\to\infty} z_{n} \neq 0$ y por tanto la serie $\sum_{n=0}^\infty z_n$ es divergente, corolario 27.1.

    Análogamente, si $\lambda=\infty$, tenemos que para todo $M >0$ existe un $N\in\mathbb{N}$ tal que si $n\geq N$ entonces: \begin{equation*} |z_{n}| > M^{n-N} |z_{N}| > 0, \end{equation*} de donde se sigue que la serie $\sum_{n=0}^\infty z_n$ diverge.
  3. Consideremos a las series: \begin{equation*} \sum_{n=1}^\infty \frac{1}{n} \quad \text{y} \quad \sum_{n=1}^\infty \frac{1}{n^2}. \end{equation*} Para ambas se cumple que $z_n \neq 0$ para todo $n\in\mathbb{N}^+$ y que: \begin{equation*} \lim_{n\to \infty} \frac{\dfrac{1}{n+1}}{\dfrac{1}{n}} = \lim_{n\to \infty} \frac{n}{n+1} = 1 = \lambda.\end{equation*} \begin{equation*} \lim_{n\to \infty} \frac{\dfrac{1}{(n+1)^2}}{ \dfrac{1}{n^2}} = \lim_{n\to \infty} \frac{n^2}{(n+1)^2} = 1 = \lambda.\end{equation*} Sin embargo, de acuerdo con el ejemplo 27.2, sabemos que la primera serie diverge, mientras que, utilizando el criterio de comparación y la serie $ \displaystyle\sum_{n=2}^\infty \dfrac{1}{n^2 – n}$, se puede verificar que la segunda serie converge. Entonces, si $\lambda = 1$ el criterio no es concluyente.

$\blacksquare$

Ejemplo 27.8.
Sea $z\in\mathbb{C}$. Estudiemos la convergencia de la serie $\sum_{n=0}^\infty \dfrac{z^n}{n!}$.

Solución. Sea $z_n = \dfrac{z^n}{n!}$, entonces $|z_n| = \dfrac{|z|^n}{n!} \geq 0$. Si $z=0$, es claro que la serie converge.

Supongamos que $z\neq 0$, entonces $z_n\neq 0$ para todo $n\in\mathbb{N}$. Tenemos que:
\begin{equation*}
\lim_{n\to\infty} \frac{\left|z_{n+1}\right|}{\left|z_{n}\right|} = \lim_{n\to\infty} \frac{\dfrac{\left|z\right|^{n+1}}{(n+1)!}}{\dfrac{\left|z\right|^{n}}{n!}} = \lim_{n\to\infty} \frac{\left|z\right|}{n+1} = 0 < 1,
\end{equation*}

por lo que la serie $\sum_{n=0}^\infty \dfrac{z^n}{n!}$ es absolutamente convergente para todo $z\in\mathbb{C}$.

Ejemplo 27.9.
Analicemos el comportamiento de las siguientes series.
a) $\displaystyle \sum_{n=0}^\infty \dfrac{(1-i)^n}{n!}$.
b) $\displaystyle \sum_{n=0}^\infty \dfrac{(z-i)^n}{2^n}$.

Solución.

a) Sea $z_n = \dfrac{(1-i)^n}{n!}$ el $(n+1)$-ésimo término de la serie. Claramente $z_n \neq 0$ para toda $n\in\mathbb{N}$.

Considerando el criterio de la razón, proposición 27.5, tenemos que:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{\left|z_{n+1}\right|}{\left|z_{n}\right|} = \lim_{n\to\infty} \left|\frac{\dfrac{(1-i)^{n+1}}{(n+1)!}}{\dfrac{(1-i)^{n}}{n!}}\right| & = \lim_{n\to\infty} \left|\frac{(1-i)^{n+1} n!}{(1-i)^{n}(n+1) n!}\right|\\
& = \lim_{n\to\infty} \frac{\left|1-i\right|}{n+1}\\
& = \lim_{n\to\infty} \frac{\sqrt{2}}{n+1}\\
& = 0.
\end{align*} Como $\lambda < 1$, entonces la serie converge.

b) Sea $z_n = \dfrac{(z-i)^n}{2^n}$ el $(n+1)$-ésimo término de la serie. Notemos que si $z=i$, entonces la serie converge.

Supongamos que $z \neq i$, entonces para todo $n\in\mathbb{N}$ se cumple que $z_n \neq 0$. Tenemos que:
\begin{align*}
\lambda = \lim_{n\to\infty} \frac{\left|z_{n+1}\right|}{\left|z_{n}\right|} = \lim_{n\to\infty} \left|\frac{\dfrac{(z-i)^{n+1}}{2^{n+1}}}{\dfrac{(z-i)^{n}}{2^{n}}}\right| & = \lim_{n\to\infty} \left|\frac{2^n (z-i)^{n+1}}{2^{n+1}(z-i)^{n}}\right|\\
& = \lim_{n\to\infty} \frac{\left|z-i\right|}{2}\\
& = \frac{\left|z-i\right|}{2}.
\end{align*}

Por el criterio de la razón, proposición 27.5, tenemos que $\lambda < 1$ si $\left|z-i\right| < 2$, en tal caso la serie converge.

Por otra parte, $\lambda > 1$ si $\left|z-i\right| > 2$, en tal caso la serie diverge.

Por último, tenemos que:
\begin{equation*}
\left|z-i\right| < 2 \quad \Longrightarrow \quad \left|\frac{z-i}{2}\right| < 1,
\end{equation*}

es decir, la serie dada es una serie geométrica convergente si $\left|z-i\right| < 2$, en tal caso:
\begin{equation*}
\sum_{n=0}^\infty \dfrac{(z-i)^n}{2^n} = \sum_{n=0}^\infty\left(\dfrac{z-i}{2}\right)^n = \frac{1}{1 – \dfrac{z-i}{2}} = \frac{2}{2-(z – i)}.
\end{equation*}

Y para $\left|z-i\right| \geq 2$ la serie diverge.

Proposición 27.6. (Criterio de la raíz.)
Sea $\left\{ z_n\right\}_{n\geq 0}$ una sucesión de números complejos, tales que:
\begin{equation*}
\lim_{n\to \infty} = |z_n|^{1/n} = \lambda,
\end{equation*} existe o es infinito.

  1. Si $\lambda <1$, entonces la serie $\sum_{n=0}^\infty z_n$ es absolutamente convergente.
  2. Si $\lambda >1$ ó $\lambda=\infty$, entonces la serie $\sum_{n=0}^\infty z_n$ es divergente.
  3. Si $\lambda =1$, entonces la serie $\sum_{n=0}^\infty z_n$ puede diverger o converger.

Demostración. La prueba es análoga a la de la proposición 27.5, por lo que los detalles se dejan como ejercicio al lector.

Dadas las hipótesis.

  1. Supongamos que $\lambda \in \mathbb{R}$ con $0 \leq \lambda <1$. Elegimos a $r\in\mathbb{R}$ tal que $\lambda < r < 1$. Tenemos que existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \left|z_n\right|^{1/n} < r \quad \Longrightarrow \quad \left|z_n\right| < r^n. \end{equation*} Dado que $r<1$, tenemos que la serie geométrica $\sum_{n = N}^{\infty} r^{n}$ converge, entonces por el criterio de comparación se sigue que la serie $\sum_{n=N}^\infty |z_{n}|$ converge y por el corolario 27.2 concluimos que la serie $\sum_{n=0}^\infty |z_{n}|$ converge.

    Entonces, la serie $\sum_{n=0}^\infty z_{n}$ es absolutamente convergente y por tanto converge.
  2. Si $\lambda>1$ ó $\lambda=\infty$. Tomemos a $r\in\mathbb{R}$ tal que $1<r<\lambda$. Tenemos que existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces: \begin{equation*} \left|z_n\right|^{1/n} > r \quad \Longrightarrow \quad \left|z_n\right| > r^n > 1.\end{equation*} Por lo que $\lim\limits_{n\to\infty} z_{n} \neq 0$ y por tanto la serie $\sum_{n=0}^\infty z_n$ es divergente.
  3. Consideremos a las series: \begin{equation*} \sum_{n=1}^\infty \frac{1}{n} \quad \text{y} \quad \sum_{n=1}^\infty \frac{1}{n^2}. \end{equation*} Para ambas se cumple que: \begin{equation*} \lim_{n\to \infty} \left|\frac{1}{n}\right|^{1/n} = \lim_{n\to \infty} \left(\frac{1}{n}\right)^{1/n} 1 = \lambda. \end{equation*} \begin{equation*} \lim_{n\to \infty} \left|\frac{1}{n^2}\right|^{1/n} = \lim_{n\to \infty} \left(\frac{1}{n^2}\right)^{1/n} 1 = \lambda. \end{equation*} Sin embargo, la primera serie diverge, mientras que la segunda serie converge. Entonces, si $\lambda = 1$ el criterio no es concluyente.

En general, el criterio de la razón es más fácil de aplicar que el criterio de la raíz, aunque existen ciertos casos donde la forma de la sucesión hace evidente el uso del criterio de la raíz.

Ejemplo 27.10.
Analicemos el comportamiento de las siguientes series.
a) $\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{(n+1)^n}$.
b) $\displaystyle \sum_{n=0}^\infty \dfrac{(1+i)^n}{3^n}$.

Solución.

a)] Sea $z_n = \left(\dfrac{z}{n+1}\right)^n$ el $(n+1)$-ésimo término de la sucesión, entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty}\left|z_{n}\right|^{1/n} = \lim_{n\to\infty}\left|\left(\dfrac{z}{n+1}\right)^n\right|^{1/n} = \lim_{n\to\infty} \dfrac{\left|z\right|}{n+1} = 0.
\end{equation*}

Como $\lambda < 1$, entonces por el criterio de la raíz tenemos que la serie converge.

b) Sea $z_n = \left(\dfrac{1+i}{3}\right)^n$ el $(n+1)$-ésimo término de la sucesión, entonces:
\begin{equation*}
\lambda = \lim_{n\to\infty}\left|z_{n}\right|^{1/n} = \lim_{n\to\infty}\left|\left(\dfrac{1+i}{3}\right)^n\right|^{1/n} = \lim_{n\to\infty} \dfrac{\left|1+i\right|}{3} = \frac{\sqrt{2}}{3}.
\end{equation*}

Como $\lambda < 1$, entonces por el criterio de la raíz tenemos que la serie converge.

Dado que $\left|\dfrac{1+i}{3}\right|<1$, entonces la serie es geométrica, por lo que:
\begin{equation*}
\sum_{n=0}^\infty \dfrac{(1+i)^n}{3^n} = \frac{1}{1-\dfrac{1+i}{3}} = \frac{3}{2-i}.
\end{equation*}

Definición 27.5. (Producto de Cauchy para series.)
Sean $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$ dos series de números complejos. Definimos el producto de ambas series como la serie $\sum_{n=0}^\infty c_n$ cuyo $n$-ésimo término está dado como:
\begin{equation*}
c_n = z_0 w_n + z_1 w_{n-1} + \cdots + z_{n-1} w_1 + z_n w_0 = \sum_{k=0}^n z_k w_{n-k}. \tag{27.1}
\end{equation*}

La serie:
\begin{equation*}
\sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \left(\sum_{k=0}^n z_k w_{n-k}\right). \tag{27.2}
\end{equation*} es llamada el producto de Cauchy de las series $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$.

Ejemplo 27.11.
Sean $z,w \in\mathbb{C}$. Obtengamos el producto de Cauchy de las series:
\begin{equation*}
\sum_{n=0}^\infty \frac{z^n}{n!} \quad \text{y} \quad \sum_{n=0}^\infty \frac{w^n}{n!}.
\end{equation*}

Solución. Sean $z_n = \dfrac{z^n}{n!}$ y $w_n = \dfrac{w^n}{n!}$ para todo $n\in\mathbb{N}$. De acuerdo con (29.2) tenemos que:
\begin{align*}
\sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \left(\sum_{k=0}^n z_k w_{n-k}\right) & = \sum_{n=0}^\infty \left( \sum_{k=0}^n \frac{z^k}{k!} \frac{w^{n-k}}{(n-k)!} \right)\\
& = \sum_{n=0}^\infty \frac{1}{n!}\left(\sum_{k=0}^n \frac{n!}{k!(n-k)!} z^k w^{n-k} \right)\\
& = \sum_{n=0}^\infty \frac{1}{n!}\left(\sum_{k=0}^n \binom{n}{k} z^k w^{n-k} \right)\\
& = \sum_{n=0}^\infty \frac{(z+w)^n}{n!}.
\end{align*}

Como hemos visto hasta ahora, las series absolutamente convergentes heredan propiedades de convergencia que resultan de gran utilidad en la práctica. Por lo que, en este punto resulta natural preguntarnos sobre cómo se comporta el producto de series de números complejos absolutamente convergentes. Para responder esta pregunta daremos dos resultados que consideran series convergentes y absolutamente convergentes.

Antes de continuar, recordemos el siguiente resultado de nuestros cursos de Cálculo.

Teorema 27.1. (Teorema de la convergencia monótona para sucesiones.)
Sea $\left\{a_n\right\}_{n\geq 0} \subset \mathbb{R}$ una sucesión real monótona. Entonces, $\left\{a_n\right\}_{n\geq 0}$ converge si y solo si es acotada.

Procedemos con los resultados mencionados previamente.

Proposición 27.7. (Producto de Cauchy absolutamente convergente.)
Sean $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$ dos series de números complejos absolutamente convergentes. Entonces, el producto de Cauchy de ambas series, es decir la serie $\sum_{n=0}^\infty c_n$ dada en (27.2), es absolutamente convergente y se cumple que:
\begin{equation*}
\sum_{n=0}^\infty c_n = \left(\sum_{n=0}^\infty z_n\right)\left(\sum_{n=0}^\infty w_n\right).
\end{equation*}

Demostración. Dadas las hipótesis, primeramente procedemos a probar que la serie $\sum_{n=0}^\infty c_n$, dada en (27.2), es absolutamente convergente.

Sean:
\begin{equation*}
A = \sum_{n=0}^\infty |z_n|, \quad B = \sum_{n=0}^\infty |w_n|,
\end{equation*}

y sea $s_n = \sum_{j=0}^n |c_j|$ la $n$-ésima suma parcial de la serie $\sum_{n=0}^\infty |c_n|$.

De acuerdo con (27.1), para todo $j\in\mathbb{N}$ tenemos que:
\begin{equation*}
c_j = \sum_{k=0}^j z_k w_{j-k} = z_0 w_j + z_1 w_{j-1} + \cdots + z_{j-1} w_1 + z_j w_0.
\end{equation*}

Notemos que para todo $n\in\mathbb{N}$ se cumple que:
\begin{align*}
\sum_{j=0}^n c_j & = \sum_{j=0}^n \left(\sum_{k=0}^j z_k w_{j-k}\right)\\
& = \sum_{k=0}^0 z_k w_{0-k} + \sum_{k=0}^1 z_k w_{1-k} + \cdots + \sum_{k=0}^n z_k w_{n-k}\\
& = z_0 w_0 + (z_0 w_1 + z_1 w_0) + \cdots + (z_0 w_n + \cdots + z_n w_0)\\
& = \sum_{k=0}^n z_0 w_k + \sum_{k=0}^{n-1} z_1 w_k + \cdots + \sum_{k=0}^1 z_{n-1} w_k + \sum_{k=0}^{0} z_n w_k\\
& = \sum_{j=0}^n \left(\sum_{k=0}^{n-j} z_j w_{k}\right).
\end{align*}

Es claro que se puede verificar esta igualdad por inducción, por lo que se deja como ejercicio al lector.

Por otra parte, para todo $n\in\mathbb{N}$ tenemos que:
\begin{equation*}
s_{n+1} – s_n = \sum_{j=0}^{n+1} |c_j| – \sum_{j=0}^n |c_j| = |c_{n+1}| \geq 0,
\end{equation*}

de donde se sigue que la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$, de la serie $ \sum_{n=0}^\infty |c_n|$, es creciente, es decir, es una sucesión monótona.

Considerando lo anterior, para todo $n\in\mathbb{N}$ tenemos que:
\begin{align*}
s_n = \sum_{j=0}^n |c_j| = \sum_{j=0}^n \left| \sum_{k=0}^{n-j} z_j w_{k} \right| \leq \sum_{j=0}^n \sum_{k=0}^{n-j} |z_j| |w_{k}| \leq \left(\sum_{j=0}^n |z_j|\right) \left( \sum_{k=0}^{n} |w_{k}|\right) \leq AB.
\end{align*}

Entonces, la sucesión de sumas parciales $\left\{s_n\right\}_{n\geq 0}$, de la serie $ \sum_{n=0}^\infty |c_n|$, es acotada. Por lo que, de acuerdo con el teorema 27.1, la sucesión converge y por tanto la serie $\sum_{n=0}^\infty c_n$ es absolutamente convergente.

Veamos ahora que la serie $\sum_{n=0}^\infty c_n$ converge al producto de las series $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$.

De acuerdo con la proposición 27.3, tenemos que:
\begin{align*}
\left| \sum_{j=0}^n c_j – \sum_{j=0}^n z_j \sum_{k=0}^n w_k \right| & \leq \left| \sum_{j=0}^n z_j \sum_{k=0}^{n-j} w_{k} – \sum_{j=0}^n z_j \sum_{k=0}^\infty w_k\right| + \left| \sum_{j=0}^n z_j \sum_{k=0}^\infty w_k – \sum_{j=0}^n z_j \sum_{k=0}^n w_k\right|\\
& = \left| \sum_{j=0}^n z_j \left( \sum_{k=0}^\infty w_k – \sum_{k=0}^{n-j} w_{k}\right)\right| + \left| \sum_{j=0}^n z_j \left( \sum_{k=0}^\infty w_k – \sum_{k=0}^n w_k\right)\right|\\
& = \left| \sum_{j=0}^n z_j \sum_{k=n-j+1}^\infty w_k\right| + \left| \sum_{j=0}^n z_j \sum_{k=n+1}^\infty w_k\right|\\
& \leq \sum_{j=0}^n |z_j| \sum_{k=n-j+1}^\infty |w_k| + \sum_{j=0}^n |z_j| \sum_{k=n+1}^\infty |w_k|.
\end{align*}

Como las series $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$ son absolutamente convergentes, de acuerdo con el ejercicio 3 de esta entrada, al tomar límites tenemos que:
\begin{equation*}
\lim_{n \to \infty} \left| \sum_{j=0}^n c_j – \sum_{j=0}^n z_j \sum_{k=0}^n w_k \right| = 0,
\end{equation*}

entonces:
\begin{equation*}
\lim_{n \to \infty} \left(\sum_{j=0}^n c_j – \sum_{j=0}^n z_j \sum_{k=0}^n w_k \right) = 0,
\end{equation*}

de donde se sigue que:
\begin{equation*}
\sum_{n=0}^\infty c_n = \left(\sum_{n=0}^\infty z_n\right)\left(\sum_{n=0}^\infty w_n\right).
\end{equation*}

$\blacksquare$

Ejemplo 27.12.
En el ejemplo 27.11 vimos que la serie:
\begin{equation*}
\sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \frac{(z+w)^n}{n!},
\end{equation*}

es el producto de Cauchy de las series:
\begin{equation*}
\sum_{n=0}^\infty \frac{z^n}{n!} \quad \text{y} \quad \sum_{n=0}^\infty \frac{w^n}{n!}.
\end{equation*}

Mientras que en el ejemplo 27.8 probamos que ambas series son absolutamente convergentes para todo $z, w\in\mathbb{C}$. Por lo que, de acuerdo con la proposición 27.7, concluimos que el producto de Cauchy de estas series es absolutamente convergente y es igual al producto de dichas series, es decir:
\begin{equation*}
\left( \sum_{n=0}^\infty \frac{z^n}{n!} \right) \left( \sum_{n=0}^\infty \frac{w^n}{n!} \right) = \sum_{n=0}^\infty \frac{(z+w)^n}{n!}.
\end{equation*}

Ejemplo 27.13.
Prueba que para $|z|<1$ se tiene que:
\begin{equation*}
\sum_{n=0}^\infty (n+1) z^{n} = \frac{1}{(1-z)^2}.
\end{equation*}

Solución.
Sabemos que la serie geométrica es convergente y se cumple que:
\begin{equation*}
\sum_{n=0}^\infty z^n = \frac{1}{1-z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Más aún, mediante el criterio de D’Alembert es fácil verificar que dicha serie es absolutamente convergente si $|z|<1$.

Entonces, por la proposición 27.7, tenemos que el producto de Cauchy de la serie geométrica consigo misma es absolutamente convergente y para $|z|<1$ se cumple que:
\begin{align*}
\displaystyle\sum_{n=0}^\infty c_n & = \left(\displaystyle\sum_{n=0}^\infty z^n \right)\left(\displaystyle\sum_{n=0}^\infty z^n\right)\\
& = \left(\frac{1}{1-z}\right)\left(\frac{1}{1-z}\right)\\
& = \frac{1}{(1-z)^2}.
\end{align*}

Procedemos a obtener el producto de Cauchy. Sean $z_n = z^n = w_n$ para todo $n\in\mathbb{N}$, entonces:
\begin{align*}
\sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \left(\sum_{k=0}^n z_k w_{n-k}\right)
& = \sum_{n=0}^\infty \left(\sum_{k=0}^n z^k z^{n-k}\right)\\
& = \sum_{n=0}^\infty z^n \left(\sum_{k=0}^n 1\right)\\
& = \sum_{n=0}^\infty \left(n+1\right) z^n.
\end{align*}

Por lo tanto:
\begin{equation*}
\sum_{n=0}^\infty (n+1) z^{n} = \frac{1}{(1-z)^2}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Proposición 27.8. (Teorema de Mertens sobre la convergencia del producto de Cauchy.)
Sean $\sum_{n=0}^\infty z_n$ y $\sum_{n=0}^\infty w_n$ dos series de números complejos tales que una es absolutamente convergente y la otra es convergente. Entonces, el producto de Cauchy de ambas series, dado en (27.2), es convergente y se cumple que:
\begin{equation*}
\sum_{n=0}^\infty c_n = \left(\sum_{n=0}^\infty z_n\right)\left(\sum_{n=0}^\infty w_n\right).
\end{equation*}

Demostración. Dadas las hipótesis, sin pérdida de generalidad supongamos que $\sum_{n=0}^\infty z_n$ converge a $A\in\mathbb{C}$, $\sum_{n=0}^\infty |z_n| = K \in\mathbb{R}$ y que $\sum_{n=0}^\infty w_n$ converge a $B\in\mathbb{C}$.

Para todo $n\in\mathbb{N}$ definimos las sumas parciales de las series como:
\begin{equation*}
s_n = \sum_{k=0}^n |z_k|, \quad a_n = \sum_{k=0}^n z_k, \quad b_n = \sum_{k=0}^n w_k, \quad C_n = \sum_{k=0}^n c_k.
\end{equation*}

De acuerdo con (27.1), para todo $n\in\mathbb{N}$ se cumple que:
\begin{equation*}
C_n = \sum_{j=0}^n c_j = \sum_{j=0}^n \left(\sum_{k=0}^j z_k w_{j-k}\right) = \sum_{j=0}^n \left(\sum_{k=0}^{n-j} z_j w_{k}\right) = \sum_{j=0}^n z_j \sum_{k=0}^{n-j} w_{k}.
\end{equation*}

Por lo que:
\begin{align*}
C_n = \sum_{j=0}^n c_j = \sum_{j=0}^n z_j b_{n-j} & = \sum_{j=0}^n z_j\left(B-(B-b_{n-j})\right)\\
& = \sum_{j=0}^n z_j B – \sum_{j=0}^n z_j (B-b_{n-j})\\
& = a_n B – \sum_{j=0}^n z_j (B-b_{n-j}).
\end{align*}

Dado que $\lim\limits_{n\to\infty} a_n B = AB$, entonces solo resta probar que:
\begin{equation*}
\lim\limits_{n\to\infty} \sum_{j=0}^n z_j (B-b_{n-j}) = 0.
\end{equation*}

Sea $\varepsilon>0$. Como $\lim\limits_{n\to\infty} b_n = B$, entonces $\lim\limits_{n\to\infty} (b_n – B) = 0$. Por lo que, proposición 8.1, la sucesión $\left\{b_n – B\right\}_{n\geq 0}$ es acotada, es decir, existe $M>0$ tal que $|b_n -B| \leq M$ para toda $n\in\mathbb{N}$.

Dado que la serie $\sum_{n=0}^\infty |z_n|$ es convergente, para $\varepsilon/2M >0$ tenemos que existe $N_1\in\mathbb{N}$ tal que si $n\geq N_1$, entonces:
\begin{equation*}
\sum_{j=N_1 + 1}^\infty |z_j| = \left|\sum_{j=0}^n |z_j| – \sum_{j=0}^\infty |z_j|\right| < \frac{\varepsilon}{2M}.
\end{equation*}

Supongamos que $\sum_{n=0}^\infty |z_n| < \alpha$, con $\alpha > K \geq 0$. Como $\lim\limits_{n\to\infty} b_n = B$, para $\varepsilon/2\alpha >0$ tenemos que existe $N_2\in\mathbb{N}$ tal que si $n\geq N_2$, entonces:
\begin{equation*}
\left|b_n – B\right| < \frac{\varepsilon}{2\alpha}.
\end{equation*}

Sea $N \geq N_1 + N_2$. Notemos que para $j \leq N_1$, se cumple que $N – j \geq N_2$. Entonces, para toda $n\geq N$ tenemos que:
\begin{align*}
\left| \sum_{j=0}^n z_j (B-b_{n-j}) \right| & = \left| \sum_{j=0}^{N_1} z_j (B-b_{n-j}) + \sum_{j= N_1 + 1}^n z_j (B-b_{n-j})\right|\\
& \leq \sum_{j=0}^{N_1} |z_j| |B-b_{n-j}| + \sum_{j= N_1 + 1}^n |z_j| |B-b_{n-j}|\\
& \leq \frac{\varepsilon}{2\alpha} \sum_{j=0}^{N_1} |z_j| + M \sum_{j= N_1 + 1}^n |z_j|\\
& < \left(\frac{\varepsilon}{2\alpha}\right) \alpha + M \left(\frac{\varepsilon}{2 M}\right)\\
& =\varepsilon.
\end{align*}

Entonces:
\begin{equation*}
\lim_{n\to \infty} C_n = \lim_{n\to \infty} \sum_{j=0}^n c_j = \lim_{n\to \infty} \left(a_n B – \sum_{j=0}^n z_j (B-b_{n-j})\right) = AB,
\end{equation*}

de donde se sigue que el producto de Cauchy de las series es convergente y se cumple que:
\begin{equation*}
\sum_{n=0}^\infty c_n = \left(\sum_{n=0}^\infty z_n\right)\left(\sum_{n=0}^\infty w_n\right).
\end{equation*}

$\blacksquare$

Definición 27.6. (Sucesiones y series doblemente infinitas.)
Una sucesión de números complejos doblemente infinita es una función $f:\mathbb{Z}\to\mathbb{C}$ tal que a cada $n\in\mathbb{Z}$ asigna de manera única un número complejo. Si $f(n) = z_n \in \mathbb{C}$ para todo $n\in\mathbb{Z}$, entonces denotamos a la sucesión de números complejos doblemente infinita como $\left\{z_n\right\}_{n\in\mathbb{Z}}$ ó $\left\{z_n\right\}_{n=-\infty}^\infty$.

Una serie de números complejos doblemente infinita es una expresión de la forma:
\begin{equation*}
\sum_{n=-\infty}^\infty z_n.
\end{equation*}

Definición 27.7. (Sumas parciales de una serie doblemente infinita.)
Dada una serie de números complejos doblemente infinita $\sum_{n=-\infty}^\infty z_n$, para cada par de números $n,m \in\mathbb{N}^+$ definimos la sucesión de sumas parciales de la serie como:
\begin{equation*}
s_{m,n} = \sum_{k=-m}^n z_k = z_{-m} + z_{-m+1} + \cdots + z_{n-1} + z_n.
\end{equation*}

Definición 27.8. (Serie doblemente infinita convergente.)
Diremos que una serie de números complejos doblemente infinita $\sum_{n=-\infty}^\infty z_n$ converge a $s\in\mathbb{C}$ si $s_{m,n} \to s$ conforme $m\to\infty$ y $n\to\infty$ de forma independiente, es decir, si para todo $\varepsilon>0$ existe $N(\varepsilon)\in\mathbb{N}^+$ tal que si $m\geq N$ y $n\geq N$, entonces:
\begin{equation*}
|s_{m,n} – s| = \left| \sum_{k=-m}^n z_k – s \right| < \varepsilon.
\end{equation*}

En tal caso, denotaremos la convergencia de la serie a $s$ como $s = \sum_{n=-\infty}^\infty z_n$. En caso de no existir $s\in\mathbb{C}$ con tal propiedad, diremos que la serie de números complejos doblemente infinita es divergente.

Lema 27.1.
Una serie de números complejos doblemente infinita $\sum_{n=-\infty}^\infty z_n$ converge a $s = s^{-} + s^{+} \in\mathbb{C}$ si y solo si las series de números complejos $\sum_{n=0}^\infty z_n$ y $\sum_{n=1}^\infty z_{-n}$ convergen a $s^{+}$ y $s^{-}$, respectivamente. En tal caso:
\begin{equation*}
\sum_{n=-\infty}^\infty z_n = \sum_{n=1}^\infty z_{-n} + \sum_{n=0}^\infty z_n. \tag{27.3}
\end{equation*}

Demostración.
Sean $m\geq 1$ y $n\geq 1$, entonces las sucesiones de sumas parciales de cada serie están dadas por:
\begin{equation*}
s_{m,n} = \sum_{k=-m}^n z_k = z_{-m} + z_{-m+1} + \cdots + z_{n-1} + z_n,
\end{equation*}
\begin{equation*}
s_{-m} = \sum_{k=-m}^{-1} z_k = z_{-m} + z_{-m+1} + \cdots + z_{-2} + z_{-1},
\end{equation*}
\begin{equation*}
s_{n} = \sum_{k=0}^n z_k = z_{0} + z_{1} + \cdots + z_{n-1} + z_n,
\end{equation*} de donde $s_{m,n} = s_{-m} + s_{n}$.

$(\Longleftarrow$

Supongamos que $s^{-} = \sum_{n=1}^\infty z_{-n}$ y $ s^{+} = \sum_{n=0}^\infty z_n$, con $s^{-}, s^{+} \in \mathbb{C}$, es decir que ambas series son convergentes.

Entonces, por la proposición 27.2 es claro que si $m\to\infty$ y $n\to\infty$ entonces $s_{m,n} = s_{-m} + s_{n} \to s^{-} + s^{+}$, por lo que la serie $\sum_{n=-\infty}^\infty z_n$ converge y se cumple (29.3).

$\Longrightarrow)$

Supongamos que la serie $\sum_{n=-\infty}^\infty z_n$ converge a $s \in \mathbb{C}$.

Probaremos que la serie $\sum_{n=0}^\infty z_n$ converge utilizando el criterio de Cauchy. La convergencia de la serie restante es análoga y se deja como ejercicio al lector.

Sea $\varepsilon>0$. De acuerdo con la definición 27.7 tenemos que existe $M\in\mathbb{N}^+$ tal que si $p\geq M$ y $q\geq M$, con $p,q\in\mathbb{N}^{+}$, entonces $|s_{p,q} – s| < \varepsilon/2$. En particular $|s_{M,q} – s| < \varepsilon/2$ si $q\geq M$. Sea $N = M+1$, entonces para $n,m\geq N$, con $n>m$, por la desigualdad del triángulo tenemos que:
\begin{equation*}
\left|\sum_{k=m+1}^n z_k\right| = |s_{M,n} – s_{M,m}| \leq |s_{M,n} – s| + |s – s_{M,m}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\end{equation*}

Por lo que, de acuerdo con la proposición 27.1, tenemos que la serie $\sum_{n=0}^\infty z_n$ converge.

De acuerdo con la primera parte de la prueba, como las series $\sum_{n=1}^\infty z_{-n}$ y $\sum_{n=0}^\infty z_n$ convergen, entonces se cumple (27.3).

$\blacksquare$

Observación 27.6.
De acuerdo con el lema anterior, es común definir la convergencia de una serie de números complejos doblemente infinita $\sum_{n=-\infty}^\infty z_n$, en función de la convergencia de las series $\sum_{n=1}^\infty z_{-n}$ y $\sum_{n=0}^\infty z_n$, en cuyo caso se dice que la serie doblemente infinita converge a la suma de ambas series dada en (27.3).

Ejemplo 27.14.
Analicemos el comportamiento de la serie $\sum_{n=-\infty}^\infty 2^{-|n|} z^n$.

Solución. De acuerdo con el lema 27.1, podemos analizar la convergencia de la serie doblemente infinita al separarla en dos series, dadas por $n\geq 0$ y $n<0$.

Para $n\geq 0$ tenemos que:
\begin{equation*}
\sum_{n=0}^\infty 2^{-|n|} z^n = \sum_{n=0}^\infty \frac{z^n}{2^{|n|}} = \sum_{n=0}^\infty \left(\frac{z}{2}\right)^n = \frac{1}{1-\dfrac{z}{2}} = \frac{2}{2-z},
\end{equation*} si $|z/2| < 1$, es decir si $|z|<2$. Mientras que la serie diverge si $|z|\geq 2$.

Por otra parte, para $n<0$ tenemos que:
\begin{align*}
\sum_{n=-\infty}^{-1} 2^{-|n|} z^n = \sum_{n=1}^\infty 2^{-|-n|} z^{-n} = \sum_{n=1}^\infty \frac{1}{z^n \, 2^{|n|}}
& = \sum_{n=1}^\infty \left(\frac{1}{2z}\right)^n\\
& = \left(\frac{1}{2z}\right) \sum_{n=1}^\infty \left(\frac{1}{2z}\right)^{n-1}\\
& = \left(\frac{1}{2z}\right) \sum_{k=0}^\infty \left(\frac{1}{2z}\right)^{k}\\
& = \left(\frac{1}{2z}\right) \left(\frac{1}{1-\dfrac{1}{2z}}\right)\\
&= \frac{1}{2z-1},
\end{align*} si se cumple que $|1/(2z)| < 1$, es decir si $|z|>1/2$. Mientras que la serie diverge en otro caso.

Entonces, de acuerdo con el lema 27.1, para los $z\in\mathbb{C}$ tales que $1/2 < |z| < 2$, tenemos que la serie converge y en tal caso:
\begin{equation*}
\sum_{n=-\infty}^\infty 2^{-|n|} z^n = \frac{2}{2-z} + \frac{1}{2z-1} = \frac{3z}{(2-z)(2z-1)}.
\end{equation*}

Podemos visualizar la región de convergencia y los valores que toma la serie en el siguiente Applet de GeoGebra: https://www.geogebra.org/m/eqjzzthz.

Tarea moral

  1. Completa la demostración de la proposición 27.2.
  2. Prueba el corolario 27.4.
  3. Prueba que si una serie $\displaystyle \sum_{n=0}^\infty z_n$ converge, entonces $\lim\limits_{m\to\infty} \displaystyle \sum_{n=m+1}^\infty z_n = 0$, es decir, si la serie converge entonces su cola tiende a $0$.
  4. Muestra que:
    a) $\displaystyle \sum_{n=0}^\infty \dfrac{1}{(2+i)^n} = \dfrac{3-i}{2}$.
    b) $\displaystyle \sum_{n=0}^\infty \left(\dfrac{1}{n+1+i} – \dfrac{1}{n+i}\right) = i$.
    c) $\displaystyle \sum_{n=0}^\infty \dfrac{(1+i)^n}{2^n} = 1+i$.
    d) $\displaystyle \sum_{n=0}^\infty \dfrac{(1-i)^n}{2^n} = 1-i$.
  5. Prueba que las siguientes series convergen.
    a) $\displaystyle \sum_{n=1}^\infty \dfrac{(3+4i)^n}{5^n n^2}$.
    b) $\displaystyle \sum_{n=1}^\infty \left(\dfrac{1}{n+2i} – \dfrac{1}{n+1+2i}\right)$.
    c) $\displaystyle \sum_{n=1}^\infty \dfrac{i}{n(n+1)}$.
    d) $\displaystyle \sum_{n=0}^\infty \dfrac{(1+i)^{2n}}{(2n+1)!}$.
  6. Utiliza la serie geométrica para determinar la mayor región de convergencia de las siguientes series y obtén el valor de cada suma.
    a) $\displaystyle \sum_{n=0}^\infty\left[\left(\dfrac{2}{z}\right)^n + \left(\dfrac{z}{3}\right)^n\right]$.
    b) $\displaystyle \sum_{n=0}^\infty \left(\dfrac{(3+i)z}{4-i}\right)^n$.
    c) $\displaystyle \sum_{n=1}^\infty\left(1 + z\right)^n$.
    d) $\displaystyle \sum_{n=0}^\infty \dfrac{2^{n+1}}{(2+i-z)^n}$.
  7. Sean $r,\theta\in\mathbb{R}$, con $0\leq r < 1$. Muestra que:
    a) $\displaystyle \sum_{n=0}^\infty r^n e^{i n\theta} = \dfrac{1}{1-re^{i \theta}}$.
    b) $\displaystyle \sum_{n=-\infty}^\infty r^{|n|} e^{i n\theta} = \dfrac{1}{1-re^{- i \theta}} + \dfrac{re^{i \theta}}{1-re^{i \theta}}$.
    c) $\displaystyle \sum_{n=0}^\infty r^n \operatorname{cos}(n\theta) = \dfrac{1-r\operatorname{cos}(\theta)}{1+r^2-2r\operatorname{cos}(\theta)}$.
    d) $\displaystyle \sum_{n=0}^\infty r^n \operatorname{sen}(n\theta) = \dfrac{r\operatorname{sen}(\theta)}{1+r^2-2r\operatorname{cos}(\theta)}$.
  8. Sean $\sum_{n=0}^\infty z_n $ y $\sum_{n=0}^\infty z_n^2$ dos series convergentes, de números complejos tales que $\operatorname{Re}(z_n)\geq 0$, para todo $n\in\mathbb{N}$. Prueba que la serie $\sum_{n=0}^\infty|z_n|^2$ es convergente.
  9. Muestra que: \begin{equation*} \displaystyle \sum_{n=1}^\infty \frac{n(n+1)}{2} z^{n-1} = \frac{1}{(1-z)^3}. \end{equation*} Hint: Considera el resultado del ejemplo 27.13 y utiliza la identidad $\displaystyle\sum_{k=1}^n k = \dfrac{n(n+1)}{2}$.
  10. Determina para qué valores de $z\in\mathbb{C}$ la serie $\displaystyle \sum_{n=0}^\infty e^{inz}$ converge, es decir, su región de convergencia.
    Hint: Considera la serie geométrica.

Más adelante…

En esta entrada hemos dado la definición de serie, desde el sentido complejo, y probamos algunos resultados elementales para estudiar la convergencia de una serie, los cuales nos serán de utilidad en las siguientes entradas.

Al igual que con muchos otros conceptos, las definiciones y criterios obtenidos para las series de números complejos son muy similares a los que estudiamos en nuestros cursos de Cálculo para las series de números reales.

La siguiente entrada abordaremos los conceptos de sucesión y serie de funciones complejas, así como los conceptos de convergencia puntual y uniforme. Además de obtener algunos resultados elementales en el estudio de las series de funciones complejas.

Entradas relacionadas